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Spring 2025 Ho Yun & Yoav Zemel

Exercise sheet 5

In these exercise set, you may use without proof that I'(p)/T'(p) is strictly increasing in p with
limit —oo as p \, 0 and oo as p — oo.

Exercise 1

1. Suppose that X, 4, X on R*. Show that (X,,) is bounded in probability.

2. Show that if X, <4 0 and Y, is bounded in probability, then X, Y, 4 0. Here we assume
that X,,Y,, makes sense, so that either one of them is scalar, or X,, is a matrix and Y,, and
appropriate vector, or X,, and Y,, are vectors of the same dimension and we take an inner
product, etc.

Exercise 2 In the one-dimensional case, examine the conditions under which an estimator T
attains the Cramér—Rao lower bound.

Solution 1

1. Let € > 0. It is possible to find a, € R* such that P(X < a.) < € and b, is a continuity point
of Fx (since the set of discontinuities is finite or countable). Similarly, it is possible to find

b. such that P(—X < —b.) < € and b, is a continuity point of F_x. It follows from X, 4 x
that
limsup P(X,, < a. or X, > b.) < 2¢,

so that for n > N, this probability is at most 3e. Increasing (in absolute value) a. and b, if
necessary, this probability is at most 3¢ for all n. This proves boundedness in probability.

2. Let ¢ > 0. Let M, as in the definition of boundedness in probability. Then

P([XnYall > €) = P(|XaYall > € [ Xn]| > M)+ P([ Xn Yol > € [[Xnll < Mc) < e+P([[Ya]l <

Since Y, <4 0 we obtain
limsup P(|| X, Y| >€) <e

and as € > 0 is arbitrary this proves X, Y, <0.
Solution 2 Equality holds if and only if S,, (0, X) = C(0)T(X) for some C(#) > 0. But S,, = Vyl,,

so the log likelihood is C'(0)T(X) up to a linear factor depending possibly on X. This is the
exponential family situation.

e/M,).



Exercise 3 Let Xi,...,X, be a sample from the logistic distribution with density

f(x ,u) (sz;l()l;{{ ((xx Mli§})2, xr € R, ILL (- R

(a) Find the maximum likelihood estimator of p (and verify that the solution actually maximises

the likelihood), compute the Fisher information and find the asymptotic distribution of the
estimator as n — oo.

(b) Find an estimator of p that has an explicit expression and the same asymptotic properties

as the maximum likelihood estimator.

Solution 3

(a) The log-likelihood function and its derivative equal

0a() = — S0 — ) — 23 log(1 + exp{—(X: — w)}).

i=1 =1

exp{ (X = 1—exp{ w}
G(p) =n—2 Z 1+e§p{ # ; 1+eX§{ mis

The estimator [ is given implicitly as the solution to ¢/, (1) = 0. As the second derivative of
the log-likelihood

i exp{—(X;—

bnlp) = =2 Z o (X
is negative, the log-likelihood /¢, is concave and the solution is the maximiser. It follows
from the corollary to Cramér’s theorem (Corollary 2.7, whose conditions are easily verified in
this case) that the MLE is consistent. The conditions for asymptotic normality are verified
here, since | (11)| < 4n and so |0 (1) — €, (1 + h)| < 4|h| and E,(4) < co. Moreover, the
second derivative £ (u) is also nicely behaved (bounded in absolute value by 2), so that
I.() = J(1n). Thus the asymptotic distribution of \/n(aM=¥ — 1) is N(0,1/J;(x)) with

_ ' gex { 2eY _ 9 _ > 1
Ji(n) = /_ mmi{—]zf(x pdr = | wiapdy = /0 (1+2)! —/0 1+z sde— ) 1dz = 3

not depending on pu.

The density is symmetric and has a finite mean, so that mean has to be pu. Therefore we
can take fi, = X,. It is consistent and \/n(f, — i) is bounded in probability (by CLT).
Thus it can be used as the starting point for a one-step approximation of the maximum
likelihood estimator. The one-step estimator is p* = fin — €. (fin) /2. (fin), which has an explicit
expression as the derivatives have been calculated already. The asymptotic distribution of
Vn(pl — ) is the same as that of the maximum likelihood estimator, i.e., N(0,1/J;(p)) with
J1(p) = 1/3 as before.



Exercise 4 Let X1,..., X, be a sample from the Gamma distribution with known a (rate) and

unknown p (shape) (the density is f(z;a,p) = FCZJ) 2P~ 171 .00y (2)). Find an estimator p of p

and use it to construct a one-step estimator p*. Find the asymptotic distribution of v/n(p* — p).

