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Exercise 1 Let r ≥ 0 be an integer. A natural kernel estimator of the rth derivative, f (r)(x) of a
density f(x) is

f̂
(r)
h (x) = 1

nhr+1

n∑
i=1

K(r)
(

x−Xi

h

)
,

where K is an appropriate kernel.
Now let β > r be a real number and let l be the unique integer such that l − 1 < β ≤ l and

consider the class of functions

Cβ
den(M) = {f density : f ∈ C l−1, |f (l−1)(x) − f (l−1)(y)| ≤ M |x − y|β−l+1∀x, y ∈ R}.

Show that, for an appropriate choice of kernel K,

inf
h>0

sup
f∈Cβ

den
(M)

MSE
(
f̂

(r)
h (x)

)
≤ C(M, β, r, K)n−

2(β−r)
2β+1 .

Moreover, using the results shown in this exercise, prove that ∥f (r)∥∞ ≤ Ar(β, M) < ∞.

Solution 1 Let K be C∞(R) and supported on [−1, 1]. We repeatedly integrate by parts to
obtain, for s = 1, . . . , r,∫ ∞

−∞
K

(r)
h (x − y)f(y) dy =

∫ ∞

−∞
K

(r−1)
h (x − y)f ′(y) dy =

∫ ∞

−∞
K

(r−s)
h (x − y)f (s)(y) dy,

where the boundary terms vanish since K is supported on [−1, 1]. In particular this holds for
s = r.

We use the usual bias-variance decomposition. First, the bias term:

E{f̂
(r)
h (x)} = 1

n

n∑
i=1

E{K
(r)
h (x − Xi)}.

By definition of Cβ
den(M), for

R(h, z, x) = f (r)(x − hz) − f (r)(x) − (−hz)f (r+1)(x) − · · · − (−hz)l−r−1

(l−r−1)! f (l−1)(x)

we have, for some x∗ with |x∗ − x| ≤ |hz|,

(l − r − 1)!|R(h, z, x)| ≤ |hz|l−r−1|f (l−1)(x∗) − f (l−1)(x)| ≤ |hz|l−r−1M |hz|β−l+1 = M |hz|β−r.

Since K is kernel of order l − r,

bias{f̂
(r)
h (x)} =

∫
K(z)

[
f (r)(x − hz) − f (r)(x) + hzf (r+1)(x) − · · · − (−hz)l−r−1

(l−r−1)! f (l−1)(x) + R(h, z, x)
]

dz

=
∫

K(z)R(h, z, x)dz.

The last integral is bounded in absolute value by M ′hβ−r|µ|β−r(K), with M ′ = M/(l − r − 1)!.
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For the variance term,

Var{f̂
(r)
h (x)} ≤ 1

n

∫
(K(r)

h )2(x − y)f(y) dy = 1
nh

{∫
(K(r)

h )2(z)f(x − hz) dz
}

= 1
nh2r+1

{∫
(K(r))2(z)f(x − hz) dz

}
≤ 1

nh2r+1 R(K(r))∥f∥∞ ≤ R(K(r))C0(β,M)
nh2r+1 .

Conclude that
MSE{f̂ (r)(x)} ≤ M ′2h2β−2r|µ|2β−r(K) + R(K(r))C0(β,M)

nh2r+1

and hence

h =
(

(2r+1)R(K(r))C0(β,M)
2(β−r)M ′2|µ|2

β−r
(K)n

)1/(2β+1)
=⇒ MSE{f̂ (r)(x)} ≤ O

(
n

−
2(β−r)
2β+1

)
,

where the constant depend on K, r, β and M but not on the density f .
Lastly, we have

|f (r)(x)| ≤ |f (r)(x) − Ef̂ (r)(x)| + |Ef̂ (r)(x)| ≤ M ′hβ−r|µ|β−r(K) + 1
h
∥K(r)∥∞

and we can define Ar(β, M) as the infimum of this with respect to h.
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Exercise 2 As in the exercise from last week let f be C2(M) smooth. Let K be a kernel of order
3 such that R(K) < ∞. Show that for any ϵ > 0, there exists a cϵ > 0 such that if h = cϵn

−1/5

then MSE(f̂h(x)) ≤ ϵn−4/5 for n large.
In other words, it does not make much sense to talk about “the optimal" h for a single function.

This is why we considered estimators that perform well uniformly on large (infinite-dimensional)
classes of functions.

With a bit more work one can find a sequence hn such that the mean squared error is o(n−4/5).

