
Statistical Theory (Week 1): Introduction

Erwan Koch

Ecole Polytechnique Fédérale de Lausanne (Institute of Mathematics)

Erwan Koch (EPFL) Statistical Theory (Week 1) 1 / 60



1 What is This Course About?

2 Probability Review

3 Elements of a Statistical Model

4 Parameters and Parametrizations

Erwan Koch (EPFL) Statistical Theory (Week 1) 2 / 60



What is This Course About?
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What is This Course About

Statistics −→ Extracting Information from Data

Age of Universe (Astrophysics)

Microarrays (Genetics)

Stock Markets (Finance)

Pattern Recognition (Artificial
Intelligence)

Climate Reconstruction
(Paleoclimatology)

Quality Control (Mass
Production)

Random Networks (Internet)

Inflation (Economics)

Phylogenetics (Evolution)

Molecular Structure (Structural
Biology)

Seal Tracking (Marine Biology)

Disease Transmission
(Epidemics)

The variety of different forms of data is bewildering.

Can we formulate a unified mathematical theory?
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What is This Course About?

We may at once admit that any inference from
the particular to the general must be attended with
some degree of uncertainty, but this is not the same
as to admit that such inference cannot be absolutely
rigorous, for the nature and degree of the uncer-
tainty may itself be capable of rigorous expression.

Ronald A. Fisher

The object of rigor is to sanction and legitimize the
the conquests of intuition, and there was never any
other object for it.

Jacques Hadamard
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What is This Course About?

Statistical Theory: What and How?

What? The rigorous study of the procedure of extracting information
from data using the formalism and machinery of mathematics.

How? Thinking of data as outcomes of probability experiments.

Probability offers a natural language to describe uncertainty or partial
knowledge.

Deep connections between probability/statistics and logic [Jaynes].

One can break down phenomenon into systematic and random parts.

What can Data be?

To do probability we simply need a measurable space (Ω,F). Hence,
almost anything that can be mathematically expressed can be thought as
data (numbers, functions, graphs, shapes, . . . ).
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What is This Course About?

The Job of the Probabilist

Given a probability model P on a measurable space (Ω,F) find the
probability P[A] that the outcome of the experiment is A ∈ F .

The Job of the Statistician

Given an outcome of A ∈ F (the data) of a probability experiment on
(Ω,F), tell me something interesting∗ about the (unknown / partially
unknown) probability model P that generated the outcome.
(∗something in addition to what I knew before observing the outcome A)

The three main questions of statistics:

1 Estimation: adjusting the parameters of a model to fit data.

2 Comparison: of two/multiple models; which one is the best?

3 Prediction: can I predict new values of the data?
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A Probabilist and a Statistician Flip a Coin

Example

Let X1, ...,X10 denote the results of flipping a coin ten times, with

Xi =

{
0 if heads ,

1 if tails,
, i = 1, ..., 10.

A plausible model is Xi
iid∼ Bernoulli(θ). We record the outcome

X = (0, 0, 0, 1, 0, 1, 1, 1, 1, 1).

Probabilist Asks:

Probability of that outcome as a function of θ?

Probability of a k-long run?

If one keeps tossing, how many k-long runs? How long until a k-long
run?
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A Probabilist and a Statistician Flip a Coin

Example (cont’d)

Statistician Asks:

Is the coin fair?

What is the true value of θ given X?

How much error do we make when trying to decide the above from
X?

How does our answer change if X is perturbed?

Is there a “best” solution to the above problems?

How sensitive are our answers to departures from Xi
iid∼ Bernoulli(θ)?

How do our “answers” behave as # tosses −→∞?

How many tosses would we need until we can get “accurate answers”?

Does our model agree with the data?
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The three aspects of statistics

In order to do good statistics, we need to worry about the following three
different problems:

Mathematical rigour.
Statisticians want to draw rigorous conclusions from a dataset. In
order to do so, they must possess a perfect understanding of the
probabilistic underpinnings of statistical analysis.

Correct modelling of the data.
In order to rigorously analyze a dataset, we need to formulate a
model of how it was generated. This choice is extremely important
and difficult. This is why mathematicians often do not like statistics.

Computational efficiency.
In order to be useful, a statistical analysis must run in a short
amount of time on any standard computer. It must thus be:

Efficiently computable (P vs NP).
Correctly implemented.
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The three themes of this course

In practice, this course focuses on three important topics:

Giving a general framework for statistical inference:
maximum-likelihood methods.

Analyzing the behaviour of statistical methods when the number of
data points tends to ∞: asymptotic results.

Analyzing the efficiency of various approaches to statistics: is there an
optimal way to do statistics?
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Statistical Theory (MATH-442): Technicalities

Course:

Tuesday, 08h15 – 10h00
Me

Exercises:

Tuesday, 10h15 – 12h00
Leonardo Santoro, leonardo.santoro@epfl.ch

All the material (course description, reference, slides, exercises and
solutions) is on Moodle.

Evaluation: only a final exam (only a non-programmable calculator
will be allowed).
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General advice

Statistics is not extremely challenging from a mathematical point of
view. It is challenging because of the conceptual effort to match
mathematics and reality.

Even though this is a theoretical course, you should try to work on
the other two aspects of statistics:

Implement the methods of the course in simple examples.
We will briefly mention model choice here and there. Try to think
about it on your own.

Go to exercise sessions, it will help you a lot!

Work in groups.

Everyone in the class should ask at least two questions at each
lecture.
THERE IS NO SUCH THING AS A BAD QUESTION!!

Erwan Koch (EPFL) Statistical Theory (Week 1) 13 / 60



Probability Review
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Algebra of Events

Random experiment: process whose outcome is uncertain.
Outcomes and any statement involving them must be expressed via set theory.

A possible outcome ω of a random experiment is called an elementary event.

The set of all possible outcomes, say Ω is assumed non-empty, Ω 6= ∅.
An event is a subset F ⊂ Ω of Ω (note that F ∈ F). An event F “is realized” (or
“occurs”) whenever the outcome of the experiment is an element of F .

The union of two events F1 and F2, written F1 ∪ F2 occurs if and only if either of
F1 or F2 occurs. Equivalently, ω ∈ F1 ∪ F2 if and only if ω ∈ F1 or ω ∈ F2;

F1 ∪ F2 = {ω ∈ Ω : ω ∈ F1 or ω ∈ F2}.

The intersection of two events F1 and F2, written F1 ∩ F2 occurs if and only both
F1 and F2 occur. Equivalently, ω ∈ F1 ∩ F2 if and only if ω ∈ F1 and ω ∈ F2;

F1 ∩ F2 = {ω ∈ Ω : ω ∈ F1 and ω ∈ F2}.

Unions and intersections of several events, F1 ∪ . . . ∪ Fn and F1 ∩ . . . ∩ Fn are
defined iteratively from the definition for unions and intersections of pairs.
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Algebra of Events

The complement of an event F , denoted F c , contains all the elements of Ω that
are not contained in F ,

F c = {ω ∈ Ω : ω /∈ F}.

Two events F1 and F2 are called disjoint if they contain no common elements, that
is F1 ∩ F2 = ∅.
A partition {Fn}n≥1 of Ω is a collection of events such that Fi ∩ Fj = ∅ for all
i 6= j , and ∪n≥1Fn = Ω.

