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Exercise 1 Show that if X0, X1, . . . , Xn ∈ Rd are independent and identically distributed with a
continuous density function f , then for all u > 0,

lim
n→∞

P
(
n1/d∥X(1)(X0) − X0∥ > u|X0

)
= e−Vdf(X0)ud

a.s,

where Vd > 0 is the volume of the unit ball in Rd (V1 = 2).

Solution 1 By independence we can replace X0 by a fixed x ∈ Rd. Then ∥X(1)(x) − x∥ > s is
equivalent to all X1, . . . , Xn being outside Bs(x), which has probability

(1 − PX(Bs(x))n = exp[n log(1 − PX(Bs(x))].

Since log(1 − p) ≈ −p for p small and PX(Bs(x)) can be expected to behave like sd for s small,
for this to converge to an interesting limit we need sd = O(1/n). Thus, for fixed u > 0 we take
s = u/n1/d and obtain

PX(Bs(x)) =
∫

Bs(x)
f(t)dt = Vdsdf(x0)+

∫
Bs(x)

{f(t)−f(x0)}dt = Vdsd{f(x0)+o(1)} = Vd
ud

n
{f(x0)+o(1)},

where o(1) → 0 as n → ∞. Moreover, by a Taylor expansion log(1 − p) = −p + o(p) for
p = PX(Bs(x)) ≈ 0, we obtain

n log(1 − p) = n(−p + o(p)) = −np(1 + o(1)) = −Vdf(x)ud + o(1).

Therefore

P(n1/d∥X(1)(x) − x∥ > u) = P(∥X(1)(x) − x∥ > u
n1/d ) → exp(−Vdf(x)ud), n → ∞.

The result also holds if f(x) = 0, in which case the correct scaling is not n1/d and depends on the
derivatives of f at x (or more generally, the behaviour of f around x).
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Exercise 2 This question shows how to obtain rates of convergence for the k-nearest neighbours
classifier under smoothness conditions.

Let (X1, Y1), . . . , (Xn, Yn) ∈ Rd × {0, 1} be independent and identically distributed and let
η(x) = P(Y1 = 1|X1 = x). Let (X, Y ) be independent of {(Xi, Yi)}n

i=1 and have the same
distribution as (X1, Y1). As in the lectures define η̃n(x) = E[η̂n(x)|X1, . . . , Xn] for x ∈ Rd. Suppose
that |η(x) − η(y)| ≤ M∥x − y∥ for all x, y ∈ Rd. Show that for all δ > 0,

E[(η̃n(X) − η(X))2] ≤ 4dM2P(∥X(k)(X) − X∥ > δ) + M2δ2,

where the expectation and the probability are taken with respect to all the random variables
(X, Y ), (X1, Y1), . . . , (Xn, Yn).

Now suppose that P(X1 ∈ [−1, 1]d) = 1 and that X1 has a density f that is bounded below
on [−1, 1]d. For x ∈ [−1, 1]d and t ≥ 0 define the function Fx(t) = P(∥X1 − x∥ ≤ t). You may
use without proof that under these conditions, there exists c ∈ (0, 1], independent of x, such that
F −1

x (s) ≤ (s/c)1/d for all s ∈ [0, c].
Show that if δ = (2k/[nc])1/d ≤ 1 then for all x ∈ [−1, 1]d,

P(∥X(k)(x) − x∥ > δ) ≤ 1
k
.

Hint: use exercise 5 from week 8.
Show that there exist finite positive C1, C2, ϵ, independent of k and n, such that if k/n ≤ ϵ then

E[(η̃n(X) − η(X))2] ≤ C1
k

+ C2
(

k
n

)2/d
.

Deduce that for an appropriate choice of k,

Eĝn(X) − R(g∗) ≤ Cn−1/(d+2)

for some finite constant C that does not depend on n.
Bonus. Assuming that X takes values in [−1, 1]d and has density bounded below there, show

that there exists c ∈ (0, 1] such that for all x ∈ [−1, 1]d, the function Fx(t) = P(∥X1 − x∥ ≤ t)
satisfies

Fx(t) ≥ ctd

for all t ≤ 1. Deduce an upper bound on its inverse F −1
x (s) for s ≤ c and all x ∈ [−1, 1]d.

