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Exercise sheet 11

Exercise 1 Here we construct a kernel K of arbitrary order ℓ + 1 such that K is bounded, C∞,
and supported on [−1, 1].

Consider the bump function g(z) = e−1/(1−z2) on [−1, 1] and 0 otherwise, which is supported
on [−1, 1], strictly positive on (−1, 1), and C∞ on all of R.

Define K(z) = ∑M
j=0 ajz

jg(z). Show that it is possible to choose M and (aj)M
j=0 such that K

satisfies the desired properties. Hint: the constraints define ℓ+1 linear equations on the aj’s. Write
them as a matrix and show that for M = ℓ this matrix is strictly positive definite, thus invertible.

Solution 1 Clearly K is supported on [−1, 1] and is C∞ there. Define

mj =
∫ 1

−1
zjg(z)dz.

(mj = 0 for j odd but we will not use this property.) Then the conditions become

∫
K(z)zidz =

M∑
j=0

ajmi+j =

1 i = 0
0 i ∈ {1, . . . , ℓ}.

If we define a matrix B ∈ R(ℓ+1)×(M+1) with coordinates (Bij) = mi+j, then the conditions are
that B(a0, . . . , aM)⊤ = (1, 0, . . . , 0)⊤ ∈ Rℓ+1. So all we need to show that B can be made injective.
Obviously this cannot happen unless M ≥ ℓ, so we shall try with M = ℓ. Then B is a symmetric
square matrix and will in fact be positive definite since

ℓ∑
i,j=0

aiBijaj =
ℓ∑

i,j=0
aiajmi+j =

ℓ∑
i,j=0

aiaj

∫ 1

−1
zi+jg(z)dz =

∫ 1

−1
(

ℓ∑
j=0

ajz
j)2g(z)dz.

Since g is strictly positive, this is integral is positive unless aj = 0 for all j. Thus B is positive
definite and invertible, so there exists a choice (aj)ℓ

j=0 that makes K a kernel with all the desired
properties.
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Exercise 2 Let f ∈ Cβ
den(M), and let K be any bounded kernel of order at least β (the previous

exercise shows that such K exists). Show that f̂h(x) is bounded by a constant depending only
on h and K. Using the bound on the bias with h = 1, show that f(x) is bounded by a constant
depending only on K, β, and M . What is the best dependence on M you can get?

Solution 2 Obviously

|f̂h(x)| =
∣∣∣∣∣ 1

nh

n∑
i=1

K
(

x−Xi

h

)∣∣∣∣∣ ≤ 1
h
∥K∥∞.

Therefore |Ef̂h(x)| is bounded by the same value. For f ∈ Cβ
den(M), we have seen that

|Ef̂1(x) − f(x)| ≤ M
ℓ!

∫
|z|β|K(z)|dz, ℓ = ⌈β⌉ − 1.

It follows that for all x ∈ R

f(x) ≤ |Ef̂1(x)| + |Ef̂1(x) − f(x)| ≤ ∥K∥∞ + M
ℓ!

∫
|z|β|K(z)|dz

which depends only on K, β and M .
Instead of h = 1 we can optimise over h the bound

f(x) ≤ |Ef̂h(x)| + |Ef̂h(x) − f(x)| ≤ 1
h
∥K∥∞ + hβ M

ℓ!

∫
|z|β|K(z)|dz

by choosing h = M−1/(β+1) and then the obtained upper bound behaves like M1/(β+1), which is
consistent with the bound shown in class for β = 2.
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Exercise 3 The following result is sometimes shown in textbooks. Let f be a twice differentiable
density function. If K is a kernel of order 2 with R(K) < ∞ and µ2(|K|) < ∞, then

MSE
(
f̂h(x)

)
= R(K)f(x)

nh
+ 1

4h4µ2
2(K)f ′′(x)2 + o

(
1

nh
+ h4

)
.

(If you like an easier problem, assume that the second derivative is bounded. Otherwise, use
directly the definition that f(x + y) − f(x) − yf ′(x) − y2f ′′(x)/2 = o(y2) as y → 0.)

Solution 3 As in the proof in lectures define

R1(x, z, h) = f(x − hz) − f(x) + hzf ′(x) − 1
2h2z2f ′′(x),

and since µ1(K) = 0 we have

Ef̂h(x) − f(x) = h2µ2(k)f ′′(x)
2 +

∫
K(z)R1(x, z, h)dz.

Differentiability means that for any ϵ there exists δ such that if |hz| < δ then |R1(x, h, z)| ≤ ϵh2z2.
Thus

|
∫

K(z)R1(x, z, h)dz| ≤
∫

|z|≤δ/h
ϵh2|K(z)|z2dz +

∫
|z|>δ/h

|K(z)||f(x − hz) − f(x) + hzf ′(x) − 1
2h2z2f ′′(x)|dz.

The first term is bounded by ϵh2µ2(|K|). To bound the second integral, we multiply by z2h2/δ2 ≥ 1
or by |z|h/δ ≥ 1 so as to always get K(z)z2 in the integrals:∫

|z|>δ/h
|K(z)||f(x − hz) − f(x)|dz ≤ 2∥f∥∞

h2

δ2

∫
|z|>δ/h

|K(z)|z2dz∫
|z|>δ/h

|K(z)||hzf ′(x)| ≤ |f ′(x)|h2

δ

∫
|z|>δ/h

|K(z)|z2dz∫
|z|>δ/h

|K(z)||1
2h2z2f ′′(x)| ≤ |f ′′(x)|

2 h2
∫

|z|>δ/h
|K(z)|z2dz

Since δ is fixed and h → 0, the integral at the right hand side of the three lines vanishes (by
dominated convergence and µ2(|K|) < ∞). Therefore the bias is of order h2µ2(K)f ′′(x)/2 + o(h2).

