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Spring 2025 Ho Yun & Yoav Zemel

Exercise sheet 8

The support of a distribution P on R? (or any Polish space) is the set of points x such that
P(B.(x)) > 0 for all € > 0, where B.(z) = {y : |ly — z|| < €}. You may use without proof that
P(X € suppPx) = 1, where suppPy is the support of the distribution of X. The proof of this is

given below, but is not examinable.

For each x € R? let r(z) := sup{r > 0 : Px(B,(x)) = 0}, with r(z) = 0 for = € supp(Px) and
r(x) > 0 otherwise. For each z ¢ supp(Py) there exists 2/ € Q¢ with ||z — 2'|] < r(z)/4. This
satisfies Px (B /2(2')) < Px(Bsy(z)a(z)) = 0 and so r(2') > r(x)/2 and ||z — 2| < r(a)/2.
Hence

P(Xo ¢ supp(Px)) < PX( U Br(x/)/z(l"/)) < > Px (B 2(z) =0

x'€Q4\supp(Px) z'€Q4\supp(Px)

as required.

Exercise 1 Here we give an alternative proof that X, is admissible in a Gaussian model with
squared loss. Let § have R(6,6) < 1/n for all 8, with strict inequality for some 6,. We wish to
obtain a contradiction. By continuity of 6 — R(6,0) we can find ¢ > 0 and 6; > 6, such that
R(0,0) < 1/n — e for all 8 € (6, 6,).

For 7 > 0 consider the prior 7, = N(0,72).

1. Show that for the m,-Bayes estimator ¢,
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2. Show that as 7 — oo, this fraction converges to oo and deduce a contraction.

Solution 1

1. The numerator is obvious from the definition of Bayes risk as an integral of the risk function.
The denominator follows from the formula for the Bayes risk of a Bayes estimator from a
previous exercise.

2. Since the integrand is nonnegative and > € on [0y, 6], it is bounded below by
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and as 7 — oo the integral converges to the finite value 6; — 6y. Therefore, for 7 sufficiently
large
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Therefore, for 7 large we have r(m,,d,) > r(m,,d), but this is impossible since ¢, is a Bayes
estimator and thus its Bayes risk cannot exceed the Bayes risk of any other estimator 9.



Exercise 2 This problem considers minimaxity in nonparametric classes of distributions with
squared loss.

1. Let F be the class of distributions with variance bounded by 1. Suppose we are interested in
the mean p = p(F'). Show that X, is minimax for the estimation of p.

2. Let F be the class of all distributions on [0,1]. Find a minimax estimator for the mean
w= u(F). Hint: we have a candidate from the previous exercise set. Show that it is indeed
minimazx. Write .

Solution 2

1. The risk of X, is
R(F, yn) = IEF(yn - :U’(F>>2 = VarF(yn) = %VarF(Xl)

whose supremum over F is 1/n.

We have seen that the supremum risk of any other estimator ¢ on the smaller class of normal
distributions with unit variance is at least 1/n. Therefore the supremum risk of J on the
whole class F is at least 1/n, which is the maximal risk of X,,. Thus X,, Is minimax.

2. We have seen that

§(X) = et

is minimax under the smaller class of binomial distributions. Let us see that the supremum
risk is not larger when considered over the whole class F. We have

R(F,8) = Ep[d(X) — u(F)]* = varp(8(X)) + biasy(3(X)) = qrimpvare(X1) + (12—555?)2

= e UEp X — 402 (F) +1—4p(F) + 42(F)) < bz (4(F) +1—4p(F)) = b

where the inequality follows from ErX? < ErX;, which is itself a consequence of X; € [0, 1].
The upper bound is the supremum risk of § over the subclass of binomial distributions, where
we know ¢ is minimax. Therefore it is minimax over the whole class F.



Exercise 3 Let g* : R? — {0, 1} be the Bayes classifier.

1. Prove that

P(g*(X) #Y) = E {min(n(X), 1 —n(X))} .
2. Show that for any classifier g : R — {0, 1},
P(g"(X) #Y) < P(g9(X) #Y).
3. For 7j(z) and §(z) = 1 if 7j(z) > 1/2, prove that
P(g(X) #Y) = P(g"(X) # Y) < 2E[n(X) — n(X)].
Solution 3

1. Denote Px the marginal distribution of X and observe that

P{g(X) # Y} = [ Plg(e) # YIX = 2} dPx(x) = [ Lyw-o(@) + L= il = n@)} dPx (@)
= [ @) dPx(@) + [ T {1 = 20(2)} dPx(x)
> [ (@) dPx(@) + [ L1zl - 20(2)} dPx ()
= [ min{n(@),1 = ()} dPx(z) = P{g"(X) # Y}.

