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Course contents

Likelihood theory

Decision theory
@ Limitation of the likelihood approach

@ Some nonparameteric approaches

Optimal transport

Today: stochastic convergence
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Functions of random variables

Let Xi,...,X, be identically distributed with E[X;] = p and Var[X;] = o2, and
consider

_ 1 &
X, = E;Xi.
1=

o If the X; are independent and X; ~ N(u,0?) or X; ~ Exp(A = 1/p) or
X; ~ Poisson(u) then we know dist[X,,].

@ But the X; may be from some more general distribution.
@ The joint distribution of X, may not even be completely understood/known.

We would like to be able to say something about X, even in those cases! |

Perhaps this is not easy for fixed n, but what about letting n — c0?

@ A very common approach in mathematics.
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Functions of random variables

@ Once we assume n — 0o we start to better understand dist[X ,]:
e It concentrates around u, by Chebishev: for € > 0
Pl|Xn—p|<e>1-—— —1, n — oo.
- ne

o A rate of convergence can be understood as a sequence 7, — oo such that
Plra(Xn —u) < z] =7

which could provide statements about P(X, < t).

@ More generally, we want to understand distribution of Y, = ¢g(Xi,...,Xy)
for some function g

e Often infeasible.
e Thus, we resort to asymptotic approximations to understand it

@ Such approximations are appropriate if n is large (perhaps not if n is small!)
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Convergence of random variables

Need to make precise what we mean by “Y,, is close to Y for n large.

Recall that random variables are functions between measurable spaces.
= Convergence of random variables can be defined in various ways:

Convergence in probability (convergence in measure).

Convergence in distribution (weak / narrow convergence).

Convergence with probability 1 (almost sure convergence).

Convergence in L, (convergence in the p-th moment).

All these notions are qualitatively different. Some modes of convergence are
stronger than others.
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Convergence in probability

Definition (Convergence in probability)

Let {X,}n>1 and X be random vectors defined on the same probability space.

We say that X, converges in probability to X as n — oo (denoted X, £ X ) if
for any € > 0,

P[| X, — X||>€] -0 asn — oo.

Intuitively, if X, 2y X, then for large n, X, ~ X with probability close to 1.

Let X3, ..., X, beiid Unif(0,1), and define M,, = max{X;,..., X,}. Then
Fu,(z) = 2™ for z € [0, 1] and

P[|M, -1 >¢]=P[M,<1—¢]=(1-¢)" >0, forany0<e<1.

Hence, M, 21

[} [ =
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Convergence in distribution

Definition (Convergence in distribution)

Let {X,} and X be random vectors (not necessarily defined on the same
probability space). We say that X, converges in distribution to X as n — oo
(denoted X, 4 X) if

P[X, <z]| — P[X <], atevery continuity point of Fx(z) = P[X < z].

V.

Restriction to continuity points is important.

Let X3, ..., X, beiid Unif(0,1), M, = max{X;i,...,X,}, and define
Qn =n(l— M,). Then,

Pl@Q,.<z]=P[M,>1—z/n]=1-(1—-z/n)" > 1—e % forallz>0.

Hence, @, % @, where @ ~ Exp(1).

[m] = = =
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Some comments on convergence in distribution and in
probability

@ Convergence in probability involves the random vectors themselves.

@ Convergence in distributions pertains only to the distribution functions.
— Can be used to approximate distributions (approximation error?)

@ Both notions of convergence are metrisable : There exist metrics on the
space of random vectors and on the space of distribution functions that are
compatible with these notions of convergence.

@ Convergence in probability implies convergence in distribution.
@ Convergence in distribution does NOT imply convergence in probability: let
X ~N(0,1), X, =-X+1/n3 X but X, & —X #£X.

Portmanteau lemma |

X, 5 X = E[f(X,)] — E[f(X)] for all real-valued continuous and bounded
functions f.
(More on this later)
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Theorem

(@ X, L5Xx=>Xx,%X.
(b) For any constant c € R*, X, % ¢ = X, & c.

Proof. (a) Let z be a continuity point of Fix. Then, for any € > 0,

PIX, <] = P[Xo < &,||X, — X|| <é] + P[Xy < 2, ]I X0 — X[ > ¢]
< P[X <z +e¢]+ P[|| X, — X|| > ¢].

Similarly,

PIX <z—-¢|<P[X,<z|X,— X|| <]+ P[| Xn, — X|| > €]
< PlX, <z]+ P[[| X, — X|[| > ¢].