Solution 2 Recall the weights wni(x) = 1/k if Xi is one of the k-nearest neighbours of x among
the data X1, . . . , Xn and 0 otherwise, and that

η̂n(x) =
n∑

i=1
wni(x)Yi.

Since (Xi, Yi)n
i=1 are independent and E[Yi|Xi] = η(Xi), we have

η̃n(x) =
n∑

i=1
wni(x)η(Xi).

As 0 ≤ wni(x) we have, using the Lipschitz property of η, that

(η(X) − η̃n(X))2 =
[

n∑
i=1

wni(X)(η(X) − η(Xi))
]2

≤
[

n∑
i=1

wni(X)M∥Xi − X∥
]2

= M2
[

k∑
i=1

1
k
∥X(i)(X) − X∥

]2

≤ M2∥X(k)(X) − X∥2,
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by definition of X(i)(X). Since Xi, X ∈ [−1, 1]d almost surely, we have ∥X(k)(X) − X∥2 ≤
4∥(1, . . . , 1)∥2 = 4d, and therefore for any δ ≥ 0

E[(η̃(X) − η(X))2] ≤ M2E∥X(k)(X) − X∥21(∥X(k)(X) − X∥ > δ) + M2δ2

≤ 4dM2P(∥X(k)(X) − X∥ > δ) + M2δ2.

Let U(k) be the k-th order statistic of a sample of size n from the uniform distribution. Then
∥X(k)(x) − x∥ has the same distribution as F −1

x (U(k)), and so, using a previous exercise and the
bound on F −1

x , we obtain

1
k

≥ P(U(k) > 2 k
n
) = P

(
∥X(k)(x) − x∥ > F −1

x

(
2 k

n

))
≥ P

(
∥X(k)(x) − x∥ > (2k/n)1/d

c1/d

)
,

provided that 2k/n ≤ c. Let ϵ = c/2 and choose δ = (2k/n)1/d

c1/d = (k/n
ϵ

)1/d. The above bound for the
probability is valid for all x ∈ [−1, 1]d. Taking expectation with respect to X gives

P(∥X(k)(X) − X∥ > δ) ≤ 1
k

whenever k/n ≤ ϵ, and therefore

E[(η̃(X) − η(X))2] ≤ 4M2d 1
k

+ M2ϵ−2/d
(

k
n

)2/d
= C1

k
+ C2

(
k
n

)2/d
.

Since C1, C2 and ϵ do not depend on k or on n, this completes the proof.
Since the variance term is bounded by 1/k (lectures), we have that

ER(ĝn) − R(g∗) ≤ 2
√

C1+1
k

+ C2
(

k
n

)2/d

The optimal order of k is therefore n2/(d+2) and the convergence rate is of the order n−1/(d+2) (for
n large).

Bonus question. Fix x ∈ [−1, 1]d. For t ∈ [0, 1] let Bt(x) = {∥y − x∥ ≤ t}, Vd = Leb(B1(0))
the volume (Lebesgue measure) of the d-dimensional unit ball, and Ct(x) = Bt(x) ∩ [−1, 1]d. For
t ≤ 1 we have Leb(Ct(x)) ≥ 2−dLeb(Bt(x)) = (t/2)dVd (the worst case being if x is one of the
corners of [−1, 1]d). Since the density of X is bounded below on [−1, 1]d, this gives for t ≤ 1,

Fx(t) = P(∥X1 − x∥ ≤ t) =
∫

Ct(x)
f(y)dy ≥ fmin(t/2)dVd = c(f, d)td,

where f is the density, fmin > 0 its lower bound on [−1, 1]d, and c(f, d) = Vd2−dfmin. Therefore

F −1
x (s) ≤ (s/c(f, d))1/d, s ≤ c(f, d).
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Exercise 3 Let Y be a nonnegative random variable and y > 0. Show that

inf
t≥0

e−tyEetY ≥ inf
k∈N∪{0}

y−kEY k.