2. Since we need to minimise [ 1g4(;)=1(1 — 2n(x))dPx(x) over g, we can minimise the integrand
pointwise in z. If n(z) < 1/2, the contribution of = can only be nonnegative, so it is best to
choose g(z) = 0 so the indicator function eliminates the contribution of x. If n(z) > 1/2, the
best is to choose g(x) = 1. For n(x) = 1/2 it does not matter what g(x) is, and by convention

we can choose it to be 1. Thus ¢*, the Bayes classifier, is optimal, and any other optimal
classifier is equal to ¢g* on the set {x : n(x) # 1/2} Px-almost surely.

3. Now let g(x) = 15(2)>1/23- Then

P{g(X) #Y} —P{g"(X) #Y} = /Rd{l{ﬁu)zwz} — Lin@z123 H1 — 2n(x)} dPx ()
- /Rd{1{ﬁ<w>21/2}1{n(x><1/2} — Liiw)<1/2y Ln@) =172y H{1 — 2n(x) } dPx (2)

=2 /Rd Lii(e)>1/24 L n@) <123 {i(x) — n(2)}
+ L <12 L ny=1/2s Hn(z) — 7j(2)} dPx (2)
<2 [ i) = n(@)| dPx(a).



Exercise 4 Denote the probability measure for X by Py. Fix 2 € supp(Px) € R? and reorder
the data (X1,Y1),...,(X,,Y,) according to increasing values of ||X; — z||. The reordered data
sequence is denoted by

(X(l)(x)a }/'(1)(:[))7 R (X(”) (), Y(n)(x))

If lim, o k/n = 0, then prove that || X)(z) — || — 0 with probability one.
Show that if X, is independent of the data and has probability measure Py, then ||X ) (Xo) —
Xo|| — 0 with probability one whenever k/n — 0.

Solution 4 Fix e > 0. Since « € supp(Px), we have Px(Bc(x)) > 0. If | X (x) — x|| > € then

LN xienwy < k/n.
=1

The event , that the left-hand side converges to Px(Bc(x)) for all ¢ = 1/m and m integer, has
probability one. Since k/n — 0, on € it holds that for all m € N,

=Y lxieBy (@) — k/n — Px(Bim(z)) — 0> 0.
=1

Therefore almost surely, for all m and all n > N, || X (2) —z|| < 1/m. Hence | X (z) —z|| = 0
with probability one.
Now suppose X ~ Px. We have that P{X, € supp(Px)} = 1. Now

P([[ X ) (Xo) = Xoll = 0) = Ex, [P([| X (Xo) — Xol| = 0)|Xo] =1

by the first part of the question, since the conditional expectation is equal to 1 for Xy € supp(Px),
namely Py, -almost surely.



Exercise 5 Here we give an alternative argument that P(||.X)(X) — X|| > ) — 0 for all 6 > 0
for the k-nearest neighbour classifier when k/n — 0 and & — oo. Let Uy be the k-th order
statistic of independent Uy,..., U, ~ [0,1]. Using that Uy has mean k/(n + 1) and variance
k(n —k+1)/[(n+ 1)*(n + 2)], show that

P(U(k) > %) — 0.

For z € supp(Px) define F,(t) = P(||X; — z|| < t). Let F;! denote the corresponding quantile
function. Show that limg o F, *(s) = 0. Deduce that P(|| X (z) — x| > d) — 0 for all § > 0.
Deduce further that P(|| X (X) — X|| > 0) — 0, where X is independent of the sequence X7, ...
and has the same distribution as Xj.

Solution 5 By Chebychev’s inequality

2k k k an(nkarl)
P (Uw) > z) <P (U<k> o a) S Rt

IN

1
z — 0.
Since z € supp(Px) we have F,(t) > 0 for all ¢ > 0. Let s, = F,(1/m) > 0. Then F,!(s,,) <
1/m — 0. Thus F~'(s) — 0 as s \, 0.

By the probability transform, || X (z) — z| has the same distribution as F; '(Uy,). For n
large 2k/n < F,(6) and therefore

P([| Xy (z) — 2| > &) = P(F;  (Uwy) > 8) = P(Upy > Fu(d)) <P (U(k) > %) — 0.

Taking expectation over X now gives P(|| X (X) — X|| > 0) — 0 by the dominated convergence
theorem, as the sequence of functions x — P(||Xx)(z) — z|| > 0) converges to 0 Px-almost surely
and is bounded in absolute value by one.