The difference of two events F1 and F2 is defined as F1 \ F2 = F1 ∩ F c
2 . It contains

all the elements of F1 that are not contained in F2. Notice that the difference is
not symmetric: F1 \ F2 6= F2 \ F1.

It can be checked that the following properties hold true

(i) (F1 ∪ F2) ∪ F3 = F1 ∪ (F2 ∪ F3) = F1 ∪ F2 ∪ F3

(ii) (F1 ∩ F2) ∩ F3 = F1 ∩ (F2 ∩ F3) = F1 ∩ F2 ∩ F3

(iii) F1 ∩ (F2 ∪ F3) = (F1 ∩ F2) ∪ (F1 ∩ F3)
(iv) F1 ∪ (F2 ∩ F3) = (F1 ∪ F2) ∩ (F1 ∪ F3)
(v) (F1 ∪ F2)c = F c

1 ∩ F c
2 and (F1 ∩ F2)c = F c

1 ∪ F c
2
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Probability Measures

Probability measure P: real-valued function defined over the events of Ω,
assigning a probability to any event.

Interpreted as a measure of the long-run relative frequency from a
sequence of repeatable experiments.

Interpreted as a measure of how certain we are that the event will
occur.

Postulated to satisfy the following axioms:

1 P(F ) ≥ 0, for all events F .

2 P(Ω) = 1.

3 If {Fn}n≥1 are disjoint events, then

P (F ) =
∑
n≥1

P(Fn).

Erwan Koch (EPFL) Statistical Theory (Week 1) 17 / 60



Probability Measures

The following properties are immediate consequences of the probability
axioms:

P(F c) = 1− P(F ).

P(F1 ∩ F2) ≤ min{P(F1),P(F2)}.
P(F1 ∪ F2) = P(F1) + P(F2)− P(F1 ∩ F2).

Continuity from below: let {Fn}n≥1 be nested events, such that
Fj ⊆ Fj+1 for all j , and let F be an event given by F = ∪n≥1Fn. Then

P(Fn)
n→∞−→ P(F ).

Continuity from above: let {Fn}n≥1 be nested events, such that
Fj ⊇ Fj+1 for all j , and let F be an event given by F = ∩n≥1Fn. Then

P(Fn)
n→∞−→ P(F ).

If Ω = {ω1, ..., ωK}, K <∞, is a finite set, then for any event F ⊆ Ω,
we have P(F ) =

∑
j :ωj∈F P(ωj).
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Conditional Probability and Independence

Suppose we don’t know the precise outcome ω ∈ Ω that has occurred, but we are told
that ω ∈ F2 for some event F2, and are asked to now calculate the probability that
ω ∈ F1 also, for some other event F1, we need conditional probability.

For any pair of events F1,F2 such that P(F2) > 0, we define the conditional
probability of F1 given F2 to be

P(F1|F2) =
P(F1 ∩ F2)

P(F2)
.

Let G be an event and {Fn}n≥1 be a partition of Ω such that P(Fn) > 0 for all n.
We then have:

- Law of total probability: P(G ) =
∞∑
n=1

P(G |Fn)P(Fn)

- Bayes’ theorem: P(Fj |G ) =
P(Fj ∩ G )

P(G )
=

P(G |Fj)P(Fj)∑∞
n=1 P(G |Fn)P(Fn)

The events {Gn}n≥1 are called (mutually) independent if and only if for any finite
sub-collection {Gi1 , . . . ,GiK }, K <∞, we have

P(Gi1 ∩ · · · ∩ GiK ) = P(Gi1 )× P(Gi2 )× . . .× P(GiK ).
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Random Variables and Distribution Functions

Random variables: numerical summaries of the outcome of a random experiment.

They allow us to not worry too much about the precise structure of the outcome ω ∈ Ω.
We can concentrate on the range of a random variable rather than consider Ω.

A random variable is a (measurable) function X : Ω→ R.

We write {a ≤ X ≤ b} to denote the event

{ω ∈ Ω : a ≤ X (ω) ≤ b}.

More generally, if A ⊂ R is a more general (measurable) subset, we write {X ∈ A}
to denote the event

{ω ∈ Ω : X (ω) ∈ A}.

If we have a probability measure defined on the events of Ω, then X induces a new
probability measure on subsets of the real line. This is described by the
distribution function (or cumulative distribution function) FX : R→ [0, 1] of a
random variable X (or the law of X ). This is defined as

FX (x) = P(X ≤ x).
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Random Variables and Distribution Functions

By its definition, a distribution function satisfies the following
properties:

(i) x ≤ y ⇒ FX (x) ≤ FX (y).

(ii) limx→∞ FX (x) = 1, limx→−∞ FX (x) = 0.

(iii) limy↓x FX (y) = FX (x), that is, FX is right-continuous.

(iv) limy↑x FX (y) exists, that is, FX is left-limited.

(v) P(a < X ≤ b) = FX (b)− FX (a).

(vi) P(X > a) = 1− F (a).

(vii) Let DX := {x ∈ R : FX (x)− limy↑x FX (y) > 0} be the set of points
where FX is not continuous.

- DX is a countable set.
- If P({X ∈ DF}) = 1 then X is called a discrete random variable

(equivalently, X has a finite or countable range, with probability 1).
- If DX = ∅ then X is called a continuous random variable (the

distribution function FX is continuous).
- It may very well happen that a random variable may be neither discrete

nor continuous.
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Probability Mass Functions

The probability mass function (or frequency function) fX : R→ [0, 1] of a
discrete random variable X is defined as

fX (x) = P(X = x).

Let X = {x ∈ R : fX (x) > 0}. By definition, we have

(i) P(X ∈ A) =
∑

t∈A∩X fX (t), for A ⊆ R.

(ii) FX (x) =
∑

t∈(−∞,x]∩X fX (t), for all x ∈ R.

(iii) An immediate corollary is that FX (x) is piecewise constant with
jumps at the points in X .
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Probability Density Functions

A continuous random variable X has probability density function
fX : R→ [0,+∞) if

FX (b)− FX (a) =

∫ b

a
fX (t)dt.

for all real numbers a < b. By its definition, a probability density satisfies

(i) FX (x) =
∫ x
−∞ fX (t)dx .

(ii) fX (x) = F ′X (x), whenever fX is continuous at x .

(iii) Note that fX (x) 6= P(X = x) = 0. In fact, it can be f (x) > 1 for
some x . It can even happen that f is unbounded.
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Random Vectors and Joint Distributions

A random vector X = (X1, . . . ,Xd)> is a finite collection of random variables (arranged
as the coordinates of a vector).

We want to make probabilistic statements on the joint behaviour of all variables.

The joint distribution function of a random vector X = (X1, . . . ,Xd)> is defined as

FX(x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd).

Correspondingly, one defines the

- joint frequency function, if the {Xi}di=1 are all discrete,

fX(x1, . . . , xd) = P(X1 = x1, . . . ,Xd = xd).

- the joint density function, if there exists fX : Rd → [0,+∞) such that

FX(x1, . . . , xd) =

∫ x1

−∞
· · ·
∫ xd

−∞
fX(u1, . . . , ud)du1 . . . dud .

In this case, when fX is continuous at the point x,

fX(x1, . . . , xd) =
∂d

∂x1 . . . ∂xd
FX(x1, . . . , xd).
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Marginal Distributions

Given the joint distribution of the random vector X = (X1, . . . ,Xd)>, we can isolate the
distribution of a single coordinate, say Xi .

