
Statistical Theory MATH-442
Spring 2025 Ho Yun & Yoav Zemel

Exercise sheet 2

You may wish to refer to the law of large numbers and the central limit theorem on the slides
of week one.

Exercise 1 Let Xn, X be random variables taking values in Z and such that P(Xn = k) → P(X =
k) for all k ∈ Z. Show that Xn

d−→ X.

Exercise 2 Give a counterexample to show that neither of Xn
p−→ X or Xn

d−→ X ensures that
EXn → EX as n → ∞.

Solution 1 For all a ≤ b ∈ R we have

P (a < Xn ≤ b) =
⌊b⌋∑

k=⌈a⌉+

P (Xn = k) →
⌊b⌋∑

k=⌈a⌉+

P (X = k) = P (a < X ≤ b)

where ⌈a⌉+ is the smallest integer strictly larger than a. Therefore the distribution functions satisfy

FXn(b) − FXn(a) → FX(b) − FX(a), a ≤ b,

and so for all a, b ∈ R

lim sup
n

FXn(b) ≤ FX(b) − FX(a) (1)

lim inf
n

FXn(a) ≥ 1 − FX(b) + FX(a) (2)

Taking a → −∞ in (1) proves lim supn FXn(b) ≤ FX(b) for all b ∈ R. Taking b → ∞ in (2) yields
lim infn Fxn(a) ≥ FX(a) for all a ∈ R. Together this gives FXn(x) → FX(x) for all x ∈ R, which
implies convergence in distribution.

Solution 2 Let Xn satisfy P (Xn = n) = 1/(n + 1), P (Xn = 1/n) = n/(n + 1). Then Xn
p−→ 0

and Xn
d−→ 0 but EXn = 1 → 1 ̸= E0.
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Exercise 3
Find the limit in distribution (as n → ∞) for the sequence {Xn}n∈N defined as:

(a) {Ek}k∈N iid, Ek ∼ Exp(1) for every k ∈ N ,

Xn = 1√
n

n∑
k=1

Ek −
√

n,

(b) {Uk}k∈N iid, Uk uniform on (0, 1) for every k ∈ N ,

Xn = min(U1, . . . Un),

(c) {Uk}k∈N iid, Uk uniform on (0, 1) for every k ∈ N ,

Xn = n × min(U1, . . . Un),

(d) {Uk}k∈N iid, Uk uniform on (0, 1) for every k ∈ N ,

Xn =
√

n × min(U1, . . . Un),

(e) Xn ∼ B(n, pn) such that limn→∞ pn = 0 and limn→∞ npn = λ.

Exercise 4 Prove that if EXn → a (a is a finite constant) and varXn → 0, then Xn
p−→ a as

n → ∞.

Solution 3

(a) X ∼ N(0, 1),

(b) X = 0 in probability (one can prove that the limit hold a.s. using Borel-Cantelli’s lemma),

(c) X ∼ Exp(1),

(d) X = 0 in probability (one can prove that the limit hold a.s. using Borel-Cantelli’s lemma),

(e) X ∼ Poisson(λ).

Solution 4 P (|Xn −a| > ϵ) ≤ P (|Xn −EXn| > ϵ/2)+P (|EXn −a| > ϵ/2) ≤ 4
ϵ2 varXn +P (|EXn −

a| > ϵ/2) → 0 as n → ∞.
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Exercise 5 Let h : [0, 1] → [0, 1] be a continuous function. We are interested in computing its
integral

∫ 1
0 h(t)dt by Monte Carlo simulation.

(i) Let ξ1, ξ2, . . . , η1, η2, . . . be independent random variables uniformly distributed on [0, 1] and
let Xk = 1[ηk≤h(ξk)]. Show that Xn = 1

n

∑n
k=1 Xk converges almost surely to

∫ 1
0 h(t)dt.

(ii) Let ξ1, ξ2, . . . be independent random variables uniformly distributed on [0, 1] and let Yk =
h(ξk). Show that Y n = 1

n

∑n
k=1 Yk converges almost surely to

∫ 1
0 h(t)dt.

(iii) Compute and compare varXn and varY n.

Solution 5

(i) Compute EX1 = E1[η1≤h(ξ1)] = P (η1 ≤ h(ξ1)) =
∫

{(ξ,η):η≤h(ξ)} dξ dη =
∫ 1

0 h(t)dt, or alter-
natively EX1 = E1[η1≤h(ξ1)] = P (η1 ≤ h(ξ1)) = EP (η1 ≤ h(ξ1)|ξ1) = Eh(ξ1) =

∫ 1
0 h(t)dt.

Therefore, by the Strong Law of Large Numbers, Xn
a.s.−−→

∫ 1
0 h(t)dt.

(ii) Similarly, compute EY1 = Eh(ξ1) =
∫ 1

0 h(t)dt and conlude that by the Strong Law of Large
Numbers, Y n

a.s.−−→
∫ 1

0 h(t)dt.

