Statistical Theory MATH-442
Spring 2025 Ho Yun & Yoav Zemel

Exercise sheet 9

Exercise 1 Show that if Xy, X1,..., X, € R? are independent and identically distributed with a
continuous density function f, then for all u > 0,

Jim P (4] X0y (Xo) = Xol| > ulXp) = e”"4/0M as,
where V; > 0 is the volume of the unit ball in R? (V; = 2).

Solution 1 By independence we can replace Xy by a fixed © € R%. Then || X (z) — z|| > s is
equivalent to all X7,..., X, being outside B,(z), which has probability

(1= Px(By(x))" = explnlog(1 - Px(B,(z))].

Since log(1 — p) ~ —p for p small and Px(B,(x)) can be expected to behave like s¢ for s small,
for this to converge to an interesting limit we need s¢ = O(1/n). Thus, for fixed u > 0 we take
s = u/n'/? and obtain

Pe(Bu(a) = [ S0t =Vis"flao)t [ (70 F (o)t = Vas{f o) to(1)} = Ve {f zo) ro(1)}

where o(1) — 0 as n — oo. Moreover, by a Taylor expansion log(l — p) = —p + o(p) for
p = Px(Bs(x)) =~ 0, we obtain

nlog(l —p) =n(—p+o(p)) = —np(1 + o(1)) = =Vuf(x)u’ + o(1).
Therefore
P(n" | Xy () — =l > u) = P(| Xy (2) — 2| > £7) = exp(=Vaf(x)u?),  n— 0.

The result also holds if f(z) = 0, in which case the correct scaling is not n'/¢ and depends on the
derivatives of f at x (or more generally, the behaviour of f around x).



Exercise 2 This question shows how to obtain rates of convergence for the k-nearest neighbours
classifier under smoothness conditions.

Let (X1,Y7),...,(X,,Y,) € RY x {0,1} be independent and identically distributed and let
n(z) = P(Y1 = 1|X; = x). Let (X,Y) be independent of {(X;,Y;)}’; and have the same
distribution as (X;,Y;). As in the lectures define 7, (z) = E[f),(z)| X1, ..., X,] for € R% Suppose
that |n(z) — n(y)] < M|jz — yl| for all z,y € R%. Show that for all § > 0,

E[(77,(X) — n(X))*] < 4dM*P(| X (X) — X]| > 8) + M*5?,

where the expectation and the probability are taken with respect to all the random variables
(X,Y), (X1, Y1),..., (X, Ya).

Now suppose that P(X; € [-1,1]¢) = 1 and that X, has a density f that is bounded below
on [—1,1]%. For z € [-1,1]¢ and ¢t > 0 define the function F,(t) = P(||X; — z|| < t). You may
use without proof that under these conditions, there exists ¢ € (0, 1], independent of z, such that
F71(s) < (s/c)'/? for all s € [0, .

xT

Show that if § = (2k/[nc])*/? < 1 then for all x € [—1,1]%,

B(| X(2) — ] > 6) < &

Hint: use exercise 5 from week 8.

Show that there exist finite positive C1, Cy, €, independent of k and n, such that if k/n < e then

E[(1(X) ~ n(X))?) < % + 0 (£)

Deduce that for an appropriate choice of k,
Eg,(X) — R(g") < Cn7 V()

for some finite constant C' that does not depend on n.

Bonus. Assuming that X takes values in [—1,1]¢ and has density bounded below there, show
that there exists ¢ € (0, 1] such that for all z € [—1,1]¢, the function F,(t) = P(|| X, — z| < t)
satisfies

E,(t) > ct?

for all + < 1. Deduce an upper bound on its inverse F !(s) for s < c and all z € [-1,1]%.

Solution 2 Recall the weights wy;(z) = 1/k if X; is one of the k-nearest neighbours of x among
the data Xi,..., X, and 0 otherwise, and that

i=1
Since (X, Y;)", are independent and E[Y;| X;] = n(X;), we have
() = D wni (2)7(X5).
i=1

As 0 < wy;(x) we have, using the Lipschitz property of n, that
2

<M%mmkﬁwmwmwm>s

> wai(X)M|X; — X||
i=1

2
< M| Xy (X) = X7,

- 022 [ X (0 - X

=1




by definition of X(;)(X). Since X;, X € [—1,1]* almost surely, we have [|X)(X) — X|* <
4)|(1,...,1)||* = 4d, and therefore for any 6 > 0

E[(7(X) = n(X))*] £ ME[| X (X) = X[PL([| X (X) — X[| > 8) + M?o?
< AdM?P(|| X3y (X) — X|| > 8) + M?6>.
Let Uy be the k-th order statistic of a sample of size n from the uniform distribution. Then

| X (%) (z) — x| has the same distribution as F, (Uy), and so, using a previous exercise and the
bound on F !, we obtain

> P(Uyy > 25) = P (| X(@) — 2l > F;1(28)) 2 P (|| Xy (2) — | > S5

=

provided that 2k/n < c. Let € = ¢/2 and choose ¢ = (2,1/1%1/(1 = (WTn)l/d. The above bound for the
probability is valid for all x € [—1,1]¢. Taking expectation with respect to X gives

P(| X (X) = X[ >6) < &

whenever k/n < e, and therefore

7 - 2/d 2/d
E[(7(X) —n(X))’] < AM?d} + M/ (5)77 = G4 ¢y (&)

Since C1, Cy and € do not depend on k or on n, this completes the proof.
Since the variance term is bounded by 1/k (lectures), we have that

2/d
ER(.) - R(5") < 2/ G2 + G, (£)”

2/(d+2) and the convergence rate is of the order n=/(@+2) (for

The optimal order of £ is therefore n
n large).