In the discrete case, the marginal frequency function of Xi is given by

fXi (xi ) = P(Xi = xi ) =
∑
x1

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xd

fX(x1, . . . , xi−1, xi , xi+1, . . . , xd).

In the continuous case, the marginal density function of Xi is given by

fXi (xi ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX(y1, . . . , yi−1, xi , yi+1, . . . , yd)dy1 . . . dyi−1dyi+1dyd .

More generally, we can define the joint frequency/density of a random vector

formed by a subset of the coordinates of X = (X1, . . . ,Xd)>, say the first k

Discrete case:
fX1,...,Xk

(x1, ..., xk) =
∑

xk+1
· · ·
∑

xd
fX(x1, . . . , xk , xk+1, . . . , xd).

Continuous case:
fX1,...,Xk

(x1, ..., xk) =∫ +∞
−∞ · · ·

∫ +∞
−∞ fX(x1, . . . , xk , xk+1, . . . , xd)dxk+1 . . . dxd .

I.e., to marginalize we integrate/sum out the remaining random variables from the
overall joint density/frequency.

Marginals do not uniquely determine the joint distribution.
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Conditional Distributions

We may wish to make probabilistic statements about the potential
outcomes of one random variable if we already know the outcome of
another.

For this we need the notion of a conditional density/frequency function.

If (X1, ...,Xd) is a continuous/discrete random vector, we define the
conditional probability density/frequency function of (X1, ...,Xk) given
{Xk+1 = xk+1, ...,Xd = xd} as

fX1,...,Xk |Xk+1,...,Xd
(x1, ..., xk |xk+1, ..., xd) =

fX1,...,Xd
(x1, . . . , xk , xk+1, . . . , xd)

fXk+1,...,Xd
(xk+1, ..., xd)

provided that fXk+1,...,Xd
(xk+1, ..., xd) > 0.
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Independent Random Variables

The random variables X1, . . . ,Xd are called independent, denoted ⊥⊥, if
and only if, for all x1, . . . , xd ∈ R,

FX1,...,Xd
(x1, . . . , xd) = FX1(x1)× . . .× FXd

(xd).

Equivalently, X1, . . . ,Xd are independent if and only if, for all
x1, . . . , xd ∈ R,

fX1,...,Xd
(x1, . . . , xd) = fX1(x1)× . . .× fXd

(xd).

Note that when random variables are independent, conditional
distributions reduce to the corresponding marginal distributions.

When they are independent, knowing the value of one of the random
variables gives us no information about the distribution of the rest.
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Conditionally Independent Random Vectors

The random vector X in Rd is called conditionally independent of the random vector Y
given the random vector Z, written

X⊥⊥ZY or X⊥⊥Y |Z,

if and only if, for all x1, . . . , xd ∈ R,

FX1,...,Xd |Y ,Z (x1, . . . , xd) = FX1,...,Xd |Z (x1, . . . , xd),

or, equivalently, if and only if, for all x1, . . . , xd ∈ R,

fX1,...,Xd |Y ,Z (x1, . . . , xd) = fX1,...,Xd |Z (x1, . . . , xd).

It means that knowing Y in addition to knowing Z does not give us more information
about X.

Consequence: if X is conditionally independent of Y given Z, then

FX,Y|Z = FX|Y,ZFY|Z = FX|ZFY|Z.

Consequence: X⊥⊥ZY ⇐⇒ Y⊥⊥ZX.
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Expectation

The expectation (or expected value) of a random variable X formalizes the
notion of the “average” value taken by that random variable.

- For continuous variables:

E[X ] =

∫ +∞

−∞
x fX (x)dx .

- For discrete variables:

E[X ] =
∑
x∈X

x fX (x), X = {x ∈ R : fX (x) > 0}.

The expectation satisfies the following properties:

Linearity: E[X1 + αX2] = E[X1] + αE[X2].

E[h(X )] =
∑

x∈X h(x)fX (x) (discrete case)
or
E[h(X )] =

∫ +∞
−∞ h(x)fX (x)dx (continuous case).
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Variance, Covariance, Correlation

The variance of a random variable X expresses how scattered the realizations of X are
around its expectation:

Var(X ) = E
[
(X − E(X ))2

]
(if E[X 2] <∞).

Furthermore, the covariance of a random variable X1 with another random variable X2

expresses the degree of linear dependency between the two:

Cov(X1,X2) = E [(X1 − E(X1))(X2 − E(X2))] (if E[X 2
i ] <∞).

The correlation between X1 and X2 is defined as

Corr(X1,X2) =
Cov(X1,X2)√
Var(X1)Var(X2)

.

It also expresses the degree of linear dependency. Its advantage is that it is invariant to
changes of units of measurement, and moreover it can be understood in absolute terms
(it belongs to ranges in [−1, 1]), as a result of the correlation inequality (itself a
consequence of the Cauchy–Schwarz inequality)

|Corr(X1,X2)| ≤
√

Var(X1)Var(X2).
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Variance, Covariance, Correlation

Some useful formulas relating expectations, variance, and covariances are:

Var(X ) = E[X 2]− (E[X ])2 = Cov(X ,X )

Var(aX + b) = a2Var(X )

Var(
∑

i Xi ) =
∑

i Var(Xi ) +
∑

i 6=j Cov(Xi ,Xj)

Cov(X1,X2) = E[X1X2]− E[X1]E[X2]

Cov(aX1 + bX2,Y ) = a · Cov(X1,Y ) + b · Cov(X2,Y )

if E[X 2
1 ] + E[X 2

2 ] <∞, then the following are equivalent:

(i) E[X1X2] = E[X1]E[X2]
(ii) Cov(X1,X2) = 0
(iii) Var(X1 ± X2) = Var(X1) + Var(X2)

Independence implies the three last properties, but none of these
properties implies independence.
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Conditional expectation and variance

Let s be a function from R2 to R. The conditional expectation of S = s(X ,Y )
given Y = y is defined as

E[S |Y = y ] =

∫
R
s(x , y)fX |Y (x |y)dx .

E[S |Y ] is a random variable (a function of Y )!

E{E[S |Y ]} = E[S ] (expectation of conditional expectation is marginal
expectation).

E[g(Y )S |Y ] = g(Y )E[S |Y ] (taking out what is known).

E{E[S |Y ] |g(Y )} = E[S |g(Y )] (tower property).

If S is independent of Y , then E[S |Y ] = E[S ] (independence).

If W is independent of both S and Y , then E[S |W ,Y ] = E[S |Y ].

The conditional variance is defined by Var[S |Y ] = E[(S − E[S |Y ])2|Y ].

Var(S) = Var(E[S |Y ]) + E(Var[S |Y ]).

General definition: E[X |Y ] is a function of Y satisfying
E{1{Y∈A}E[X |Y ]} = E{1{Y∈A}X} for all Borel set A.
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Some Important Inequalities

Let X be a non-negative random variable with finite expectation. Then, for any
ε > 0,

P[X ≥ ε] ≤ E[X ]

ε
[Markov].

Let X be a random variable with finite first and second moments. Then, for any
ε > 0,

P
[
|X − E[X ]| ≥ ε

]
≤ Var[X ]

ε2
[Chebyshev].