Solution 2 Mimicking the proof from last week, we now have µ2(K) = 0, so bias(f̂h(x)) = o(h2)
and Var(f̂h(x)) = R(K)f(x)

nh
+ o((nh)−1). Thus if h = cϵn

−1/5 then

MSE(f̂h(x)) = R(K)f(x)
nh

+ o((nh)−1) + o(h4) = R(K)f(x)
cϵ

n−4/5 + o(n−4/5)

Thus if we choose cϵ = 2/R(K)f(x)ϵ we are done.
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Exercise 3 Let p ≥ 1. Use convexity to show that for f, g : Rk → Rd and t ∈ [0, 1],

∥f(x) + g(x)∥p ≤ ∥f(x)∥p

(1−t)p−1 + ∥g(x)∥p

tp−1

Choose t wisely to show Minkowski’s inequality

(E∥X + Y ∥p)1/p ≤ (E∥X∥p)1/p + (E∥Y ∥p)1/p

Solution 3 The inequality is obvious if t ∈ {0, 1}. Since yp is convex on [0, ∞) we have

∥(1 − t)f(x)
1−t

+ tg(x)
t

∥p ≤ ((1 − t)∥f(x)∥
1−t

+ t∥g(x)∥
t

)p ≤ (1 − t)∥f(x)∥p

(1−t)p + t∥g(x)∥p

tp .

Now assume E∥X∥p + E∥Y ∥p < ∞ (there is nothing to prove otherwise) and let

t = (E∥g(X)∥p)1/p

(E∥f(X)∥p)1/p+(E∥g(X)∥p)1/p

to obtain for ∥f∥p = (E∥f(X)∥p)1/p

∥f + g∥p
p ≤ ∥f∥p

p(∥f∥p+∥g∥p)p−1

∥f∥p−1
p

+ ∥g∥p
p(∥f∥p+∥g∥p)p−1

∥g∥p−1
p

= (∥f∥p + ∥g∥p)p.

Finally, apply this for Z = (X, Y )⊤, f(Z) = X and g(Z) = Y . (The inequality is obvious if
∥f∥p ∈ {0, ∞} or ∥g∥p ∈ {0, ∞}).
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Exercise 4 Let (Xk, Yk) be a sequence of random vectors such that Xk ∼ P for all k and Yk ∼ Q
for all k, where P and Q are probability distributions. Using Prokhorov theorem, or otherwise,
show that there exists a subsequence (Xnk

, Ynk
) that jointly converges in distribution to some

random vector (X, Y ).
Show that lim infk→∞ E∥Xnk

− Ynk
∥p ≥ E∥X − Y ∥p. Hint: you may wish to consider the

bounded continuous function fL(x, y) = min(L, ∥x − y∥p) and then let L → ∞.
Deduce that the infimum defining the Wasserstein is always attained.

Solution 4 Given ϵ > 0 let M < ∞ such that P(∥X1∥ > M) < ϵ and P(∥Y1∥ > M) < ϵ. Then
for all k ≥ 1

P(∥(Xk, Yk)⊤∥2 > 2M2) ≤ P(∥Xk∥2 > M2) + P(∥Yk∥2 > M2) < 2ϵ

since Xk has the same distribution as X1 and Yk has the same distribution as Y1. Therefore, the
sequence (Xk, Yk) is tight and by Prokhorov theorem has a convergent (in distribution) subsequence
to some random vector (X, Y ). That X ∼ P and Y ∼ Q follows from the continuous mapping
theorems with the functions g(x, y) = x or g(x, y) = y.

Now, we have for all L > 0 that

lim inf
k→∞

E∥Xnk
− YnK

∥p ≥ lim inf
k→∞

EfL(Xnk
, Ynk

) = EfL(X, Y ) = Emin(L, ∥X − Y ∥p).

If E∥X − Y ∥p < ∞, then by the dominated convergence theorem, as L → ∞ the last expectation
converges to E∥X −Y ∥p. (If E∥X −Y ∥p = ∞, then we need to use monotone convergence instead.)

Now for W p
p (P, Q), let (Xn, Yn) be such that Xn ∼ P , Yn ∼ Q, and W p

p (P, Q) = limE∥Xn−Yn∥p.
Then by the above construction

W p
p (P, Q) ≥ lim inf E∥Xnk

− Ynk
∥p ≥ E∥X − Y ∥p ≥ W p

p (P, Q).

Therefore E∥X − Y ∥p = W p
p (P, Q).
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