=

Solution 4 We have EX = p/a, so we can take p = aX. The one-step estimator is p = p — if}g
where

=

¢ (p) =nloga — "15(;})”) - ;ngi,

Ik T -1 2
g;; (p) =—n (p) F((pp))2 ()
The asymptotic distribution of \/n(p* — p) is the same as that of the maximum likelihood estimator
which is N(0,1/.J;(p)) with

Ik T -1 2
Ji(p) = (r) F((pp))2 ()

The regularity conditions hold here, since we have an exponential family. It is also easy to check
them directly — the MLE is consistent either by the corollary to Cramér theorem or the law of
large numbers. The second derivative does not depend on x at all.



Exercise 5 Let Xi,..., X, be a sample from a Weibull distribution with density

f(x;a,p) = apr? " exp{—ax’}1 (g 00) (),

where the parameter a is known to be 1 while the value of p > 0 is unknown. Suppose however

that we have falsely assumed that the distribution is I'(1, p) (density ﬁxp_le_”"l(om)(:c)) with

parameter p > 0 estimated by the maximum likelihood estimator pM¥. What does pML¥ estimate?
Find its asymptotic distribution.

Hint: you may use without proof that [;“e Ylogydy = —v ~ .577 (the Euler-Mascheroni
constant).

Solution 5 The regularity conditions hold, since we have an exponential family. Specifically here
the second and third derivatives of ¢; do not depend on z at all. Since the first derivative with
respect to p is

G(p) = 5 ;logXi ~ Ty
and using the properties of IV/T', the MLE is such that this is equal to zero and converges by the
law of large numbers to the value p* such that

T =Eqlog X = /0 por?* ™" log adz = pio/o dye™"logy = %
Here G denotes the true Weibull distribution and g the corresponding density, with py the true
Weibull parameter.

Since G satisfies Eg|log g(X)| < oo, the hope is that the MLE will converge to the value of p
that minimises

KL(G,T(1,p)) = Eg log 220" expCal®) — cv(p) + Eg log T'(p) — (p — 1) log X + X

xp—le—x

= C(po) +1ogT(p) — (p — 1)E¢ log X.

The value that maximises this satisfies 0log'(p)/0p = E¢ log X, and is therefore p*. Hence the
MLE is consistent for the p* corresponding to the KL projection and the theorem applies. (We could

have also used Cramér’s theorem and its corollary to show consistency.) Thus v/n(pM¥ — p*) —

N(0,If (p)/[JF (p)]?) with
JE(p) = —Egl(p) = oI @)

and I¢(p) = varg(log X).



Exercise 6 Let X,..., X, be a sample from the Weibull distribution with the density f(z; A, p) =
(Ap) (Az)P~Le=@)” for 2 > 0, where A > 0 and p > 0 are unknown parameters. Suppose that
we thought that the distribution was exponential with the density g(x;\) = e **1(x > 0) and
calculated the maximum likelihood estimator X?f LE What does /A\% LE estimate and what are its
asymptotic properties? Compare with the maximum likelihood estimator of A computed under the
correct model specification when the parameter p of the Weibull distribution is known.

Solution 6 A simple calculation shows the MLE is unique and satisfies AMZZ = 1/X,,, and thus
converges to the 1/Eq(X). We have

l,(N) = nlog A — A\nX,
() =~

AQ

so that J&(\) = A2, where G =Weibull()\g, pg) is the true distribution of the data. The regularity
conditions hold here since £/ does not depend on z and is smooth in \. We can also see this
directly using the computation

Eo(X) = /0 )\Opox()\ox)po_le_(’\oz)pod:ic _ /0 )\glyl/poe_ydy _ F(IJ:\})/po)'

so that Egl|()\) vanishes at A\* = 1/Eq(X). Moreover
>\

EG(XQ) — /0 )\82y2/po€fydy — L%/po)’

so that

IF(X) = varg(ty) = F(l"‘z/po);gQ(H‘l/Po)'

Therefore \/n(AMEE — \*) — N(0, I /[J¢)?) with
* * 2
T = TEN) = /() = BgX = Bl
Note that the value \* is consistent with KL projection question on week 3.

It is easily verified that if X ~ F), and p is known, then X? ~ Exp(\’). The maxi-
mum likelihood estimator of A is thus (n/ X", XP)'/?, consistent and asymptotically normal:
Vit (0] iy XP)YP = X) % N(0,3/p?).

Note that if p = 1, then the Weibull distribution becomes exponential and we recover the
results for the MLE of an exponential distribution.