For any convex1 function ϕ : R→ R, if E|ϕ(X )|+ E|X | <∞, then

ϕ
(
E[X ]

)
≤ E[ϕ(X )] [Jensen].

Let X be a real random variable with E[X 2] <∞. Let g : R→ R be a
non-decreasing function such that E[g 2(X )] <∞. Then,

Cov[X , g(X )] ≥ 0 [Monotonicity and Covariance].

1Recall that a function ϕ is convex if ϕ(λx + (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y) for
all x , y , and λ ∈ [0, 1].
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Moment Generating Functions

Let X be a real-valued random variable. The moment generating
function (MGF) of X is defined as

MX :
R 7→ R ∪ {∞}
t → E

[
etX
]
.

Let I be an open interval around 0. If MX (t),MY (t) exist (are finite)
for any t ∈ I , then:

E[|X |k ] <∞ and E[X k ] = dkMX

dtk
(0), for all k ∈ N.

MX = MY on I if and only if FX = FY .
MX+Y = MXMY .

Similarly, for a random vector X in Rd , we define the MGF (with
analogous properties) by

MX :
Rd 7→ R ∪ {∞}
u → E

[
eu>X

]
.
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Bernoulli Distribution

A random variable X is said to follow the Bernoulli distribution with
parameter p ∈ (0, 1), denoted X ∼ Bern(p), if

1 X = {0, 1},
2 f (x ; p) = p1{x = 1}+ (1− p)1{x = 0}.

The mean, variance and moment generating function of X ∼ Bern(p) are
given by

E[X ] = p, Var[X ] = p(1− p), MX (t) = 1− p + pet .
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Binomial Distribution

A random variable X is said to follow the Binomial distribution with
parameters p ∈ (0, 1) and n ∈ N, denoted X ∼ Binom(n, p), if

1 X = {0, 1, 2, ..., n},

2 f (x ; n, p) =

(
n

x

)
px(1− p)n−x .

The mean, variance and moment generating function of X ∼ Binom(n, p)
are given by

E[X ] = np, Var[X ] = np(1− p), MX (t) = (1− p + pet)n.

If X =
∑n

i=1 Yi where Yi
iid∼ Bern(p), then X ∼ Binom(n, p).
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Geometric Distribution

A random variable X is said to follow the Geometric distribution with
parameter p ∈ (0, 1), denoted X ∼ Geom(p), if

1 X = {0} ∪ N,

2 f (x ; p) = (1− p)xp.

The mean, variance and moment generating function of X ∼ Geom(p) are
given by

E[X ] =
1− p

p
, Var[X ] =

(1− p)

p2
, MX (t) =

p

1− (1− p)et
,

the latter for t < − log(1− p).

Let {Yi}i≥1 be an infinite collection of random variables, where

Yi
iid∼ Bern(p). Let T = min{k ∈ N : Yk = 1} − 1. Then

T ∼ Geom(p).
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Negative Binomial Distribution

A random variable X is said to follow the Negative Binomial distribution
with parameters p ∈ (0, 1) and r > 0, denoted X ∼ NegBin(r , p), if

1 X = {0} ∪ N,

2 f (x ; p, r) =

(
x + r − 1

x

)
(1− p)xpr .

The mean, variance and moment generating function of X ∼ NegBin(r , p)
are given by

E[X ] = r
1− p

p
, Var[X ] = r

(1− p)

p2
, MX (t) =

pr

[1− (1− p)et ]r
,

the latter for t < − log(1− p).

If X =
∑r

i=1 Yi where Yi
iid∼ Geom(p), then X ∼ NegBin(r , p).
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Poisson Distribution

A random variable X is said to follow the Poisson distribution with
parameters λ > 0, denoted X ∼ Poisson(λ), if

1 X = {0} ∪ N,

2 f (x ;λ) = e−λ
λx

x!
.

The mean, variance and moment generating function of X ∼ Poisson(λ)
are given by

E[X ] = λ, Var[X ] = λ, MX (t) = exp{λ(et − 1)}.

Let {Xn}n≥1 be a sequence of Binom(n, pn) random variables, such

that pn = λ/n, for some constant λ > 0. Then fXn

n→∞−→ fY , where
Y ∼ Poisson(λ).

Let X∼Poisson(λ) and Y∼Poisson(µ) be independent. The
conditional distribution of X given X + Y = k is
Binom(k , λ/(λ+ µ)) (useful in contingency tables).
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Uniform Distribution

A random variable X is said to follow the uniform distribution with
parameters −∞ < θ1 < θ2 <∞, denoted X ∼ Unif(θ1, θ2), if

fX (x ; θ) =

{
(θ2 − θ1)−1 if x ∈ (θ1, θ2),

0 otherwise.

The mean, variance and moment generating function of X ∼ Unif(θ1, θ2)
are given by

E[X ] = (θ1 + θ2)/2, Var[X ] = (θ2 − θ1)2/12

and

MX (t) =
etθ2 − etθ1

t(θ2 − θ1)
, t 6= 0, M(0) = 1.
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Exponential Distribution

A random variable X is said to follow the exponential distribution with parameter
λ > 0, denoted X ∼ Exp(λ), if

fX (x ;λ) =

{
λe−λx , if x ≥ 0

0 if x < 0.

The mean, variance and moment generating function of X ∼ Exp(λ) are given by

E[X ] = λ−1, Var[X ] = λ−2, MX (t) =
λ

λ− t
, t < λ.

If X ,Y are independent exponential random variables with rates λ1 and λ2, then
Z = min{X ,Y } is also exponential with rate λ1 + λ2.

Lack of memory characterisation:

1 Let X ∼ Exp(λ). Then P[X ≥ x + t|X ≥ t] = P[X ≥ x ].

2 Conversely: if X is a random variable such that P(X > 0) > 0 and

P(X > t + s|X > t) = P(X > s), ∀t, s ≥ 0,

then there exits a λ > 0 such that X ∼ Exp(λ).
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Gamma Distribution

A random variable X is said to follow the gamma distribution with
parameters r > 0 and λ > 0 (the shape and rate parameters, respectively),
denoted X ∼ Gamma(r , λ), if

fX (x ; r , λ) =

{
λr

Γ(r)x
r−1e−λx , if x ≥ 0

0, if x < 0.

The mean, variance and moment generating function of X ∼ Gamma(r , λ)
are given by

E[X ] = r/λ, Var[X ] = r/λ2, MX (t) =

(
λ

λ− t

)r

, t < λ.

If X1, . . . ,Xr
iid∼ Exp(λ), then Y =

∑r
i=1 Xi ∼ Gamma(r , λ).
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Normal (Gaussian) Distribution

A random variable X is said to follow the normal distribution with
parameters µ ∈ R and σ2 > 0 (the mean and variance parameters,
respectively), denoted X ∼ N(µ, σ2), if

fX (x ;µ, σ2) =
1

σ
√

2π
exp

{
−1

2

(
x − µ
σ

)2
}
, x ∈ R.

The mean, variance and moment generating function of X ∼ N(µ, σ2) are
given by

E[X ] = µ, Var[X ] = σ2, MX (t) = exp{tµ+ t2σ2/2}.

