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Exercise sheet 3

Exercise 1 Suppose that Θ ⊆ Rd and X1, . . . , Xn
iid∼ Fθ0 for some θ0 ∈ Θ, and

1. θ0 is the unique maximiser of the continuous function ℓ.

2. For all M , sup∥θ∥≤M |ℓn(θ) − ℓ(θ)|
p−Pθ0−−−→ 0.

3. For any ϵ > 0 there exists Mϵ < ∞ such that supn Pθ0(∥θ̂MLE
n ∥ > Mϵ) < ϵ.

Show that θ̂MLE
n

p−Pθ0−−−→ θ0. Hint: first show an inequality of the form Pθ0(∥θ̂MLE
n − θ0∥ > ϵ) ≤ 2ϵ

for all ϵ > 0 and all n ≥ Nϵ large. Then show that this implies the convergence in probability.

Solution 1 Fix ϵ > 0 and let Mϵ as in 3. We may assume that ∥θ0∥ ≤ Mϵ (otherwise increase Mϵ).
Since θ0 is the unique maximiser of the continuous function ℓ on the compact set {∥θ∥ ≤ Mϵ}, we
have

δ = δ(ϵ) := sup
∥θ∥≤Mϵ,∥θ−θ0∥≥ϵ

ℓ(θ0) − ℓ(θ) > 0.

Let Aϵ
n be the event that ∥θ̂MLE

n ∥ ≤ Mϵ and sup∥θ∥≤Mϵ
|ℓn(θ) − ℓ(θ)| ≤ δ/2. For n large we have

Pθ0(Aϵ
n) > 1 − 2ϵ. When Aϵ

n holds we have

0 ≤ ℓ(θ0) − ℓ(θ̂MLE
n ) = ℓ(θ0) − ℓn(θ̂MLE

n ) + ℓn(θ̂MLE
n ) − ℓ(θ̂MLE

n ) ≤ ℓ(θ0) − ℓn(θ0) + ℓn(θ̂MLE
n ) − ℓ(θ̂MLE

n )
≤ 2 sup

∥θ∥≤Mϵ

|ℓn(θ) − ℓ(θ)| ≤ δ.

By definition of δ, this entails ∥θ̂MLE
n − θ0∥ < ϵ. Therefore for n large

Pθ0(∥θ̂MLE
n − θ0∥ > ϵ) ≤ 1 − Pθ0(Aϵ

n) < 2ϵ.

To show that this gives convergence in probability let ρ > 0 be arbitrary and let ϵ ≤ ρ be arbitrary.
Then

lim sup
n→∞

Pθ0(∥θ̂MLE
n − θ0∥ > ρ) ≤ lim sup

n→∞
Pθ0(∥θ̂MLE

n − θ0∥ > ϵ) ≤ 2ϵ.

Since ϵ ≤ ρ is arbitrary we get lim supn→∞ Pθ0(∥θ̂MLE
n − θ0∥ > ρ) = 0, and since ρ is arbitrary this

yields the convergence in probability.
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Exercise 2 The second part of this question is not for the exam.

(a) (equivariance of maximum likelihood estimators). Consider a model Fθ with θ ∈ Θ
and let h : Θ → h(Θ) be injective. Define ϕ = h(θ) and consider the model Gϕ = Fh−1(ϕ).
Show that ϕ̂MLE = h(θ̂MLE).

(b) (*invariance of maximum likelihood estimator with respect to the dominating
measure) Recall that fθ is the Radon–Nikodym derivative of Fθ with respect to a σ-finite
measure µ. Suppose that µ′ is another measure that dominates µ, and that we replace fθ

by the gθ = ∂dFθ/∂µ′. Show that this does not change the maximum likelihood estimator.
Deduce that if µ′′ is another measure that dominates all the Fθ (but not necessarily µ), then
the maximum likelihood estimators with respect to µ and with respect to µ′′ are the same.
Hint: recall that gθ(x) = fθ(x)h(x), where h(x) = ∂dµ(x)/∂dµ′(x) is the Radon–Nikodym
derivative and does not depend on θ, and µ({x : h(x) = 0} = 0.

Solution 2

(a) Maximising ∏
g(xi; ϕ) = ∏

f(xi, h−1(ϕ)) with respect to ϕ is equivalent to maximising∏
f(xi, θ) over θ, since h is bijective from Θ to h(Θ).

(b) Maximising ∏ gθ(xi) is the same as maximising ∏ fθ(xi) whenever all h(xi) > 0. But this has
probability one for any θ, because µ{x : h(x) = 0} = 0 and µ dominating all the Fθ’s implies
that Pθ(h(X) = 0) = 0 for all θ ∈ Θ. So with probability one, the maximisation problems
are equivalent.
For µ′′, we let µ′ = µ′′ + µ which dominates both µ and µ′′. Then the likelihood problem
with respect to µ′ is equivalent to that with respect to µ as well as that with respect to µ′′.
Thus the latter two are equivalent.
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Exercise 3 We say that a model f(x; θ) is a k-parameter exponential family in natural parametri-
sation if Θ ⊆ Rk and

f(x; θ) = exp
 k∑

j=1
θiTj(x) − γ(θ) + s(x)

 .

Assume that Θ has a nonempty interior and that the covariance matrix of T (X) = (T1(X), . . . , Tk(X))
is nonsingular for all θ ∈ int(Θ).

