
Statistical Theory MATH-442
Spring 2025 Ho Yun & Yoav Zemel

Exercise sheet 8

The support of a distribution P on Rd (or any Polish space) is the set of points x such that
P (Bϵ(x)) > 0 for all ϵ > 0, where Bϵ(x) = {y : ∥y − x∥ < ϵ}. You may use without proof that
P(X ∈ suppPX) = 1, where suppPX is the support of the distribution of X. The proof of this is
given below, but is not examinable.

For each x ∈ Rd let r(x) := sup{r ≥ 0 : PX(Br(x)) = 0}, with r(x) = 0 for x ∈ supp(PX) and
r(x) > 0 otherwise. For each x /∈ supp(PX) there exists x′ ∈ Qd with ∥x − x′∥ ≤ r(x)/4. This
satisfies PX(Br(x)/2(x′)) ≤ PX(B3r(x)/4(x)) = 0 and so r(x′) ≥ r(x)/2 and ∥x − x′∥ ≤ r(x′)/2.
Hence

P(X0 /∈ supp(PX)) ≤ PX

( ⋃
x′∈Qd\supp(PX)

Br(x′)/2(x′)
)

≤
∑

x′∈Qd\supp(PX)
PX(Br(x′)/2(x′)) = 0

as required.

Exercise 1 Here we give an alternative proof that Xn is admissible in a Gaussian model with
squared loss. Let δ have R(θ, δ) ≤ 1/n for all θ, with strict inequality for some θ0. We wish to
obtain a contradiction. By continuity of θ 7→ R(θ, δ) we can find ϵ > 0 and θ1 > θ0 such that
R(θ, δ) < 1/n − ϵ for all θ ∈ (θ0, θ1).

For τ > 0 consider the prior πτ = N(0, τ 2).

1. Show that for the πτ -Bayes estimator δτ ,

1
n

−r(πτ ,δ)
1
n

−r(πτ ,δτ )
=
∫

( 1
n

−R(θ,δ)) 1√
2πτ

exp(−θ2/2τ2)dθ

1
n

− 1
n+τ−2

2. Show that as τ → ∞, this fraction converges to ∞ and deduce a contraction.

Solution 1

1. The numerator is obvious from the definition of Bayes risk as an integral of the risk function.
The denominator follows from the formula for the Bayes risk of a Bayes estimator from a
previous exercise.

2. Since the integrand is nonnegative and ≥ ϵ on [θ0, θ1], it is bounded below by

ϵ 1
τ

√
2π

∫ θ1

θ0
exp(−θ2/2τ 2)dθ

and as τ → ∞ the integral converges to the finite value θ1 − θ0. Therefore, for τ sufficiently
large

1
n

−r(πτ ,δ)
1
n

−r(πτ ,δτ )
≥ nτ2(n+τ−2)

τ
√

2π
2ϵ(θ1 − θ0) → ∞, τ → ∞.

Therefore, for τ large we have r(πτ , δτ ) > r(πτ , δ), but this is impossible since δτ is a Bayes
estimator and thus its Bayes risk cannot exceed the Bayes risk of any other estimator δ.
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Exercise 2 This problem considers minimaxity in nonparametric classes of distributions with
squared loss.

1. Let F be the class of distributions with variance bounded by 1. Suppose we are interested in
the mean µ = µ(F ). Show that Xn is minimax for the estimation of µ.

2. Let F be the class of all distributions on [0, 1]. Find a minimax estimator for the mean
µ = µ(F ). Hint: we have a candidate from the previous exercise set. Show that it is indeed
minimax. Write .

Solution 2

1. The risk of Xn is

R(F, Xn) = EF (Xn − µ(F ))2 = varF (Xn) = 1
n
varF (X1)

whose supremum over F is 1/n.
We have seen that the supremum risk of any other estimator δ on the smaller class of normal
distributions with unit variance is at least 1/n. Therefore the supremum risk of δ on the
whole class F is at least 1/n, which is the maximal risk of Xn. Thus Xn Is minimax.

2. We have seen that
δ(X⃗) = 2

√
nXn+1

2+2
√

n

is minimax under the smaller class of binomial distributions. Let us see that the supremum
risk is not larger when considered over the whole class F . We have

R(F, δ) = EF [δ(X⃗) − µ(F )]2 = varF (δ(X⃗)) + bias2
F (δ(X⃗)) = 1

(1+
√

n)2 varF (X1) +
(

1−2µ(F )
2+2

√
n

)2

= 1
(2+2

√
n)2 (4EF X2

1 −4µ2(F )+1−4µ(F )+4µ2(F )) ≤ 1
(2+2

√
n)2 (4µ(F )+1−4µ(F )) = 1

(2+2
√

n)2

where the inequality follows from EF X2
1 ≤ EF X1, which is itself a consequence of X1 ∈ [0, 1].

The upper bound is the supremum risk of δ over the subclass of binomial distributions, where
we know δ is minimax. Therefore it is minimax over the whole class F .
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Exercise 3 Let g∗ : Rd → {0, 1} be the Bayes classifier.

1. Prove that
P(g∗(X) ̸= Y ) = E {min(η(X), 1 − η(X))} .

2. Show that for any classifier g : Rd → {0, 1},

P(g∗(X) ̸= Y ) ≤ P(g(X) ̸= Y ).

3. For η̃(x) and g̃(x) = 1 if η̃(x) ≥ 1/2, prove that

P(g̃(X) ̸= Y ) − P(g∗(X) ̸= Y ) ≤ 2E|η(X) − η̃(X)|.