In the special case Z ∼ N(0, 1), we use the notation ϕ(z) = fZ (z) and
Φ(z) = FZ (z), and call these the standard normal density and standard
normal CDF, respectively.
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Standardization

Lemma

Let X1, . . . ,Xn independent random variables such that Xi ∼ N(µi , σ
2
i ), and let

Sn =
∑n

i=1 Xi . Then,

Sn ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
.

Lemma

X ∼ N(µ, σ2) if and only if there exists Z ∼ N(0, 1) such that X = σZ + µ.

Consequently, if X ∼ N(µ, σ2), then

FX (x) = Φ
(x − µ

σ

)
,

where Φ is the standard normal CDF,

Φ(u) =

∫ u

−∞
(2π)−1/2 exp{−z2/2}dz ,

that is, the distribution function of Z ∼ N(0, 1).
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Gaussian Sampling

Theorem (Gaussian Sampling)

Let X1, ...,Xn
iid∼ N(µ, σ2), and define

X̄ =
1

n

n∑
i=1

Xi & S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2.

Then

1 The joint distribution of X1, ...,Xn has probability density function,

fX1,...,Xn (x1, ..., xn) =

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
.

2 The sample mean is distributed as X̄ ∼ N(µ, σ2/n).

3 The random variables X̄ and S2 are independent.

4 The random variable S2 satisfies
n − 1

σ2
S2 ∼ χ2

n−1.
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Sampling Distributions: Chi-square Distribution

A random variable X is said to follow the chi-square distribution with
parameter k ∈ N (called the number of degrees of freedom), denoted
X ∼ χ2

k , if it holds that X ∼ Gamma(k/2, 1/2). In other words,

fX (x ; k) =


1

2k/2Γ( k
2 )
x

k
2
−1e−

x
2 , if x ≥ 0

0, if x < 0.

The mean, variance and moment generating function of X ∼ χ2
k are given

by

E[X ] = k , Var[X ] = 2k, M(t) = (1− 2t)−k/2, t <
1

2
.

Theorem

Let Z1, ...,Zk be iid N(0, 1) random variables. Then,

Z 2
1 + . . .Z 2

k ∼ χ2
k .
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Sampling Distributions: Student t distribution

A random variable X is said to follow the Student t distribution with
parameter k ∈ N (called the number of degrees of freedom), denoted
X ∼ tk , if

fX (x ; k) =
Γ
(
k+1

2

)
Γ
(
k
2

)√
kπ

(
1 +

x2

k

)− k+1
2

, x ∈ R.

Assuming k > 2, the mean and variance of X ∼ tk are given by

E[X ] = 0, Var[X ] =
k

k − 2
.

The mean is undefined for k = 1 and the variance is undefined for k ≤ 2.
The moment generating function is undefined for any k ∈ N.

Theorem (Student’s Statistic and its Sampling Distribution)

Let X1, ...,Xn
iid∼ N(µ, σ2). Then, X̄−µ

S/
√
n
∼ tn−1.
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Sampling Distributions: Fisher-Snedecor F distribution

A random variable X is said to follow the Fisher-Snedecor F distribution
with parameters d1, d2 ∈ N, denoted X ∼ Fd1,d2 , if

fX (x ; d1, d2) =


1

B
(

d1
2
,
d2
2

) (d1
d2

)d1/2
x

d1
2
−1
(

1 + d1
d2
x
)− d1+d2

2
, if x ≥ 0

0, if x < 0.

The mean, variance of X ∼ Fd1,d2 are given by

E[X ] =
d2

d2 − 2
, for d2 > 2, Var[X ] =

2d2
2 (d1 + d2 − 2)

d1(d2 − 4)(d2 − 2)2
, for d2 > 4.

The moment generating function does not exist.

Theorem

Let X1 ∼ χ2
d1

and X2 ∼ χ2
d2

be independent random variables. Then,

X1/d1

X2/d2
∼ Fd1,d2 .
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Quantile Function and Quantiles

Given a probability α ∈ (0, 1) (so-called confidence interval), what is the
(smallest) real number x such that P[X ≤ x ] = α? We need to invert the
distribution function.

Let X be a random variable and FX be its distribution function. The
quantile function of X is defined by

F−X :
(0, 1) 7→ R
α → inf{t ∈ R : FX (t) ≥ α}.

Given an α ∈ (0, 1), we call the real number qα = F−X (α) the
α-quantile of X (or, equivalently, of FX ).
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Transformations of random vectors

Let X = (X1, . . . ,Xd)> be a continuous random vector with density
fX.

Let h : Rd → Rd and Y = h(X) = h(X1, . . . ,Xd).

Assume that P(X ∈ A) = 1 for some open set A ⊂ Rd

Assume that h : A→ h(A) is one-to-one, has continuous partial
derivatives and |Jh(x)| 6= 0 for all x ∈ A.

Then the density of Y is

fY(y) =


fX(h−1(y)) 1

|Jh(h−1(y))|−1

= fX(h−1(y))|Jh−1(y)|, y ∈ h(A)

0, otherwise.
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Elements of a Statistical Model
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Back To Statistics: The Basic Setup

Elements of a Statistical Model:

A random experiment with sample space Ω.

A random vector X : Ω→ Rn, X = (X1, ...,Xn)>, defined on Ω.

When the outcome of the experiment is ω ∈ Ω, we observe X (ω) and
call it the data (usually ω omitted).

The probability of observing a realization of X is completely
determined by the distribution F of X .

F is assumed to be a member of a family F of distributions on Rn.

Goal

Learn about F ∈ F given the data X .

Erwan Koch (EPFL) Statistical Theory (Week 1) 52 / 60



The Basic Setup: An Ilustration

Example (Coin Tossing)

Consider the following probability space:

Ω = [0, 1]n with elements ω = (ω1, ..., ωn) ∈ Ω.

F the set of Borel subsets of Ω (product σ-algebra).

P is the uniform probability measure (Lebesge measure) on [0, 1]n.

Now we can define the experiment of n coin tosses as follows:

Let θ ∈ (0, 1) be a constant.

For i = 1, ..., n, let Xi = 1{ωi > θ}.
Let X = (X1, ...,Xn)>, so that X : Ω→ {0, 1}n.

Then FXi
(xi ) = P[Xi ≤ xi ] =


0 if xi ∈ (−∞, 0),

θ if xi ∈ [0, 1),

1 if xi ∈ [1,+∞).

And FX (x) =
∏n

i=1 FXi
(xi ).
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Parameters and Parametrizations
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Describing Families of Distributions: Parametric Models

Definition (Parametrization)

Let Θ be a set, F be a family of distributions and g : Θ→ F a surjective
mapping. The pair (Θ, g) is called a parametrization of F.

Definition (Parametric Model)

A parametric model with parameter space Θ ⊆ Rd is a family of
probability models F parametrized by Θ, F = {Fθ : θ ∈ Θ}.

Example (IID Normal Model)

F =

{
n∏

i=1

∫ xi

−∞

1

σ
√

2π
e−

1
2σ2 (yi−µ)2

dyi : (µ, σ2) ∈ R× R+

}
.