Find the maximum likelihood estimator for θ based on a sample X1, . . . , Xn from f(x; θ0) with
θ0 ∈ int(Θ) and show that it is consistent and asymptotically normal. You may use without proof
that Eθ0T (X) = ∇γ(θ0) and varθ0T (X) = ∇2γ(θ0). Hint: use the delta method and the inverse
function theorem.

Solution 3 We have

ℓn(θ) = −nγ(θ) +
n∑

i=1
s(xi) +

n∑
i=1

k∑
j=1

θjTj(xi)

ℓ′
n(θ) = −n∇γ(θ) +

n∑
i=1

T (xi) = 0 ⇐⇒ T = ∇γ(θ)

∇2ℓn(θ) = −n∇2γ(θ) = −nvarθT (X) ≺ 0

where the last symbol means negative definite. Therefore ℓn is strictly concave. Similarly, ℓ
is strictly concave and has a unique maximiser which we know is θ0. Therefore the maximum
likelihood estimator is consistent, so ℓn attains its unique maximum close to θ0, and certainly in
the interior of Θ. Thus θ̂MLE

n is the unique solution of ℓ′
n = 0, i.e., (∇γ)−1(T ).

By the central limit theorem
√

n(T − ∇γ(θ0)) =
√

n(T − ET (X)) d−→ N(0, varθ0(T (X)) = N(0, ∇2γ(θ0)).

Since ∇(∇γ)(θ0) = ∇2γ(θ0) ≺ 0 is nonsingular, the inverse function theorem implies that the
function g(t) = (∇γ)−1(t) is differentiable at t = ∇γ(θ0) with derivative [∇2(∇γ−1(∇γ(θ0))]−1 at
θ0 and the delta method shows that

√
n(θ̂MLE

n − θ0) → [∇2γ(θ0)]−1N(0, ∇2γ(θ0)) = N(0, [∇2γ(θ0)]−1)
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Exercise 4

(a) Let G be any absolutely continuous distribution on the positive real line and let Fλ be the
Exp(λ) distribution. Find the value of λ > 0 that minimises the KL divergence between G
and Fλ? Under which condition is λ unique?

(b) Now let G be an arbitrary distribution on R. Find the values of µ and σ2 that minimise
KL(G, N(µ, σ2)). Under which conditions are these values unique? Can you generalise this
to higher dimensions?

Solution 4

(a) Let g be the density of G. Then

KL(G, Pλ) =
∫

g log g
fλ

=
∫

g log g −
∫

g(x)[log λ − λx]dx =
∫

g log g − log λ + λEG(X)

is minimised when λ = 1/EG(X), provided all the expressions above are finite. Therefore,
the conditions on G are that EG(X) < ∞ and EG| log g(X)| is finite.

(b) Here we have

KL(G, N(µ, σ2)) =
∫

g log g−
∫

g log 1√
2πσ2 +

∫
g(x)(x−µ)2/2σ2 dx =

∫
g log g+1

2 log 2πσ2+EG(X−µ)2]
2σ2

Assuming again
∫

|g log g| < ∞, this is minimised µ = EG(X) and σ2 = varG(X). The same
holds in higher dimension, but the proof requires differentiation of matrix-valued function
and that is beyond the scope of this course.
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Exercise 5 Suppose that S ∼Exp(λ) and C ∼Exp(γ) are independent and define T = min(S, C)
and D = 1[T = S]. Assume we have independent and identically distributed observations (Ti, Di),
i = 1, . . . , n. Find the maximum likelihood estimator of the vector (λ, γ)⊤ and show that it is
consistent and asymptotically normal. It is not required to compute the asymptotic covariance
matrix.

Solution 5 To understand the joint distribution of (T, D) it suffices to compute for t ≥ 0

Pλ,γ(T ≤ t, D = 1) = Pλ,γ(S ≤ t, S ≤ C) =
∫ t

0
λe−λsds

∫ ∞

s
γe−γxdx = λ

∫ t

0
e−λse−γsds

so that the joint density is λe−(λ+γ)t at (t, 1) and γe−(λ+γ)t at (t, 0). The log likelihood is

ℓn(λ, γ) =
n∑

i=1
1(Di = 1) log λ+1(Di = 0) log γ−(λ+γ)Ti = nDn log λ+n(1−Dn) log γ−n(λ+γ)T n.

This function is strictly concave, so the unique maximum likelihood estimator is λ̂MLE
n = Dn/T n ∈

[0, ∞) and γ̂ = (1 − Dn)/T n ∈ [0, ∞).
To understand the asymptotic distribution observe that

D ∼ B
(

λ
λ+γ

)
, T ∼ Exp(λ + γ), covλ,γ(D, T ) = 0

(in fact, D and T are independent), so that

√
n

((
Dn

T n

)
−
(

λ

1

)
/(λ + γ)

)
d−→ N(0, Σ), Σ = (λ + γ)−2

(
λγ

1

)

Use the delta method with the function g(x, y) = (x, 1 − x)/y defined on [0, 1] × (0, ∞) to obtain

√
n

((
λ̂MLE

n

γ̂MLE
n

)
−
(

λ

γ

))
d−→ N(0, JΣJ⊤), J = Dg(λ/(λ + γ), 1/(λ + γ))
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