As for the variance, we have

Varf̂h(x) = 1
nh2

∫
f(y)K2((x − y)/h)dy − 1

n
(Ef̂h(x))2,

and we already know that expectation is f(x) + O(h2) so the negative contribution is O(1/n). For
the integral we apply the usual change of variables hz = x − y to obtain

1
nh

∫
f(y)K2((x − y)/h)dy = 1

nh
R(K)f(x) + 1

nh

∫
(f(x − zh) − f(x))K2(z)dz.

The last integral is o(1) by a similar (simpler) truncation argument, since f is continuous at x.
Thus:

Varf̂h(x) = R(k)f(x)
nh

+ O( 1
n
) + o( 1

nh
) = R(k)f(x)

nh
+ o( 1

nh
)

Thus we have for the mean squared error

MSE(f̂h(x)) = Varf̂h(x) + (Ef̂h(x) − f(x))2 = R(k)f(x)
nh

+ 1
n
h4µ2(k)2(f ′′(x))2 + o( 1

nh
) + o(h4).
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Exercise 4 The previous exercise suggests that we should choose h = n−1/5 to obtain a mean
squared error of the order n−4/5, consistent with the results we had for general β (β = 2 here). We
are still left to choose the kernel K. Since the pair (K, h) is equivalent to the pair (Kh, 1), we need
to fix the scale of K in some manner. We shall do this by choosing µ2(|K|) = 1. Furthermore,
we shall restrict attention to nonnegative kernels K. Then, the bound on the mean squared
error from the previous exercise suggests we need to minimise R(K) =

∫
K2(z)dz subject to∫

K(z)dz = 1 =
∫

K(z)z2dz. Let us see how this optimal kernel K looks like. It is called the
Epanechnikov kernel.

Remark. The most important part in this exercise is the last one, and it can be done indepen-
dently of the rest of the question. The rest of the exercise tries to explain where the result comes
from, rather than give it out of the blue.

1. Let V be any function such that
∫

V (z)dz = 0 =
∫

z2V (z)dz. Show informally that∫
K(z)V (z)dz = 0. Hint: argue informally that R(K) ≤ R(K + tV ) for all t ∈ R. This is

informal, since in principle we need to also impose that K + V t is a nonnegative function;
pretend that this restriction is not necessary.

2. Since V is ortohgonal to the functions 1 and z2, argue informally that K must be in the span
of these functions.

3. Since a function of the form a + bz2 will never be integrable (unless a = 0 = b), we truncate
it to be symmetric and with compact support [−c, c] for some c > 0. Thus, our candidate
kernel is K(z) = (a + bz2)1(|z| ≤ c). Find a and b as a function of c, and find conditions on
c such that K is nonnegative.

4. One can write the objective function R(K) as a function only of c, and show that it is
nondecreasing (you do not need to do this, but it is at least very easy to show that
R(K) = O(1/c) as c → ∞). Conclude that

K(z) = 3
4
√

5

(
1 − z2

5

)
1(|z| ≤ 5).

5. Now that we have figured out the answer informally, prove rigorously that K from the
previous part is indeed the minimiser. Hint: Compare K with K +V , where this time assume
that K + V is nonnegative on R.

Solution 4

1. Ignoring the positivity issue, since K + tV also satisfies the constraints and K is optimal, we
have

R(K) ≤ R(K + tV ) =
∫

K2(z)dz + 2t
∫

K(z)V (z)dz + t2
∫

V 2(z)dz

for all t ∈ R. This is only possible if
∫

K(z)V (z) = 0.

2. K is orthogonal to all such V , so it is orthogonal to (span{1, z2})⊥. Therefore K ∈
span{1, z2}.

3. We have the two equations

1 =
∫

K(z)dz = 2ac + 2bc3

3

1 =
∫

K(z)z2dz = 2ac3

3 + 2bc5

5
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from which we obtain
a = 9c2−15

8c3 b = 3−6ac
2c3 .

Now K is nonnegative if and only if a ≥ 0 and a + bc2 ≥ 0, which happen if and only if√
15/9 ≤ c ≤

√
5.

4. Since R(K) is decreasing, we take the maximal possible c, which is c =
√

5. This gives
a = 30/40

√
5 and a + 5b = 0.

5. We have
R(K + V ) = R(K) + R(V ) + 2

∫
K(z)V (z)dz,

and it suffices to show that the last integral is nonnegative. By the formula for K and the
conditions on V we have

4
√

5
3

∫
K(z)V (z)dz =

∫ √
5

−
√

5
V (z)(1 − z2/5)dz =

∫
|z|≥

√
5

(
z2

5 − 1
)

V (z)dz ≥ 0,

where the inequality follows from 0 ≤ K(z) + V (z) = V (z) for |z| ≥
√

5 and the equality
before that from

∫
V (z)dz = 0 =

∫
V (z)z2dz.
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