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Exercise 1 Here we construct a kernel K of arbitrary order ¢ + 1 such that K is bounded, C*°,
and supported on [—1, 1].

Consider the bump function g(z) = e~ /~*") on [—~1,1] and 0 otherwise, which is supported
on [—1, 1], strictly positive on (—1,1), and C*° on all of R.

Define K(z) = 312 a;27g(z). Show that it is possible to choose M and (a;)} such that K
satisfies the desired properties. Hint: the constraints define £ +1 linear equations on the a;’s. Write
them as a matriz and show that for M = { this matriz is strictly positive definite, thus invertible.

Solution 1 Clearly K is supported on [—1, 1] and is C*° there. Define

1
m; :/ 2 g(2)dz.
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(m; = 0 for j odd but we will not use this property.) Then the conditions become

[ K=y Sy
22'dz =) aimis; =
S 0 de {10,

If we define a matrix B € RED*M+D with coordinates (By;) = m;y;, then the conditions are
that B(ag,...,ay) = (1,0,...,0)" € R So all we need to show that B can be made injective.
Obviously this cannot happen unless M > ¢, so we shall try with M = ¢. Then B is a symmetric
square matrix and will in fact be positive definite since

1

(S aioz)dz,
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Since g is strictly positive, this is integral is positive unless a; = 0 for all j. Thus B is positive
definite and invertible, so there exists a choice (aj)gzo that makes K a kernel with all the desired
properties.



Exercise 2 Let f € C') (M), and let K be any bounded kernel of order at least 3 (the previous
exercise shows that such K exists). Show that f,(z) is bounded by a constant depending only
on h and K. Using the bound on the bias with h = 1, show that f(x) is bounded by a constant
depending only on K, 3, and M. What is the best dependence on M you can get?

Solution 2 Obviously

n

K (25)

=1

Therefore [Ef,(2)| is bounded by the same value. For f € C5 (M), we have seen that

[fu(z)| = < 1K oo

1
h

Efi(e) = f@)| < ¥ [P K ()l =181 -1.
It follows that for all x € R
[(@) < BA@)| + Efi@) = f@0)] < 1Ko+ 4 [ 121K (2)ldz

which depends only on K, 8 and M.
Instead of h = 1 we can optimise over h the bound

f() < [Efu@)] + Efu(2) = f(@)] < 31Kl + hﬁ%/lZlﬁlK(Z)ldz

by choosing h = M~1/(#+1) and then the obtained upper bound behaves like MY B+ which is
consistent with the bound shown in class for § = 2.



Exercise 3 The following result is sometimes shown in textbooks. Let f be a twice differentiable
density function. If K is a kernel of order 2 with R(K) < oo and us(|K|) < oo, then

MSE (fa(x)) = BELE L AW 3 (K) /() + 0 (5 + h*) .

(If you like an easier problem, assume that the second derivative is bounded. Otherwise, use
directly the definition that f(x +y) — f(z) —yf'(z) — v*f"(x)/2 = o(y?) as y — 0.)

Solution 3 As in the proof in lectures define

Ri(w,2,h) = f(z — hz) = f(z) + haf'(z) — 3h*2* f" (),

and since p1(K) = 0 we have
Efi(z) — f(z) = M@l /@ | /K(Z)Rl(:c,z, h)dz.

Differentiability means that for any € there exists § such that if |hz| < d then |R;(x, h, 2)| < eh?z2.
Thus

| /K(Z)Rl(l‘, z,h)dz| < i< n eh?|K (2)|2*dz + s n |K(2)]|f(z — hz) — f(z) + hzf'(z) — $h*2% " (2)|d=

The first term is bounded by eh?us(|K|). To bound the second integral, we multiply by z2h?/6% > 1
or by |z|h/§ > 1 so as to always get K(z)z? in the integrals:

[ K@= h2) = @l < 20t [ 1K)

z|>6/h

[ K@U @I <17 @I [ 1K)

|z|>6/h

[ K@U @) < S [ K ()]
|z[>6/h |

z|>8/h

Since 0 is fixed and h — 0, the integral at the right hand side of the three lines vanishes (by
dominated convergence and ps(|K|) < 0o0). Therefore the bias is of order h?us(K) f”(x)/2 + o(h?).
As for the variance, we have

Var f, (z / F@)K((x —y)/h)dy — L(Efu(2))?,

and we already know that expectation is f(z) + O(h?) so the negative contribution is O(1/n). For
the integral we apply the usual change of variables hz = © — y to obtain

L [ PR3 = y) W)y = HRI)S@) + 5 [ (e = 2h) = @) K*()ds.