Bonus question. Fix z € [—1,1]% For t € [0,1] let By(z) = {|ly — z|| < t}, V4 = Leb(B;(0))
the volume (Lebesgue measure) of the d-dimensional unit ball, and Cy(x) = By(x) N [—1,1]¢. For
t <1 we have Leb(Cy(z)) > 27%Leb(Bi(z)) = (t/2)?V; (the worst case being if x is one of the

corners of [—1,1]¢). Since the density of X is bounded below on [—1,1]¢, this gives for t < 1,

F(t) = BIX0 —all <) = [ f@)dy > fuunlt/2)"Va = e, )"

where f is the density, fmi > 0 its lower bound on [—1,1]¢, and c(f,d) = V327 fuin. Therefore

F(s) < (s/e(f. )™, s <c(f,d).

T



Exercise 3 Let Y be a nonnegative random variable and y > 0. Show that

inf e WEe? > inf y PEY*.
t>0 keNU{0}

In other words, the Chernoff bound can be improved if instead of e!¥ we consider the moments Y*.
When does the inequality hold as equality?

Solution 3 Obviously it suffices to prove this for ¢ such that EetY is finite. By Fubini’s theorem
(since Y > 0)

oo > Ee” =Y CREYF
k=0
where EY* < oo for all k. Let Z ~ Poisson(ty) and let h(k) = EY*/y*. Then

. _ o0 & _ o0 & B
inf h(k) <EA(Z) =" ;;) W h(k) = et ;;) PEY" = e WEe! .

Taking infimum over ¢ such that My (t) < oo shows the result.
Equality holds if and only if A is constant, in which case

L=h0)=h(1)=h(2) —  E(Y/y)=E[¥/y?] =1,

which gives var(Y/y) = 0 so that Y = y almost surely.



Exercise 4 Let Y be a random variable with mean zero and a <Y < b. Use convexity to show
that for every ¢t € R, we have

logE(e™) < —au + log(B8 + ae"),

where u = t(b—a) and « = 1 — = —a/(b — a). Using a second-order Taylor expansion about the
origin, deduce that log E(e’) < t*(b — a)?/8.

Solution 4 The function y — e is convex, therefore for y € [a, b], we have
e < Z:—zem + z%;letb.
Since E(Y') = 0, we have
log E{e™} < log(Be™ + ae™) = ta + log(B + ae") = —au + log (B + ae®).
Write L(u) = —au + log(5 + ae®), then

L,(u) =~ + Biiiu?

and

" o u 2,2u o aﬁe“ . o Be_u
L (u) = 5izeu - (ﬁi;eu)Q = (Btae")? — Be“ta Beita < 1/47

since z(1 —x) < 1/4.

Hence
u?
<

L(u) = L(0) + uL'(0) + 1/2 sup L"(u') <

u/€[0,u]

Thus log E{eY'} < M.



Exercise 5 Suppose that X, satisfies

8% : t202 _
P(X,>zx) < te[é’rgM) exp (”2(1—tM)) exp(—tnx)

for all z > 0.
P(an"fg log§+]\f10g(15)§§, § € (0,1].

Hint: optimise the bound over s =1 — Mt € (0,1]

Solution 5 From lectures, with S := 37, X; and for ¢ € [0,1/M),

P(X. > < inf —nizrp tSy <« inf . no2t2 '
(Xp,>x) < te[&ri/M) e (™) < te[(l),ri/M) exp ( ntx + 2(1_Mt)>

Now let u:= % and s := 1 — Mt € (0,1], so that

no?t2  _ nxz(l-s) no2(1—s)? __ no? (1—s)2
—ntx + 2(1-]?&) S v My v ra T Ve (2“(1 —5) = ) :

Now, s — 2u(l — s) — @ is maximised at s = (1 + 2u)~Y2 € (0,1], so that, defining h; :

(0,00) — (0,00) by
hi(u) :=1+u— 1+ 2u,

we find that
P(X, > ) <exp (—"ﬁ'ﬁhl (%)) .

Since h, is strictly increasing, with inverse hi'(r) := v/2r + 7, we can set the right-hand side of
this inequality to be ¢, to find that

v = §ihi" (35 108(1/)) = 7 10g"*(1/8) + 3 log(1/9).