Conclude that
P[X <z—¢]-P|[||X,—X]|| > €] < P(X, < z) < PX < z+e|+P[| Xn—X]|| > €]
Taking limits as n — oo and € — 0 gives the result (exercise).
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Proof (cont'd)

(b) Assume first X,, are one-dimensional, so ¢ € R.
Let F' be the CDF of a degenerate random variable at ¢. Then

We have

P[|X, —c| >€] = P[X, > c+e]+ P[X, < c—¢]
=1-P[X,<c+e]+ P[X, < c—¢]
—-1-1+40, n — 00

since ¢ % € are continuity points of F.
If X,,c € R* work on each coordinate separately and use

{12 = cll > e} € [J{1 %5 = ¢’ > Ve/k}.

1=1
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Almost Sure Convergence and Convergence in L,

Let {X,} and X be random vectors on the same probability space (£, F, P).

Definition (almost sure convergence) |

We say X,, converges almost surely to X (denoted X, 22 X ) if
PX, - X]|:=PH{we: X,(w) > X(w)}) =1.
Almost sure convergence is NOT metrisable.
Definition (convergence in L)
For p > 0, X,, converges to X in L, (denoted X, L, X)if
E||| X, — X||’] = 0 asn — oo.

Convergence in Ly is metrisable with a norm if p > 1. It is useful because if in
addition E[|X|P] < oo and either p is an integer or X > 0, then EX{ — EX?.

L
Both X, == X and X, — X imply X, ﬂ) X but are not comparable.
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Continuous Mapping Theorem

Theorem (Continuous mapping theorem)
Let g : R* — R! be a continuous function. Then:
o If X, & X, then g(X,) & g(X).
o If X, % X, then 9(Xn) 4, 9(X).
o If X, X2 X, then g(X,) X2 g(X) (triviall).

Proof. The almost sure case is obvious. The other cases can be reduced to it
using the subsequence lemma or Skorokhod representation theorem. But we can
give elementary and more instructive proofs.

If X, LN X, then for any R > 0,
P(llg(Xn) — g(X)I| > €) = P(llg(Xs) — 9(X)|| > &, X|| > R)
+ P(llg(Xn) — g(X)|| > ¢ [|X]| < R).

The first term is bounded by P(||X|| > R) and vanishes uniformly in n as
R — 0.

Statistical Theory — Week 10verview of Stochastic 12/21



Proof continued

For the second term P(||g(X,) — g(X)|| > €, || X|| < R), note that

Brii:={z :||z]| £ R+ 1} is compact so g is uniformly continuous there. Let §
be such that if z,y € Bry1 are such that ||z — y|| <6, then ||g(z) — g(y)|| < e.
We may assume that § < 1. Thus

P(llg(Xz) = g(X)I| > & [ X|| < R)
< Pl Xn = X[ > 6, | X]| < R)
< P(|| X, — X|| >6) — 0, n — oo.

Next, if X, i> X, then by the portmanteau lemma it suffices to show that for a
continuous bounded function f : R* — R,
E[f(9(Xn))] = E[f(9(X))].

. . d .
But this follows from the portmanteau lemma, since X,, — X and fog is
continuous.
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Slutsky's theorem

Theorem (Slutsky, general version)

Let X, % X onR* and Y,, % ¢ on R}, where ¢ € R is a constant. Then
d
9(Xn, Yn) = 9(X, ).

Proof. By the continuous mapping theorem, it suffices to show that

(Xn, Yn) 4, (X, ¢). While in general it is not true that convergence of marginals
yields convergence of the joint distributions, it does hold in the particular case
when one of the limits is a constant. Indeed, suppose F(x,y) is continuous at
(z,y).

Case 1: Fy(y) =0, i.e., y > ¢ does NOT hold. In this case
P(X,<zY,<y) <P(Y, <y) — 0since y; < ¢, for some 1.

Case 2: 37 : y; = ¢;. Then it must be that Fix(z) = 0 (exercise), and therefore
Fx is continuous at z and P(X, <z,Y, <y) < P(X, <z)— Fx(z)=0.
Case 3: y > c. Then locally around (z,y), Fx,v(z',y") = Fx(z') so it must be
that F'x is continuous at . Thus

P(X,<z,Y,<y)<P(X,<z)—> Fx(z)= Fx,v(z,y) and
P(X,<z,Y,>y) <P(Y, >y)— 0. (Assumed for simplicity [ = 1.)
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Theorem (Delta method)

Let Z, := (X, — 0) 4, Z, where § € RF s a constant and r, — oo are also
constants. If g : R* — R! s differentiable at 8, then

ra(9(Xa) — 9(6)) & Vg(6)" Z.

