
Statistical Theory MATH-442
Spring 2025 Ho Yun & Yoav Zemel

Exercise sheet 5

In these exercise set, you may use without proof that Γ′(p)/Γ(p) is strictly increasing in p with
limit −∞ as p ↘ 0 and ∞ as p → ∞.

Exercise 1

1. Suppose that Xn
d−→ X on Rk. Show that (Xn) is bounded in probability.

2. Show that if Xn
d−→ 0 and Yn is bounded in probability, then XnYn

d−→ 0. Here we assume
that XnYn makes sense, so that either one of them is scalar, or Xn is a matrix and Yn and
appropriate vector, or Xn and Yn are vectors of the same dimension and we take an inner
product, etc.

Exercise 2 In the one-dimensional case, examine the conditions under which an estimator T
attains the Cramér–Rao lower bound.

Solution 1

1. Let ϵ > 0. It is possible to find aϵ ∈ Rk such that P (X ≤ aϵ) ≤ ϵ and bϵ is a continuity point
of FX (since the set of discontinuities is finite or countable). Similarly, it is possible to find
bϵ such that P (−X ≤ −bϵ) ≤ ϵ and bϵ is a continuity point of F−X . It follows from Xn

d−→ X
that

lim sup
n

P (Xn ≤ aϵ or Xn ≥ bϵ) ≤ 2ϵ,

so that for n > Nϵ this probability is at most 3ϵ. Increasing (in absolute value) aϵ and bϵ if
necessary, this probability is at most 3ϵ for all n. This proves boundedness in probability.

2. Let ϵ > 0. Let Mϵ as in the definition of boundedness in probability. Then

P (∥XnYn∥ > ϵ) = P (∥XnYn∥ > ϵ, ∥Xn∥ > Mϵ)+P (∥XnYn∥ > ϵ, ∥Xn∥ ≤ Mϵ) ≤ ϵ+P (∥Yn∥ ≤ ϵ/Mϵ).

Since Yn
d−→ 0 we obtain

lim sup
n

P (∥XnYn∥ > ϵ) ≤ ϵ

and as ϵ > 0 is arbitrary this proves XnYn
d−→ 0.

Solution 2 Equality holds if and only if Sn(θ, X) = C(θ)T (X) for some C(θ) ≥ 0. But Sn = ∇θℓn,
so the log likelihood is C(θ)T (X) up to a linear factor depending possibly on X. This is the
exponential family situation.
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Exercise 3 Let X1, . . . , Xn be a sample from the logistic distribution with density

f(x; µ) = exp{−(x−µ)}
(1+exp{−(x−µ)})2 , x ∈ R, µ ∈ R.

(a) Find the maximum likelihood estimator of µ (and verify that the solution actually maximises
the likelihood), compute the Fisher information and find the asymptotic distribution of the
estimator as n → ∞.

(b) Find an estimator of µ that has an explicit expression and the same asymptotic properties
as the maximum likelihood estimator.

Solution 3

(a) The log-likelihood function and its derivative equal

ℓn(µ) = −
n∑

i=1
(Xi − µ) − 2

n∑
i=1

log(1 + exp{−(Xi − µ)}),

ℓ′
n(µ) = n − 2

n∑
i=1

exp{−(Xi−µ)}
1+exp{−(Xi−µ)} =

n∑
i=1

1−exp{−(Xi−µ)}
1+exp{−(Xi−µ)} .

The estimator µ̂ is given implicitly as the solution to ℓ′
n(µ) = 0. As the second derivative of

the log-likelihood
ℓ′′

n(µ) = −2
n∑

i=1

exp{−(Xi−µ)}
[1+exp{−(Xi−µ)}]2

is negative, the log-likelihood ℓn is concave and the solution is the maximiser. It follows
from the corollary to Cramér’s theorem (Corollary 2.7, whose conditions are easily verified in
this case) that the MLE is consistent. The conditions for asymptotic normality are verified
here, since |ℓ′′′(µ)| ≤ 4n and so |ℓ′′

n(µ) − ℓ
′′
n(µ + h)| ≤ 4|h| and Eµ(4) < ∞. Moreover, the

second derivative ℓ′′
n(µ) is also nicely behaved (bounded in absolute value by 2), so that

In(µ) = Jn(µ). Thus the asymptotic distribution of
√

n(µ̂MLE
n − µ) is N(0, 1/J1(µ)) with

J1(µ) =
∫ ∞

−∞

2 exp{−(x−µ)}
[1+exp{−(x−µ)}]2 f(x; µ)dx =

∫
2ey

(1+ey)4 dy =
∫ ∞

0
2z

(1+z)4 =
∫ ∞

0
2

(1+z)3 dz− 2
(1+z)4 dz = 1

3

not depending on µ.

(b) The density is symmetric and has a finite mean, so that mean has to be µ. Therefore we
can take µ̃n = Xn. It is consistent and

√
n(µ̃n − µ) is bounded in probability (by CLT).

Thus it can be used as the starting point for a one-step approximation of the maximum
likelihood estimator. The one-step estimator is µ∗

n = µ̃n−ℓ
′
n(µ̃n)/ℓ

′′
n(µ̃n), which has an explicit

expression as the derivatives have been calculated already. The asymptotic distribution of√
n(µ∗

n − µ) is the same as that of the maximum likelihood estimator, i.e., N(0, 1/J1(µ)) with
J1(µ) = 1/3 as before.
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Exercise 4 Let X1, . . . , Xn be a sample from the Gamma distribution with known a (rate) and
unknown p (shape) (the density is f(x; a, p) = ap

Γ(p)x
p−1e−ax1(0,∞)(x)). Find an estimator p̃ of p

and use it to construct a one-step estimator p∗. Find the asymptotic distribution of
√

n(p∗ − p).

