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Course contents

Likelihood theory

Decision theory

Limitation of the likelihood approach

Some nonparameteric approaches

Optimal transport

Today: stochastic convergence
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Functions of random variables

Let X1; : : : ;Xn be identically distributed with E [Xi ] = � and Var[Xi ] = �2, and
consider

X n =
1

n

nX
i=1

Xi :

If the Xi are independent and Xi � N (�; �2) or Xi � Exp(� = 1=�) or
Xi � Poisson(�) then we know dist[ �Xn ].

But the Xi may be from some more general distribution.

The joint distribution of Xi may not even be completely understood/known.

We would like to be able to say something about �Xn even in those cases!

Perhaps this is not easy for fixed n , but what about letting n !1?

A very common approach in mathematics.
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Functions of random variables

Once we assume n !1 we start to better understand dist[X n ]:

It concentrates around �, by Chebishev: for � > 0

P [jX n � �j < �] � 1�
�
2

n�
! 1; n !1:

A rate of convergence can be understood as a sequence rn !1 such that

P [rn(X n � �) � x ]!?

which could provide statements about P(X n � t).

More generally, we want to understand distribution of Yn = g(X1; : : : ;Xn)
for some function g

Often infeasible.
Thus, we resort to asymptotic approximations to understand it

Such approximations are appropriate if n is large (perhaps not if n is small!)
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Convergence of random variables

Need to make precise what we mean by “Yn is close to Y ” for n large.

Recall that random variables are functions between measurable spaces.
) Convergence of random variables can be defined in various ways:

Convergence in probability (convergence in measure).

Convergence in distribution (weak / narrow convergence).

Convergence with probability 1 (almost sure convergence).

Convergence in Lp (convergence in the p-th moment).

All these notions are qualitatively different. Some modes of convergence are
stronger than others.
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Convergence in probability

Definition (Convergence in probability)

Let fXngn�1 and X be random vectors defined on the same probability space.

We say that Xn converges in probability to X as n !1 (denoted Xn
p�! X ) if

for any " > 0,

P [kXn �X k > "]! 0 as n !1:

Intuitively, if Xn
p�! X , then for large n , Xn � X with probability close to 1.

Example

Let X1; : : : ;Xn be iid Unif(0; 1), and define Mn = maxfX1; :::;Xng. Then
FMn

(x ) = x n for x 2 [0; 1] and

P [jMn � 1j > "] = P [Mn < 1� "] = (1� ")n ! 0; for any 0 < " < 1:

Hence, Mn
p�! 1.
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Convergence in distribution

Definition (Convergence in distribution)

Let fXng and X be random vectors (not necessarily defined on the same
probability space). We say that Xn converges in distribution to X as n !1
(denoted Xn

d�! X ) if

P [Xn � x ]! P [X � x ]; at every continuity point of FX (x ) = P [X � x ]:

Restriction to continuity points is important.

Example

Let X1; : : : ;Xn be iid Unif(0; 1), Mn = maxfX1; : : : ;Xng, and define
Qn = n(1�Mn). Then,

P [Qn � x ] = P [Mn � 1� x=n ] = 1� (1� x=n)n ! 1� e�x ; for all x � 0:

Hence, Qn
d�! Q , where Q � Exp(1).
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Some comments on convergence in distribution and in
probability

Convergence in probability involves the random vectors themselves.

Convergence in distributions pertains only to the distribution functions.
,! Can be used to approximate distributions (approximation error?)

Both notions of convergence are metrisable : There exist metrics on the
space of random vectors and on the space of distribution functions that are
compatible with these notions of convergence.

Convergence in probability implies convergence in distribution.

Convergence in distribution does NOT imply convergence in probability: let

X � N (0; 1), Xn = �X + 1=n
d�! X but Xn

p�! �X 6= X .

Portmanteau lemma

Xn
d�! X () E[f (Xn)]! E[f (X )] for all real-valued continuous and bounded

functions f .
(More on this later)
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Theorem

(a) Xn
p�! X ) Xn

d�! X .

(b) For any constant c 2 Rk , Xn
d�! c ) Xn

p�! c.