Proof. Let
g(z) —g(8) — Vg(8)" (z - 9)
llz -6l

with f(8) = 0. Then applying Slutsky three times

flz) =

rn(g(Xn) - 9(9)) = TnHXn - 9||f(Xn) + ran(G)T(Xn - 9)
= | Zallf () + Vg(6)T Zn & |1 Z]10 + Vg(6) Z,

if we can show that f(X,) 40 Now, f is continuous around 8, so for € > 0
there exists 6 > 0 such that

P(|If (Xu)ll > €) < P([| X = 8] > 8) = P(r; || Z4]| > 8) = 0

by Slutsky (again!) as r, ' — 0 and || Z,]] 4 [|Z]| (continuous mapping theorem).
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Dominated convergence, convergence of expectations
Xn 2, X does not give EX, — EX unless
Theorem (dominated convergence)

If|X,|| < Y foralln, X, 2 X, and EY < oo, then EX, — EX € R*.

Proof. We also have || X || < Y (exercise). It suffices to show E||X, — X|| — 0.
Let R,e > 0 and write

B Xn = X|| = B[l Xn = X[[1(| X = X|| <&, Y < R)]

+ B[] Xn — X||1([| Xn — X|| > ¢, Y < R)]
+ E[l| X — X||I(Y > R)] = Bx + Bz + B3,

where By <€, By <2R P(|| X, — X|| >¢€) "=7 0 and

0 [oe]
By < 2B[Y1(Y > R)| = 2/ P(YL(Y > R)] > t)dt = 2/ P(Y > t)dt.
0 R
Since EY < oo, this is a tail of a convergent integral, so F3 — 0 as R — 0.
Moreover, By — 0 as € — 0.
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Aside: sufficient conditions for convergence in distribution

e Often difficult to establish weak convergence directly (from definition).
@ Indeed, in most interesting cases F', inconvenient to work with.

@ Class of continuous functions in large.

Scheffé theorem

If X,., X have densities f,,f (with respect to the same measure u) and f, — f
(n-almost surely), then X, 4 X.

For example, law of small numbers

D) (-3 -5
1—-— — —e 7, n = oo,
T n n z!

for all z € {0} UN.
The convergence in Scheffé theorem is called convergence in total variation.
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Aside: sufficient conditions for convergence in distribution

Class of continuous functions in large, but we do not need to check
Ef(X,) — Ef(X) for all continuous bounded functions.

@ For light-tailed distributions, it suffices to look at (unbounded) functions
zrs et @ fort € RE (moment generating functions).

@ In general, it suffices to look as sines and cosines of arbitrary frequencies
(characteristic functions).

Can reduce to one dimension by Cramér-Wold device: X, 2, X on R* if and only
if for all 6 € R¥, 67 X, 4 6T X.
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Two important nontrivial theorems

Theorem (strong law of large numbers)

Let (X,) be independent and identically distributed random vectors with
E||X1|| < 0. Then EX; is finite and

1o a5
—E Xy — EXy
n

k=1

@ “Strong" is as opposed to the “weak” law which gives 2, instead of =%

@ This is insanely strong: E||X1|| < oo is the weakest condition for the
expectation to be well defined. The theorem reads: if there is an expected
value, we can find it with the empirical mean.

@ The strong law says nothing about the size of the error.
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Two important nontrivial theorems

Theorem (central limit theorem)

Let (X,) be independent and identically distributed random vectors with
expectation p € R¥ and invertible covariance matrix ©.. Then

VS VX, - w5 2,
where X, = Y.7 | Xi/n and Z has k independent coordinates following N (0, 1).

@ Insanely strong theorem: as soon as the covariance exists, we are in business
(there are versions if it is not invertible).

@ Once more, no control about the size of the error.

@ There are many variants of this theorem.
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Berry-Esseen Theorem

Theorem (Berry—Esseen, Bentkus (2005) version)

Let Xi,...,X, beiid. random variables taking values in R* with E[X;] = 0 and
Cov(X;) = I; (identity matrix). Define

1 n
If A denotes the class of convex subsets of R?, then for Z ~ N (0, I;),

dY4E|| X;|°
sup |P(Z, € A)— P(Z € A)| < CM,
AcA Vn

where C is a universal constant satisfying C < 4.

e Quantifies the approximation error in the Central Limit Theorem (CLT).
@ Provides explicit error bounds for normal approximation in high dimensions.

@ Useful for constructing confidence regions with guaranteed coverage
probabilities.
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