When Θ is not Euclidean, we call F non-parametric.
When Θ is a product of a Euclidean and a non-Euclidean space, we
call F semi-parametric.
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Parametric Models

Example (Geometric Distribution)

Let X1, ...,Xn
iid∼ Geom(p): P[Xi = k] = p(1− p)k , k ∈ N ∪ {0}. Two

possible parametrizations are:

1 [0, 1] 3 p 7→ Geom(p)

2 [1,∞) 3 µ 7→ Geom with mean µ

Example (Poisson Distribution)

Let X1, ...,Xn
iid∼ Poisson(λ): P[Xi = k] = e−λ λ

k

k! , k ∈ N ∪ {0}. Three
possible parametrizations are:

1 [0,∞) 3 λ 7→ Poisson(λ)

2 [0,∞) 3 µ 7→ Poisson with mean µ

3 [0,∞) 3 σ2 7→ Poisson with variance σ2
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Example (Non-Parametric Regression)

For i = 1, . . . , n, let ti = iT/n and C0 3 f : [0,T ]→ R, and

εi
iid∼ N (0, σ2). Let,

Yi = f (ti ) + εi .

Then,

(Y1, ...,Yn)> = Y ∼ Nn

(
(f (t1), ..., f (tn))>, σ2In

)
and the parametrization is

(f , σ2) 7→ Nn

(
(f (t1), ..., f (tn))>, σ2In

)
.
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Identifiability

Parametrization often suggested from phenomenon we are modelling.

But any set Θ and surjection g : Θ→ F give a parametrization.

Many parametrizations possible! Is any parametrization sensible?

Definition (Identifiability)

A parametrization (Θ, g) of a family of models F is called identifiable if
g : Θ→ F is a bijection (i.e., g is injective on top of being surjective).

When a parametrization is not identifiable:

We can have θ1 6= θ2 but Fθ1 = Fθ2 .

Even with an ∞ amount of data we could not distinguish θ1 from θ2.

Definition (Parameter)

A parameter is a function ν : Fθ → N , where N is arbitrary.

A parameter is a feature of the distribution Fθ.

When θ 7→ Fθ is identifiable, then ν(Fθ) = q(θ) for some q : Θ→ N .
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Identifiability

Example (Binomial Thinning)

Let {Bi ,j} be an infinite iid array of Bern(ψ) variables and ξ1, ..., ξn be an
iid sequence of Geom(p) random variables with probability mass function
P[ξi = k] = p(1− p)k ,k ∈ N ∪ {0}. Let X1, ...,Xn be iid random variables
defined by

Xj =

ξj∑
i=1

Bi ,j , j = 1, . . . , n.

Any FX ∈ F is completely determined by (ψ, p), so [0, 1]2 3 (ψ, q) 7→ FX
is a parametrization of F. We can show (how?) that

X ∼ Geom

(
p

ψ(1− p) + p

)
.

However (ψ, p) is not identifiable (why?).
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Parametric Inference for Regular Models

Will focus on parametric families F. The aspects we will wish to learn
about are parameters of F ∈ F.

Regular Models

Assume from now on that in any parametric model we consider either:

1 All the Fθ are continuous with densities f (x ; θ).

2 All the Fθ are discrete with frequency functions p(x ; θ) and there
exists a countable set A that is independent of θ such that∑

x∈A p(x , θ) = 1 for all θ ∈ Θ.

We will consider the mathematical aspects of problems such as:

1 Estimating which θ ∈ Θ (i.e., which Fθ ∈ F) generated X .

2 Deciding whether some hypothesized values of θ are consistent with
X .

3 The performance of methods and the existence of optimal methods.

4 What happens when our model is wrong?
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Statistical Theory:
Explanation to slide 59 of week 1

Fall Semester 2020

Tomas Rubin, tomas.rubin@epfl.ch

During the exercise session I was asked about the example on slide 59 of week 1 (of the
lecture) where it is claimed that the sum of random number of Bernoulli random variables
(where the random number of summands is geometrically distributed) is again a geometric
distribution with given parameter.
It can be shown by calculating the moment generating functions. By the answer to this

Stackexchange question (and after adjusting the notation), we have

MX(t) =Mξ(logMB(t))

where

Mξ(t) =
p

1− (1− p)et
, (geometric distribution with the parameter p),

Mb(t) = 1− ψ + ψet (Bernoulli distribution with the parameter ψ).

Hence
MX(t) =Mξ(logMB(t)) =

p

1− (1− p)(1− ψ + ψet)

which can be manipulated to the form

MX(t) =

p
ψ(1−p)+p

1− ψ(1−p)
ψ(1−p)+pe

t

where we recognise the moment generating function of the geometric distribution with the
parameter p

ψ(1−p)+p .

1

https://math.stackexchange.com/questions/721780/sum-of-a-random-number-of-independent-random-variables


Statistical Theory (Week 2): Overview of Stochastic
Convergence

Erwan Koch

Ecole Polytechnique Fédérale de Lausanne (Institute of Mathematics)
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Motivation: Functions of Random
Variables
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Functions of Random Variables

Let X1, ...,Xn be identically distributed with E[Xi ] = µ and var[Xi ] = σ2,
and consider

X̄n =
1

n

n∑
i=1

Xi .

If the Xi are independent and Xi ∼ N (µ, σ2) or Xi ∼ exp(λ = 1/µ)
then we know dist[X̄n].

But the Xi may be from some more general distribution.

The joint distribution of Xi may not even be completely
understood/known.

We would like to be able to say something about X̄n even in those cases!

Perhaps this is not easy for fixed n, but what about letting n→∞?
↪→(a very common approach in mathematics).
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Functions of Random Variables

Once we assume that n→∞ we start understanding dist[X̄n] more:

At a crude level X̄n becomes concentrated around µ:

P[|X̄n − µ| < ε] ≈ 1, ∀ ε > 0, as n→∞.

Perhaps more informative is to look at the “magnified difference”:

P[
√
n(X̄n − µ) ≤ x ]

n→∞
≈ ? → could yield P[X̄n ≤ x ].

More generally −→ We want to understand distribution of
Yn = g(X1, ...,Xn) for some general g :

Often infeasible.
Thus, we resort to asymptotic approximations to understand the
behaviour of Yn.

Such approximations are appropriate in many situations but be careful
to the fact that asymptotics are often abused (used for n very small!).
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Stochastic Convergence
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Convergence of Random Variables

Need to make precise what we mean by Yn is “concentrated” around
µ as n→∞.

More generally what does “Yn behaves like Y ” for large n mean?

dist[g(X1, ...,Xn)]
n→∞
≈ ?

↪→ We need appropriate notions of convergence for random variables.

Recall that random variables are functions between measurable spaces.

=⇒ Convergence of random variables can be defined in various ways:

Convergence in probability (convergence in measure).

Convergence in distribution (weak convergence).

Convergence with probability 1 (almost sure convergence).

Convergence in Lp (convergence in the p-th moment).

All these notions are qualitatively different. Some modes of convergence
are stronger than others.
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Convergence in Probability

Definition (Convergence in Probability)

Let {Xn}n≥1 and X be random variables defined on the same probability
space. We say that Xn converges in probability to X as n→∞ (and write

Xn
p→ X ) if for any ε > 0,

P[|Xn − X | > ε]
n→∞−→ 0.

Intuitively, if Xn
p→ X , then for large n, Xn ≈ X with probability close to 1.

