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Spring 2025 Ho Yun & Yoav Zemel

Exercise sheet 4

Exercise 1 Consider independent Gaussian random variables X1, . . . , Xn, Y1, . . . , Yn with Xj, Yj ∼
N(µj, σ2) with µ1, . . . , µj, σ2 unknown. Find the maximum likelihood estimator. Is it consistent?

Solution 1 The log likelihood is

ℓn(µ1, . . . , µn, σ2) = −n log 2π − n log σ2 − 1
2σ2

∑
(Xj − µj)2 + (Yj − µj)2.

For any σ2, the derivative with respect to µj is 2(µj − Xj + µj − Yj), increasing in µj , so the unique
minimiser is µj = (Xj + Yj)/2. After plugging this into ℓn, we maximise a concave function over
σ2, and the maximiser is

(σ̂2
n)MLE = 1

4n

∑
(Xj − Yj)2.

But Xj − Yj ∼ N(0, 2σ2), so this has expectation σ2/2 and thus converges almost surely to this
value by the law of large numbers. Thus (σ̂2

n)MLE is not consistent!
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Exercise 2 Consider the geometric distribution with parameter p ∈ (0, 1] (P (X = x) = (1 − p)xp,
x = 0, 1, . . . and EpX = (1 − p)/p).

Find the maximum likelihood estimator p̂MLE
n and show that it is biased, that is Epp̂MLE

n ≠ p.
Hint: Subtract and add EpXn = (1 − p)/p in the denominator and use an inequality based on two
terms of a geometric series.

Solution 2 The log likelihood is concave and p̂MLE
n = 1/(1 + Xn).

Ep
1

1+Xn
= Ep

p

1+p(Xn− 1−p
p

)
> Epp[1 − p(Xn − 1−p

p
)] = p,

where we used the inequality 1/(1 + u) ≥ 1 − u which holds for u > −1 (which is satisfied for
u = p(Xn − 1−p

p
)) and which is strict for u ̸= 0 (which is satisfied for u = p(Xn − 1−p

p
) with positive

probability).
Alternatively, one can use Jensen’s inequality for the function (1 + x)−1.
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Exercise 3 Let X1, . . . , Xn be a sample from the distribution with density

f(x; θ, p) = (1 − p)1(−1,0)(x) + pθ−11(0,θ)(x)

(a mixture of U(−1, 0) and U(0, θ)), where p ∈ [0, 1] and θ > 0. Find the maximum likelihood
estimators of the parameters p and θ.

Solution 3 The likelihood equals

(1 − p)
∑n

i=1 1(−1,0)(Xi)(pθ−1)n−
∑n

i=1 1(−1,0)(Xi)1[X+
(n)<θ]1[X(1)>−1].

Consider two cases: (1) If X(n) := max(X1, . . . , Xn) > 0, then the value θ̂ = X(n) maximises the
likelihood independently of p. Then the estimator p̂MLE

n is obtained straightforwardly (binomial
likelihood), p̂MLE

n = 1 −∑n
i=1 1(−1,0)(Xi)/n.

(2) If X+
(n) ≤ 0, then all the observations come only from one component of the mixture.

The likelihood then equals (1 − p)n which is maximized for p̂ = 0. All the observations follow
the uniform distribution on (−1, 0), which does not depend on θ, hence the sample contains no
information about the parameter θ and nothing can be said about θ. All values of θ are equally
likely, as the likelihood does not depend on θ.
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Exercise 4 Find the asymptotic covariance of the maximum likelihood estimator from question 5
of last week.

Solution 4 The Fisher information matrix (in ites alternative form under regularity) is

J1(λ, γ) = −Eλ,γ

(
−D/λ2 0

0 −(1 − D)/γ2

)
=
( 1

λ(λ+γ) 0
0 1

γ(λ+γ)

)

(where we used the fact that D is Bernoulli distributed with parameter λ/(λ + γ)). Hence√
n(λ̂ − λ, γ̂ − γ)⊤ is asymptotically bivariate normal with mean zero and covariance matrix

J1(λ, γ)−1 =
(

λ(λ + γ) 0
0 γ(λ + γ)

)
.

Alternatively, we can compute the covariance matrix of S1(λ, γ) whose components are D/λ − T
and (1 − D)/γ − T with T and D independent, so

I1(λ, γ) = Eλ,γ

(
(D/λ − T )2 D(1 − D)/λγ − DT/λ − T (1 − D)/γ + T 2

D(1 − D)/λγ − DT/λ − T (1 − D)/γ + T 2 ((1 − D)/γ − T )2

)

= J1(λ, γ).
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Exercise 5 Consider the rescaled Beta(1, α + 1) distribution with known α > −1 and density

f(x; θ) = (α + 1)(θ − x)αθ−α−11(x ∈ [0, θ]),

where θ > 0 is unknown. Let X1, . . . , Xn
iid∼ f(x; θ0) for some θ0 > 0.

(a) Investigate the regularity conditions EθSn(θ) = 0 and In(θ) = Jn(θ) as a function of α > −1.

(b) It is not easy to show that θ̂MLE
n is consistent. But show that Tn ≤ θ̂MLE

n ≤ (α + 1)Tn, where
Tn is a consistent estimator.

Solution 5 The likelihood is 0 if θ < max(X1, . . . , Xn) := Mn and otherwise it is

ℓn(θ) = n log(α + 1) − n(α + 1) log θ + α
∑

log(θ − xi)
ℓ′

n(θ) = α
∑ 1

θ−xi
− (α + 1)n

θ

ℓ′′
n(θ) = (α + 1) n

θ2 − α
∑ 1

(θ−xi)2

(a) For any k ∈ R

Eθ(θ − X)k =
∫ θ

0
(α + 1)(θ0 − x)α+k/θα+1dx =

∞ α + k ≤ −1
θk α+1

α+k+1 α + k > −1

Thus, if α > 0 the regularity condition EθSn(θ) = 0 is satisfied. If α > 1 then we can take
k = −2 to get

Jn(θ) = −Eθℓ
′′
n(θ) = (α+1)n

θ2(α−1) > 0

and
In(θ) = EθS

2
n(θ) = varθSn(θ) = α2n(α+1)

θ2(α−1) − nα2
(

α+1
αθ

)2
= Jn(θ).

(b) If α ≤ 0 then ℓn is decreasing in θ and the maximum likelihood estimator is Mn =
max(X1, . . . , Xn). If α > 0 then ℓn → −∞ as θ → Mn or as θ → ∞, so the maximum is
attained at a point where the derivative vanishes. Therefore for α > 0,

1
θ̂MLE

n

= α+1
α

1
n

∑ 1
θ̂MLE

n −xi
.

This equation has no explicit solution when n > 1. However, if θ > (α + 1)Mn then for all i,
θ − xi ≥ θ − Mn > (1 − (α + 1)−1)θ and

ℓ′
n(θ) < αnα+1

αθ
− (α + 1)n

θ
= 0,

so θ cannot be the maximum likelihood estimator. Therefore θ̂MLE
n ≤ (α + 1)Mn. (This

cannot be improved, since for n = 1, θ̂MLE
n = (α + 1)x1.) Thus, we can choose Tn = Mn. It

is easy to see that Mn is consistent for θ for all α > −1. Indeed, on one hand Mn ≤ θ almost
surely, and on the other hand for all t ∈ [0, 1),

P(Mn ≤ t/θ) = (1 − (1 − t)α))n → 0, n → ∞.
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