Proof. (a) Let x be a continuity point of FX . Then, for any " > 0,

P [Xn � x ] = P [Xn � x ; kXn �X k � "] + P [Xn � x ; kXn �X k > "]

� P [X � x + "] + P [kXn �X k > "]:

Similarly,

P [X � x � "] � P [Xn � x ; kXn �X k � "] + P [kXn �X k > "]

� P [Xn � x ] + P [kXn �X k > "]:

Conclude that

P [X � x�"]�P [kXn�X k > "] � P(Xn � x ) � P [X � x+"]+P [kXn�X k > "]

Taking limits as n !1 and "! 0 gives the result (exercise).
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Proof (cont’d)

(b) Assume first Xn are one-dimensional, so c 2 R.
Let F be the CDF of a degenerate random variable at c. Then

F (x ) =

(
1; x � c

0; x < c
:

We have

P [jXn � cj > "] = P [Xn > c + "] + P [Xn < c � "]

= 1� P [Xn � c + "] + P [Xn � c � "]

! 1� 1 + 0; n !1

since c � " are continuity points of F .
If Xn ; c 2 Rk , work on each coordinate separately and use

fkXn � ck > "g �
k[

i=1

fjX i
n � ci j >

p
"=kg:
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Almost Sure Convergence and Convergence in Lp

Let fXng and X be random vectors on the same probability space (
;F ;P).

Definition (almost sure convergence)

We say Xn converges almost surely to X (denoted Xn
a:s:��! X ) if

P [Xn ! X ] := P(f! 2 
 : Xn(!)! X (!)g) = 1:

Almost sure convergence is NOT metrisable.

Definition (convergence in Lp)

For p > 0, Xn converges to X in Lp (denoted Xn

Lp�! X ) if

E [kXn �X kp ]! 0 as n !1:

Convergence in Lp is metrisable with a norm if p � 1. It is useful because if in
addition E [jX jp ] <1 and either p is an integer or X � 0, then EX p

n ! EX p .

Both Xn

Lp�! X and Xn
a:s:��! X imply Xn

p;d��! X but are not comparable.
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Continuous Mapping Theorem

Theorem (Continuous mapping theorem)

Let g : Rk ! Rl be a continuous function. Then:

If Xn
p�! X , then g(Xn)

p�! g(X ).

If Xn
d�! X , then g(Xn)

d�! g(X ).

If Xn
a:s:��! X , then g(Xn)

a:s:��! g(X ) (trivial!).

Proof. The almost sure case is obvious. The other cases can be reduced to it
using the subsequence lemma or Skorokhod representation theorem. But we can
give elementary and more instructive proofs.

If Xn
p�! X , then for any R > 0,

P(kg(Xn)� g(X )k > �) = P(kg(Xn)� g(X )k > �; kX k > R)

+ P(kg(Xn)� g(X )k > �; kX k � R):

The first term is bounded by P(kX k > R) and vanishes uniformly in n as
R !1.
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Proof continued

For the second term P(kg(Xn)� g(X )k > �; kX k � R), note that
BR+1 := fx : kxk � R + 1g is compact so g is uniformly continuous there. Let �
be such that if x ; y 2 BR+1 are such that kx � yk � �, then kg(x )� g(y)k � �.
We may assume that � � 1. Thus

P(kg(Xn)� g(X )k > �; kX k � R)

� P(kXn �X k > �; kX k � R)

� P(kXn �X k > �)! 0; n !1:

Next, if Xn
d�! X , then by the portmanteau lemma it suffices to show that for a

continuous bounded function f : Rl ! R,

E [f (g(Xn))]! E [f (g(X ))]:

But this follows from the portmanteau lemma, since Xn
d�! X and f � g is

continuous.
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Slutsky’s theorem

Theorem (Slutsky, general version)

Let Xn
d�! X on Rk and Yn

d�! c on Rl , where c 2 Rl is a constant. Then

g(Xn ;Yn)
d�! g(X ; c).

Proof. By the continuous mapping theorem, it suffices to show that

(Xn ;Yn)
d�! (X ; c). While in general it is not true that convergence of marginals

yields convergence of the joint distributions, it does hold in the particular case
when one of the limits is a constant. Indeed, suppose F(X ;Y ) is continuous at
(x ; y).
Case 1: FY (y) = 0, i.e., y � c does NOT hold. In this case
P(Xn � x ;Yn � y) � P(Yn � y)! 0 since yi < ci for some i .
Case 2: 9i : yi = ci . Then it must be that FX (x ) = 0 (exercise), and therefore
FX is continuous at x and P(Xn � x ;Yn � y) � P(Xn � x )! FX (x ) = 0.
Case 3: y > c. Then locally around (x ; y), FX ;Y (x

0; y 0) = FX (x
0) so it must be

that FX is continuous at x . Thus
P(Xn � x ;Yn � y) � P(Xn � x )! FX (x ) = FX ;Y (x ; y) and
P(Xn � x ;Yn > y) � P(Yn > y)! 0. (Assumed for simplicity l = 1.)
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Theorem (Delta method)

Let Zn := rn(Xn � �)
d�! Z , where � 2 Rk is a constant and rn !1 are also

constants. If g : Rk ! Rl is differentiable at �, then

rn(g(Xn)� g(�))
d�! rg(�)>Z .