Solution 3

1. Denote PX the marginal distribution of X and observe that

P{g(X) ̸= Y } =
∫
Rd

P{g(x) ̸= Y |X = x} dPX(x) =
∫
Rd

1{g(x)=0}η(x) + 1{g(x)=1}{1 − η(x)} dPX(x)

=
∫
Rd

η(x) dPX(x) +
∫
Rd

1{g(x)=1}{1 − 2η(x)} dPX(x)

≥
∫
Rd

η(x) dPX(x) +
∫
Rd

1{η(x)≥1/2}{1 − 2η(x)} dPX(x)

=
∫
Rd

min{η(x), 1 − η(x)} dPX(x) = P{g∗(X) ̸= Y }.

2. Since we need to minimise
∫

1g(x)=1(1 − 2η(x))dPX(x) over g, we can minimise the integrand
pointwise in x. If η(x) < 1/2, the contribution of x can only be nonnegative, so it is best to
choose g(x) = 0 so the indicator function eliminates the contribution of x. If η(x) > 1/2, the
best is to choose g(x) = 1. For η(x) = 1/2 it does not matter what g(x) is, and by convention
we can choose it to be 1. Thus g∗, the Bayes classifier, is optimal, and any other optimal
classifier is equal to g∗ on the set {x : η(x) ̸= 1/2} PX-almost surely.

3. Now let g̃(x) = 1{η̃(x)≥1/2}. Then

P{g̃(X) ̸= Y } − P{g∗(X) ̸= Y } =
∫
Rd

{1{η̃(x)≥1/2} − 1{η(x)≥1/2}}{1 − 2η(x)} dPX(x)

=
∫
Rd

{1{η̃(x)≥1/2}1{η(x)<1/2} − 1{η̃(x)<1/2}1{η(x)≥1/2}}{1 − 2η(x)} dPX(x)

≤ 2
∫
Rd

1{η̃(x)≥1/2}1{η(x)<1/2}{η̃(x) − η(x)}

+ 1{η̃(x)<1/2}1{η(x)≥1/2}}{η(x) − η̃(x)} dPX(x)

≤ 2
∫
Rd

|η̃(x) − η(x)| dPX(x).
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Exercise 4 Denote the probability measure for X by PX . Fix x ∈ supp(PX) ∈ Rd and reorder
the data (X1, Y1), . . . , (Xn, Yn) according to increasing values of ||Xi − x||. The reordered data
sequence is denoted by

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x)).

If limn→∞ k/n = 0, then prove that ||X(k)(x) − x|| → 0 with probability one.
Show that if X0 is independent of the data and has probability measure PX , then ||X(k)(X0) −

X0|| → 0 with probability one whenever k/n → 0.

Solution 4 Fix ϵ > 0. Since x ∈ supp(PX), we have PX(Bϵ(x)) > 0. If ∥X(k)(x) − x∥ > ϵ then

1
n

n∑
i=1

1{Xi∈Bϵ(x)} ≤ k/n.

The event Ω, that the left-hand side converges to PX(Bϵ(x)) for all ϵ = 1/m and m integer, has
probability one. Since k/n → 0, on Ω it holds that for all m ∈ N,

1
n

n∑
i=1

1{Xi∈B1/m(x)} − k/n → PX(B1/m(x)) − 0 > 0.

Therefore almost surely, for all m and all n > Nm, ∥X(k)(x) − x∥ ≤ 1/m. Hence ∥X(k)(x) − x∥ → 0
with probability one.

Now suppose X0 ∼ PX . We have that P{X0 ∈ supp(PX)} = 1. Now

P(∥X(k)(X0) − X0∥ → 0) = EX0 [P(∥X(k)(X0) − X0∥ → 0)|X0] = 1

by the first part of the question, since the conditional expectation is equal to 1 for X0 ∈ supp(PX),
namely PX0-almost surely.
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Exercise 5 Here we give an alternative argument that P(∥X(k)(X) − X∥ > δ) → 0 for all δ > 0
for the k-nearest neighbour classifier when k/n → 0 and k → ∞. Let U(k) be the k-th order
statistic of independent U1, . . . , Un ∼ [0, 1]. Using that U(k) has mean k/(n + 1) and variance
k(n − k + 1)/[(n + 1)2(n + 2)], show that

P
(
U(k) > 2k

n

)
→ 0.

For x ∈ supp(PX) define Fx(t) = P(∥X1 − x∥ ≤ t). Let F −1
x denote the corresponding quantile

function. Show that lims↘0 F −1
x (s) = 0. Deduce that P(∥X(k)(x) − x∥ > δ) → 0 for all δ > 0.

Deduce further that P(∥X(k)(X) − X∥ > δ) → 0, where X is independent of the sequence X1, . . .
and has the same distribution as X1.

Solution 5 By Chebychev’s inequality

P
(
U(k) > 2k

n

)
≤ P

(
U(k) − k

n+1 > k
n

)
≤ n2k(n−k+1)

k2(n+1)2(n+2) ≤ 1
k

→ 0.

Since x ∈ supp(PX) we have Fx(t) > 0 for all t > 0. Let sm = Fx(1/m) > 0. Then F −1
x (sm) ≤

1/m → 0. Thus F −1(s) → 0 as s ↘ 0.
By the probability transform, ∥X(k)(x) − x∥ has the same distribution as F −1

x (U(k)). For n
large 2k/n < Fx(δ) and therefore

P(∥X(k)(x) − x∥ > δ) = P(F −1
x (U(k)) > δ) = P(U(k) > Fx(δ)) ≤ P

(
U(k) > 2k

n

)
→ 0.

Taking expectation over X now gives P(∥X(k)(X) − X∥ > δ) → 0 by the dominated convergence
theorem, as the sequence of functions x 7→ P(∥X(k)(x) − x∥ > δ) converges to 0 PX-almost surely
and is bounded in absolute value by one.

5