In other words, the Chernoff bound can be improved if instead of etY we consider the moments Y k.
When does the inequality hold as equality?

Solution 3 Obviously it suffices to prove this for t such that EetY is finite. By Fubini’s theorem
(since Y ≥ 0)

∞ > EetY =
∞∑

k=0

tk

k!EY k,

where EY k < ∞ for all k. Let Z ∼ Poisson(ty) and let h(k) = EY k/yk. Then

inf
k≥0

h(k) ≤ Eh(Z) = e−ty
∞∑

k=0

(ty)k

k! h(k) = e−ty
∞∑

k=0

tk

k!EY k = e−tyEetY .

Taking infimum over t such that MY (t) < ∞ shows the result.
Equality holds if and only if h is constant, in which case

1 = h(0) = h(1) = h(2) =⇒ E(Y/y) = E[(Y/y)2] = 1,

which gives var(Y/y) = 0 so that Y = y almost surely.
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Exercise 4 Let Y be a random variable with mean zero and a ≤ Y ≤ b. Use convexity to show
that for every t ∈ R, we have

logE(etY ) ≤ −αu + log(β + αeu),

where u = t(b − a) and α = 1 − β = −a/(b − a). Using a second-order Taylor expansion about the
origin, deduce that logE(etY ) ≤ t2(b − a)2/8.

Solution 4 The function y → ety is convex, therefore for y ∈ [a, b], we have

ety ≤ b−y
b−a

eta + y−a
b−y

etb.

Since E(Y ) = 0, we have

logE{etY } ≤ log(βeta + αetb) = ta + log(β + αeu) = −αu + log(β + αeu).

Write L(u) = −αu + log(β + αeu), then

L′(u) = −α + αeu

β+αeu ,

and
L′′(u) = αeu

β+αeu − α2e2u

(β+αeu)2 = αβeu

(β+αeu)2 = α
βe−u+α

βe−u

βe−u+α
≤ 1/4,

since x(1 − x) ≤ 1/4.
Hence

L(u) = L(0) + uL′(0) + 1/2 sup
u′∈[0,u]

L′′(u′) ≤ u2

8 .

Thus logE{etY } ≤ t2(b−a)2

8 .
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Exercise 5 Suppose that Xn satisfies

P(Xn > x) ≤ inf
t∈[0,1/M)

exp
(
n t2σ2

2(1−tM)

)
exp(−tnx)

for all x > 0.
P

(
Xn ≥ σ

√
2√

n

√
log 1

δ
+ M

n
log 1

δ

)
≤ δ, δ ∈ (0, 1].

Hint: optimise the bound over s = 1 − Mt ∈ (0, 1]

Solution 5 From lectures, with S := ∑n
i=1 Xi and for t ∈ [0, 1/M),

P(Xn ≥ x) ≤ inf
t∈[0,1/M)

e−ntxE(etS) ≤ inf
t∈[0,1/M)

exp
(
−ntx + nσ2t2

2(1−Mt)

)
.

Now let u := Mx
σ2 and s := 1 − Mt ∈ (0, 1], so that

−ntx + nσ2t2

2(1−Mt) = −nx(1−s)
M

+ nσ2(1−s)2

2M2s
= − nσ2

2M2

(
2u(1 − s) − (1−s)2

s

)
.

Now, s 7→ 2u(1 − s) − (1−s)2

s
is maximised at s = (1 + 2u)−1/2 ∈ (0, 1], so that, defining h1 :

(0, ∞) → (0, ∞) by
h1(u) := 1 + u −

√
1 + 2u,

we find that
P(Xn ≥ x) ≤ exp

(
−nσ2

M2 h1
(

Mx
σ2

))
.

Since h1 is strictly increasing, with inverse h−1
1 (r) :=

√
2r + r, we can set the right-hand side of

this inequality to be δ, to find that

x = σ2

M
h−1

1

(
M2

nσ2 log(1/δ)
)

=
√

2σ√
n

log1/2(1/δ) + M
n

log(1/δ).
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