The last integral is o(1) by a similar (simpler) truncation argument, since f is continuous at x.
Thus: ~
Varfy(w) = 29 1+ O(3) + o() = 28 1o L)

Thus we have for the mean squared error

MSE(fi(2)) = Varfu(z) + Efax) = f(x))* = T + Ihtua(k)*(f"(2))* + o(5) + o(h*).



Exercise 4 The previous exercise suggests that we should choose h = n~'/5 to obtain a mean

squared error of the order n=%/°, consistent with the results we had for general 3 (3 = 2 here). We
are still left to choose the kernel K. Since the pair (K, h) is equivalent to the pair (K3, 1), we need
to fix the scale of K in some manner. We shall do this by choosing ps(|K|) = 1. Furthermore,
we shall restrict attention to nonnegative kernels K. Then, the bound on the mean squared
error from the previous exercise suggests we need to minimise R(K) = [ K?(z)dz subject to
[K(2)dz =1 = [ K(2)2z2dz. Let us see how this optimal kernel K looks like. It is called the
Epanechnikov kernel.

Remark. The most important part in this exercise is the last one, and it can be done indepen-
dently of the rest of the question. The rest of the exercise tries to explain where the result comes
from, rather than give it out of the blue.

1. Let V be any function such that [V (z)dz = 0 = [2?V(2)dz. Show informally that
[ K(2)V(z)dz = 0. Hint: argue informally that R(K) < R(K +tV) for all t € R. This is
informal, since in principle we need to also impose that K + V't is a nonnegative function;
pretend that this restriction is not necessary.

2. Since V is ortohgonal to the functions 1 and 22, argue informally that K must be in the span
of these functions.

3. Since a function of the form a + bz? will never be integrable (unless a = 0 = b), we truncate
it to be symmetric and with compact support [—c, ¢| for some ¢ > 0. Thus, our candidate
kernel is K(z) = (a + bz*)1(|z| < ¢). Find a and b as a function of ¢, and find conditions on
c such that K is nonnegative.

4. One can write the objective function R(K) as a function only of ¢, and show that it is
nondecreasing (you do not need to do this, but it is at least very easy to show that
R(K) = 0(1/c) as ¢ — o0). Conclude that

K(z) = 3% (1- %) 1(]2| < 5).

5. Now that we have figured out the answer informally, prove rigorously that K from the
previous part is indeed the minimiser. Hint: Compare K with K + V', where this time assume
that K 4+ V is nonnegative on R.

Solution 4

1. Ignoring the positivity issue, since K + tV also satisfies the constraints and K is optimal, we
have
R(K) < R(K +1V) = / K2(2)dz + 2t / K(2)V(2)dz + / V2(2)dz

for all ¢ € R. This is only possible if [ K(z)V(z) = 0.

2. K is orthogonal to all such V, so it is orthogonal to (span{l,z?})t. Therefore K €
span{1, 2*}.

3. We have the two equations

lz/K(z)dz:2a0+¥

_ 23, _ 2ac® 2bc®
1—/K(z)zd2— N



d.

from which we obtain
_9c%-15 __ 3—6ac
a= 8¢3 b= 2¢3

Now K is nonnegative if and only if @ > 0 and a + bc? > 0, which happen if and only if
V15/9 < ¢ < V5.

Since R(K) is decreasing, we take the maximal possible ¢, which is ¢ = V5. This gives
a = 30/40+/5 and a + 5b = 0.

We have
R(K +V)=R(K)+R(V) +2 / K(2)V(2)dz,

and it suffices to show that the last integral is nonnegative. By the formula for K and the
conditions on V' we have

V5

L / K(2)V(2)dz = / .

V(2)(1 = 22/5)dz — /zwg (2 - 1) V(2)dz >0,

where the inequality follows from 0 < K(2) 4+ V(z) = V(z) for |z| > v/5 and the equality
before that from [V (2)dz =0 = [V (z)z%dz.