(iii) The variable X1 is Bernoulli distributed with success probability EX1 =
∫ 1

0 h(t)dt, thus its
variance is

(∫ 1
0 h(t)dt

)(
1 −

∫ 1
0 h(t)dt

)
. The variance of Y1 is EY 2

1 − (EY1)2 =
∫ 1

0 h(t)2dt −(∫ 1
0 h(t)dt

)2
. Now varXn − varY n = 1

n

∫ 1
0 (h(t) − h(t)2)dt ≥ 0. Hence Y n is more accurate as

an estimator of
∫ 1

0 h(t)dt.
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Exercise 6

(a) Let X1, . . . , Xn be a sample of Bernoulli distributed variables with success probability p. We
are interested in estimating the odds defined as r = p

1−p
. The sample mean p̂ = n−1∑n

i=1 Xi

is a meaningful estimator of p = EX. Then r is naturally estimated by r̂ = p̂
1−p̂

. Find the
asymptotic distribution of r̂, that is, investigate the convergence in distribution of n1/2(r̂ − r)
as n → ∞.

(b) Let X1, . . . , Xn be a sample from a Poisson distribution with intensity λ > 0. We might
be interested in estimating π = P (X = 1) = λe−λ. The sample mean λ̂ = n−1∑n

i=1 Xi is
a meaningful estimator of λ = EX. Then π is naturally estimated by π̂ = λ̂e−λ̂. Find the
asymptotic distribution of π̂, that is, investigate the convergence in distribution of n1/2(π̂ −π).

(c) Let X1, . . . , Xn be a sample from a geometric distribution with success probability p ∈ (0, 1)
(i.e., P (Xi = k) = (1 − p)kp, k = 0, 1, . . . ). We might be interested in estimating π =
P (X > k) = (1 − p)k+1, k = 0, 1, . . . The sample mean µ̂ = n−1∑n

i=1 Xi is a meaningful
estimator of µ = EX = (1 − p)/p. Then p = 1/(µ + 1) could be estimated by 1/(µ̂ + 1),
and thus π = [µ/(µ + 1)]k+1 by π̂ = [µ̂/(µ̂ + 1)]k+1. Find the asymptotic distribution
of π̂, that is, investigate the convergence in distribution of n1/2(π̂ − π). (Recall that
varXi = (1 − p)/p2 = µ(µ + 1).)

Solution 6

(a) n1/2(p̂ − p) d−→ N(0, p(1 − p)) by CLT, r = g(p) = p/(1 − p), g′(µ) = 1/(1 − p)2, n1/2(r̂ − r) d−→
1/(1 − p)2N(0, p(1 − p)) = N(0, p/(1 − p)3) by the delta method.

(b) n1/2(λ̂ − λ) d−→ N(0, λ) by CLT, π = g(λ) = λe−λ, g′(λ) = (1 − λ)e−λ, n1/2(π̂ − π) d−→
(1 − λ)e−λN(0, λ) = N(0, λ(1 − λ)2e−2λ) by the delta method.

(c) n1/2(µ̂−µ) d−→ N(0, µ(µ+1)) by CLT, π = g(µ) = [µ/(µ+1)]k+1, g′(µ) = (k +1)µk/(µ+1)k+2,
thus

n1/2(π̂ − π) d−→ (k + 1) µk

(µ+1)k+2 N(0, µ(µ + 1)) = N
(

0, (k + 1)2 µ2k+1

(µ+1)2k+3

)
by the delta method.

4



Exercise 7 Let X1, X2, . . . be a sequence of independent variables with distribution

P [Xn = 1] = P [Xn = −1] = 1
2 − 1

2n+1 , P [Xn = 2n] = P [Xn = −2n] = 1
2n+1 .

Prove that n−1∑n
i=1 Xi → 0 almost surely as n → ∞.

Hint: The variables Xn are not identically distributed, hence the strong law of large numbers for
iid variables does not apply here. But the sequence {Xn} is close to some sequence {Yn} which
is an iid sequence and satisfies the SLLN. Each variable Yn is obtained from Xn by setting Yn to
Xn where Xn is ±1 and setting it to ±1 where Xn has ‘problematic’ values ±2n. To justify this
approximation (the negligibility of the modification from Xn to Yn), use the Borel–Cantelli lemma:

Borel–Cantelli lemma. Let A1, A2, . . . be a sequence of events. If ∑∞
n=1 P (An) < ∞,

then
P (An happens for infinitely many values of n) = 0.

Solution 7 Defining Yn as in the hint and letting Ak = {Xk ̸= Yk}, we have ∑P (Ak) = ∑ 2−k−1 <
∞, so almost surely Ak happens finitely many times, and in that case ∑n

i=1(Yn − Xn)/n → 0 since
Yn = Xn for n large, and the factor 1/n together with |Yn − Xn| ≤ 2max{k:Ak happens} < ∞ deals
with the finitely many potentially problematic cases. So with probability one, in obvious notation

Xn = Y n + (Xn − Y n) a.s.−−→ EY1 + 0 = 0,

by the strong law of large numbers for the iid sequence (Yn).
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