Example

Let X1, . . . ,Xn
iid∼ Unif(0, 1), and define Mn = max{X1, ...,Xn}. Then,

FMn(x) = xn =⇒ P[|Mn − 1| > ε] = P[Mn < 1− ε]

= (1− ε)n n→∞−→ 0

for any 0 < ε < 1. Hence Mn
p→ 1.
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Convergence in Probability

Lemma (Ky-Fan definition of convergence in probability)

Xn
p→ X if and only if there exists some sequence αn ↓ 0 such that

P[|Xn − X | > αn] ≤ αn, ∀ n ≥ 1.

Proof.
Suppose that there exists such an αn. Then for any ε > 0, there exists Nε ∈ N such that
for all n ≥ Nε, αn < ε. It follows that, for any n ≥ Nε,

P[|Xn − X | > ε] ≤ P[|Xn − X | > αn] ≤ αn,

which gives P[|Xn − X | > ε]
n→∞−→ 0 since αn

n→∞−→ 0. For the converse, suppose that

Xn
p→ X . Then, there exists {nk}k≥1 such that

nk < nk+1, & P[|Xn − X | > 1/k] ≤ 1

k
,∀ n ≥ nk .

Define αn =
∑∞

k=1
1
k
1{nk ≤ n < nk+1}. We have P[|Xn − X | > αn] ≤ αn for all n ≥ 1

and αn ↓ 0, which completes the proof.
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Convergence in Probability

Exercise

Knowledge of the sequence αn can be used to characterize the speed at
which the convergence occurs.
Indeed, if, for all n, αn ≥ α′n are two sequences controlling the

convergence respectively of Xn
p→ X and X ′n

p→ X , then the convergence
of X ′n is faster than that of Xn.
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Convergence in Distribution

Definition (Convergence in Distribution)

Let {Xn} and X be random variables (not necessarily defined on the same
probability space). We say that Xn converges in distribution to X as

n→∞ (and write Xn
d→ X ) if

P[Xn ≤ x ]
n→∞−→ P[X ≤ x ],

at every continuity point of FX (x) = P[X ≤ x ].

Example

Let X1, . . . ,Xn
iid∼ Unif(0, 1), Mn = max{X1, ...,Xn}, and Qn = n(1−Mn).

P[Qn ≤ x ] = P[Mn ≥ 1− x/n] = 1−
(

1− x

n

)n n→∞−→ 1− e−x

for all x ≥ 0. Hence Qn
d→ Q, with Q ∼ Exp(1).
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Some Comments on “
p→” and “

d→”

“
p→” involves the random variables themselves.

“
d→” relates their distribution functions.
↪→ Can be used to approximate distributions (approximation error?).

Both notions of convergence are metrizable.
↪→ I.e., there exist metrics on the space of random variables and

distribution functions that are compatible with these notions of
convergence.

↪→ Hence can use things such as the triangle inequality, . . .

Convergence in probability implies convergence in distribution.
Convergence in distribution does NOT imply convergence in
probability.

↪→ E.g., if X ∼ N (0, 1), then −X + 1
n

d→ X but −X + 1
n

p→ −X .

“
d→” is also known as “weak convergence”.

Equivalent definition: Xn
d→ X ⇐⇒ E[f (Xn)]→ E[f (X )] for all

continuous and bounded functions f .
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Useful Theorems
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Some Basic Results

Theorem

(a) Xn
p→ X =⇒ Xn

d→ X.

(b) For any c ∈ R, Xn
d→ c =⇒ Xn

p→ c.

Proof

(a) Let x be a continuity point of FX . Then, for any ε > 0,

P[Xn ≤ x ] = P[Xn ≤ x , |Xn − X | ≤ ε] + P[Xn ≤ x , |Xn − X | > ε]

≤ P[X ≤ x + ε] + P[|Xn − X | > ε],

using {Xn ≤ x , |Xn − X | ≤ ε} ⊂ {X ≤ x + ε}. Similarly,

P[X ≤ x − ε] ≤ P[X ≤ x − ε, |Xn − X | ≤ ε] + P[X ≤ x − ε, |Xn − X | > ε]

≤ P[Xn ≤ x ] + P[|Xn − X | > ε],

as {X ≤ x − ε, |Xn − X | ≤ ε} ⊂ {Xn ≤ x}.
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(proof cont’d).
The previous inequality yields

P[X ≤ x − ε]− P[|Xn − X | > ε] ≤ P[Xn ≤ x].

Therefore,

P[X ≤ x − ε]− P[|Xn − X | > ε] ≤ P[Xn ≤ x] ≤ P[X ≤ x + ε] + P[|Xn − X | > ε].

Hence, letting n tend to infinity and then ε tend to 0 leads that P(Xn ≤ x)
n→∞−→ P(X ≤ x).

(b) Let F be the distribution function of the degenerate random variable taking the single value
c. We have

F (x) = P[c ≤ x] =

{
1 if x ≥ c,

0 if x < c.

Now,

P[|Xn − c| > ε] = P[{Xn − c > ε} ∪ {Xn < c − ε}]
= P[Xn > c + ε] + P[Xn < c − ε]
≤ 1− P[Xn ≤ c + ε] + P[Xn ≤ c − ε]

n→∞−→ 1− F (c + ε︸ ︷︷ ︸
≥c

) + F (c − ε︸ ︷︷ ︸
<c

) = 0.

Since Xn
d→ c.Erwan Koch (EPFL) Statistical Theory (Week 2) 15 / 31



Theorem (Continuous Mapping Theorem)

Let g : R→ R be a continuous function. Then,

(a) Xn
p→ X =⇒ g(Xn)

p→ g(X ).

(b) Yn
d→ Y =⇒ g(Yn)

d→ g(Y ).

Exercise

Prove part (a). You may assume without proof the Subsequence Lemma:

Xn
p→ X if and only if every subsequence Xnm of Xn, has a further

subsequence Xnm(k)
such that P[Xnm(k)

k→∞−→ X ] = 1.

Theorem (Slutsky’s Theorem)

Assume that Xn
d→ X and Yn

p→ c ∈ R. Then

(a) Xn + Yn
d→ X + c.

(b) XnYn
d→ cX .
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Proof of Slutsky’s Theorem.

(a) We assume without loss of generality that c = 0. Let x be a continuity
point of FX . We have, for any ε > 0,

P[Xn + Yn ≤ x ] = P[Xn + Yn ≤ x , |Yn| ≤ ε] + P[Xn + Yn ≤ x , |Yn| > ε]

≤ P[Xn ≤ x + ε] + P[|Yn| > ε],

as {Xn + Yn ≤ x , |Yn| ≤ ε} ⊂ {Xn ≤ x + ε}. Similarly,

P[Xn ≤ x − ε] = P[Xn ≤ x − ε, |Yn| ≤ ε] + P[Xn ≤ x − ε, |Yn| > ε]

≤ P[Xn + Yn ≤ x ] + P[|Yn| > ε],

since {Xn ≤ x − ε, |Yn| ≤ ε} ⊂ {Xn + Yn ≤ x}. Therefore,

P[Xn ≤ x−ε]−P[|Yn| > ε] ≤ P[Xn+Yn ≤ x ] ≤ P[Xn ≤ x+ε]+P[|Yn| > ε].

Choosing ε such that x − ε and x + ε are continuity points of FX and
letting n tend to infinity, and then letting ε tend to 0 gives
P(Xn + Yn ≤ x)

n→∞−→ P(X ≤ x).
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Proof of Slutsky’s Theorem.