Solution 4 We have EX = p/a, so we can take p̃ = aX. The one-step estimator is p̂ = p̃ − ℓ′
n(p̃)

ℓ′′
n(p̃)

where

ℓ′
n(p) = n log a − nΓ′(p)

Γ(p) +
n∑

i=1
log Xi,

ℓ′′
n(p) = −nΓ′′(p)Γ(p)−Γ′(p)2

Γ(p)2 .

The asymptotic distribution of
√

n(p∗ − p) is the same as that of the maximum likelihood estimator
which is N(0, 1/J1(p)) with

J1(p) = Γ′′(p)Γ(p)−Γ′(p)2

Γ(p)2 .

The regularity conditions hold here, since we have an exponential family. It is also easy to check
them directly — the MLE is consistent either by the corollary to Cramér theorem or the law of
large numbers. The second derivative does not depend on x at all.
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Exercise 5 Let X1, . . . , Xn be a sample from a Weibull distribution with density

f(x; a, p) = apxp−1 exp{−axp}1(0,∞)(x),

where the parameter a is known to be 1 while the value of p > 0 is unknown. Suppose however
that we have falsely assumed that the distribution is Γ(1, p) (density 1

Γ(p)x
p−1e−x1(0,∞)(x)) with

parameter p > 0 estimated by the maximum likelihood estimator p̂MLE
n . What does p̂MLE

n estimate?
Find its asymptotic distribution.
Hint: you may use without proof that

∫ ∞
0 e−y log ydy = −γ ≈ .577 (the Euler–Mascheroni

constant).

Solution 5 The regularity conditions hold, since we have an exponential family. Specifically here
the second and third derivatives of ℓ1 do not depend on x at all. Since the first derivative with
respect to p is

ℓ
′
n(p) = 1

n

n∑
i=1

log Xi − Γ′(p)
Γ(p)

and using the properties of Γ′/Γ, the MLE is such that this is equal to zero and converges by the
law of large numbers to the value p∗ such that

Γ′(p∗)
Γ(p∗) = EG log X =

∫ ∞

0
p0x

p0−1e−xp0 log xdx = 1
p0

∫ ∞

0
dye−y log y = −γ

p0
.

Here G denotes the true Weibull distribution and g the corresponding density, with p0 the true
Weibull parameter.

Since G satisfies EG| log g(X)| < ∞, the hope is that the MLE will converge to the value of p
that minimises

KL(G, Γ(1, p)) = EG log p0xp0−1 exp(−xp0 )Γ(p)
xp−1e−x = C(p0) + EG log Γ(p) − (p − 1) log X + X

= C̃(p0) + log Γ(p) − (p − 1)EG log X.

The value that maximises this satisfies ∂ log Γ(p)/∂p = EG log X, and is therefore p∗. Hence the
MLE is consistent for the p∗ corresponding to the KL projection and the theorem applies. (We could
have also used Cramér’s theorem and its corollary to show consistency.) Thus

√
n(p̂MLE

n − p∗) →
N(0, IG

1 (p)/[JG
1 (p)]2) with

JG
1 (p) = −EGℓ

′′
n(p) = Γ′′(p)Γ(p)−[Γ′(p)]2

Γ2(p)

and IG
1 (p) = varG(log X).
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Exercise 6 Let X1, . . . , Xn be a sample from the Weibull distribution with the density f(x; λ, p) =
(λp) (λx)p−1 e−(λx)p for x > 0, where λ > 0 and p > 0 are unknown parameters. Suppose that
we thought that the distribution was exponential with the density g(x; λ) = λe−λx1(x > 0) and
calculated the maximum likelihood estimator λ̂MLE

n . What does λ̂MLE
n estimate and what are its

asymptotic properties? Compare with the maximum likelihood estimator of λ computed under the
correct model specification when the parameter p of the Weibull distribution is known.

Solution 6 A simple calculation shows the MLE is unique and satisfies λ̂MLE
n = 1/Xn, and thus

converges to the 1/EG(X). We have

ℓn(λ) = n log λ − λnXn

ℓ′
n(λ) = n

λ
− nXn

ℓ′′
n(λ) = − n

λ2

so that JG
1 (λ) = λ−2, where G =Weibull(λ0, p0) is the true distribution of the data. The regularity

conditions hold here since ℓ′′
n does not depend on x and is smooth in λ. We can also see this

directly using the computation

EG(X) =
∫ ∞

0
λ0p0x(λ0x)p0−1e−(λ0x)p0 dx =

∫ ∞

0
λ−1

0 y1/p0e−ydy = Γ(1+1/p0)
λ0

.

so that EGℓ′
1(λ) vanishes at λ∗ = 1/EG(X). Moreover

EG(X2) =
∫ ∞

0
λ−2

0 y2/p0e−ydy = Γ(1+2/p0)
λ2

0
,

so that
IG

1 (λ∗) = varG(ℓ′
1) = Γ(1+2/p0)−Γ2(1+1/p0)

λ2
0

.

Therefore
√

n(λ̂MLE
n − λ∗) → N(0, IG

1 /[JG
1 ]2) with

JG
1 = JG

1 (λ∗) = 1/(λ∗)2 = E2
GX = Γ2(1+1/p0)

λ2
0

.

Note that the value λ∗ is consistent with KL projection question on week 3.
It is easily verified that if X ∼ Fλ,p and p is known, then Xp ∼ Exp(λp). The maxi-

mum likelihood estimator of λ is thus (n/
∑n

i=1 Xp
i )1/p, consistent and asymptotically normal:

√
n ((n/

∑n
i=1 Xp

i )1/p − λ) d−→ N(0, λ2/p2).
Note that if p = 1, then the Weibull distribution becomes exponential and we recover the

results for the MLE of an exponential distribution.
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