Proof. Let

f (x ) =
g(x )� g(�)�rg(�)>(x � �)

kx � �k
with f (�) = 0. Then applying Slutsky three times

rn(g(Xn)� g(�)) = rnkXn � �kf (Xn) + rnrg(�)>(Xn � �)

= kZnkf (Xn) +rg(�)>Zn d�! kZk0 +rg(�)>Z ;

if we can show that f (Xn)
d�! 0. Now, f is continuous around �, so for � > 0

there exists � > 0 such that

P(kf (Xn)k > �) � P(kXn � �k > �) = P(r�1n kZnk > �)! 0

by Slutsky (again!) as r�1n ! 0 and kZnk d�! kZk (continuous mapping theorem).
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Dominated convergence, convergence of expectations

Xn
p�! X does not give EXn ! EX unless

Theorem (dominated convergence)

If kXnk � Y for all n , Xn
p�! X , and EY <1, then EXn ! EX 2 Rk .

Proof. We also have kX k � Y (exercise). It suffices to show EkXn �X k ! 0.
Let R; � > 0 and write

EkXn �X k = E [kXn �X k1(kXn �X k � �;Y � R)]

+ E [kXn �X k1(kXn �X k > �;Y � R)]

+ E [kXn �X k1(Y > R)] = E1 + E2 + E3;

where E1 � �, E2 � 2R P(kXn �X k > �)
n!1! 0 and

E3 � 2E [Y 1(Y > R)] = 2

Z 1

0

P([Y 1(Y > R)] > t)dt = 2

Z 1

R

P(Y > t)dt :

Since EY <1, this is a tail of a convergent integral, so E3 ! 0 as R !1.
Moreover, E1 ! 0 as �! 0.
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Aside: sufficient conditions for convergence in distribution

Often difficult to establish weak convergence directly (from definition).

Indeed, in most interesting cases Fn inconvenient to work with.

Class of continuous functions in large.

Scheffé theorem

If Xn ;X have densities fn ; f (with respect to the same measure �) and fn ! f

(�-almost surely), then Xn
d�! X .

For example, law of small numbers

�
n

x

��
�

n

�x �
1� �

n

�n�x

! �x

x !
e��;n !1;

for all x 2 f0g [ N.
The convergence in Scheffé theorem is called convergence in total variation.
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Aside: sufficient conditions for convergence in distribution

Class of continuous functions in large, but we do not need to check
Ef (Xn)! Ef (X ) for all continuous bounded functions.

For light-tailed distributions, it suffices to look at (unbounded) functions

x 7! e t
>x for t 2 Rk (moment generating functions).

In general, it suffices to look as sines and cosines of arbitrary frequencies
(characteristic functions).

Can reduce to one dimension by Cramér-Wold device: Xn
d�! X on Rk if and only

if for all � 2 Rk , �>Xn
d�! �>X .

Statistical Theory — Week 1Overview of Stochastic Convergence 18 / 21



Two important nontrivial theorems

Theorem (strong law of large numbers)

Let (Xn) be independent and identically distributed random vectors with
EkX1k <1. Then EX1 is finite and

1

n

nX
k=1

Xk
a:s:��! EX1

“Strong” is as opposed to the “weak” law which gives
p�! instead of

a:s:��!
This is insanely strong: EkX1k <1 is the weakest condition for the
expectation to be well defined. The theorem reads: if there is an expected
value, we can find it with the empirical mean.

The strong law says nothing about the size of the error.
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Two important nontrivial theorems

Theorem (central limit theorem)

Let (Xn) be independent and identically distributed random vectors with
expectation � 2 Rk and invertible covariance matrix �. Then

p
n��1=2(X n � �)

d�! Z ;

where X n =
Pn

i=1Xi=n and Z has k independent coordinates following N (0; 1).

Insanely strong theorem: as soon as the covariance exists, we are in business
(there are versions if it is not invertible).

Once more, no control about the size of the error.

There are many variants of this theorem.
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Berry-Esseen Theorem

Theorem (Berry–Esseen, Bentkus (2005) version)

Let X1; : : : ;Xn be i.i.d. random variables taking values in Rk with E [Xi ] = 0 and
Cov(Xi ) = Id (identity matrix). Define

Zn =
1p
n

nX
i=1

Xi :

If A denotes the class of convex subsets of Rd , then for Z � N (0; Id ),

sup
A2A

��P(Zn 2 A)� P(Z 2 A)
�� � C

d1=4EkXik3p
n

;

where C is a universal constant satisfying C � 4.

Quantifies the approximation error in the Central Limit Theorem (CLT).

Provides explicit error bounds for normal approximation in high dimensions.

Useful for constructing confidence regions with guaranteed coverage
probabilities.
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