(b) We assume again without loss of generality that c = 0. Let ε,M > 0:

P[|XnYn| > ε] = P[|XnYn| > ε, |Yn| ≤ 1/M] + P[|XnYn| > ε, |Yn| > 1/M]

≤ P[|Xn| > εM] + P[|Yn| > 1/M]
n→∞−→ P[|X | > εM] + 0.

Choosing ε and M such that εM and −εM are continuity points of FX and
letting n tend to infinity, and then letting M tend to infinity, leads
P[|XnYn| > ε]

n→∞−→ 0 for any ε > 0, and thus the result.
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Theorem (General Version of Slutsky’s Theorem)

Let g : R× R→ R be continuous and suppose that Xn
d→ X and

Yn
d→ c ∈ R. Then, g(Xn,Yn)

d→ g(X , c) as n→∞.

↪→Notice that the general version of Slutsky’s theorem does not follow
immediately from the continuous mapping theorem.

The multivariate version (see later) of the continuous mapping
theorem would be applicable if (Xn,Yn) weakly converged jointly in
distribution (i.e., convergence of the joint distributions) to (X , c).

But here we assume only marginal convergence (i.e., Xn
d→ X and

Yn
d→ c separately, but their joint behaviour is unspecified).

The key of the proof is that in the special case where Yn
d→ c where c

is a constant, then marginal convergence ⇐⇒ joint convergence.

However if Xn
d→ X where X is non-degenerate, and Yn

d→ Y where
Y is non-degenerate, then the theorem fails.
Note that even the special cases (addition and multiplication) of
Slutsky’s theorem fail if both X and Y are non-degenerate.
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Theorem (The Delta Method)

Let Zn := an(Xn − θ)
d→ Z where an, θ ∈ R for all n and an ↑ ∞. Let g(·) be

continuously differentiable at θ. Then, an(g(Xn)− g(θ))
d→ g ′(θ)Z .

Proof
By a Taylor expansion around θ, we have

g(Xn) = g(θ) + g ′(θ∗n)(Xn − θ),

where θ∗n lies between Xn and θ and hence satisfies |θ∗n − θ| ≤ |Xn − θ|. Moreover,

|Xn − θ| = a−1
n · |an(Xn − θ)| = a−1

n Zn
p→ 0 by Slutsky’s theorem. Therefore,

θ∗n
p→ θ and, by the continuous mapping theorem, g ′(θ∗n)

p→ g ′(θ). Finally,

an(g(Xn)− g(θ)) = an(g(θ) + g ′(θ∗n)(Xn − θ)− g(θ))

= g ′(θ∗n)an(Xn − θ)
d→ g ′(θ)Z ,

using Slutsky’s Theorem.

Note that the Delta Method is applicable even when g ′(θ) is not continuous (the
proof uses Skorokhod representation).
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Exercise: Give a counterexample showing that neither Xn
p→ X or Xn

d→ X ensure that
E[Xn]→ E[X ] as n→∞.

Theorem (Convergence of Expectations)

If |Xn| < M <∞ and Xn
d→ X, then E[X ] exists and E[Xn]

n→∞−→ E[X ].

Proof.
Assume first that Xn are non-negative for any n. Then,

|E[Xn]− E[X ]| =

∣∣∣∣∫ ∞
0

(P[Xn > x]− P[X > x])dx

∣∣∣∣
=

∣∣∣∣∫ M

0
(P[Xn > x]− P[X > x])dx

∣∣∣∣
≤

∫ M

0
|P[Xn > x]− P[X > x]| dx n→∞→ 0,

since P[Xn > x]
n→∞→ P[X > x] for all but a countable number of points and the integration

domain is bounded.

Exercise: Generalize the proof to the case of less restrictive assumptions.
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Remarks on Weak Convergence

Often difficult to establish weak convergence directly (from
definition).
Indeed, in most interesting cases, Fn is not specified exactly.
We need other more “handy” sufficient conditions.

Scheffé’s Theorem

Let Xn have density functions (or
mass functions) fn, and let X have
density function (or mass function)
f . Then

fn
n→∞−→ f (a.e.) =⇒ Xn

d→ X .

The converse to Scheffé’s
theorem is NOT true (why?).

Continuity Theorem

Let Xn and X have characteristic
functions (cf) ϕn(t) = E[e itXn ], and
ϕ(t) = E[e itX ], respectively. Then,

(a) Xn
d→ X ⇔ ϕn → ϕ pointwise.

(b) If ϕn(t) converges pointwise to
some limit function ψ(t) that is
continuous at zero, then:

(i) ∃ a measure ν with cf ψ.

(ii) FXn

d→ ν.
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Weak Convergence of Random Vectors

Definition

Let {Xn} be a sequence of random vectors of Rd , and X a random vector

of Rd with Xn = (X
(1)
n , . . . ,X

(d)
n )T and X = (X (1), . . . ,X (d))T. Define the

distribution functions FXn(x) = P[X
(1)
n ≤ x (1), . . . ,X

(d)
n ≤ x (d)] and

FX (x) = P[X (1) ≤ x (1), . . . ,X (d) ≤ x (d)], for x = (x (1), . . . , x (d))T ∈ Rd .
We say that Xn converges in distribution to X as n→∞ (and write

Xn
d→ X ) if for every continuity point of FX we have

FXn(x)
n→∞−→ FX (x).

There is a link between univariate and multivariate weak convergence.

Theorem (Cramér-Wold Device)

Let {Xn} be a sequence of random vectors of Rd , and X a random vector
of Rd . Then,

Xn
d→ X ⇔ θTXn

d→ θTX , ∀θ ∈ Rd .
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Stronger Notions of Convergence
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Almost Sure Convergence and Convergence in Lp

There are also two stronger convergence concepts (that do not compare).

Definition (Almost Sure Convergence)

Let {Xn}n≥1 and X be random variables defined on the same probability

space (Ω,F ,P). Let A := {ω ∈ Ω : Xn(ω)
n→∞→ X (ω)}. We say that Xn

converges almost surely to X as n→∞ (and write Xn
a.s.−→ X ) if P[A] = 1.

More plainly, we say that Xn
a.s.−→ X if P[Xn → X ] = 1.

Definition (Convergence in Lp)

Let {Xn}n≥1 and X be random variables defined on the same probability
space. We say that Xn converges to X in Lp as n→∞ (and write

Xn
Lp→ X ) if

E [|Xn − X |p]
n→∞−→ 0.

Note that ‖X‖Lp := (E|X |p)1/p defines a complete norm (when finite).
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Relationship Between Different Types of Convergence

Xn
a.s.−→ X =⇒ Xn

p−→ X =⇒ Xn
d−→ X .

Xn
Lp−→ X , for p > 0 =⇒ Xn

p−→ X =⇒ Xn
d−→ X .

for p ≥ q, Xn
Lp−→ X =⇒ Xn

Lq−→ X .

There is no implicative relationship between “
a.s.−→” and “

Lp→”.

Theorem (Skorokhod’s Representation Theorem)

Let {Xn}n≥1,X be random variables defined on a probability space

(Ω,F ,P) with Xn
d→ X. Then, there exist random variables {Yn}n≥1,Y

defined on some probability space (Ω′,G,Q) such that:

(i) Y
d
= X & Yn

d
= Xn, ∀n ≥ 1.

(ii) Yn
a.s.−→ Y .

Exercise

Prove part (b) of the continuous mapping theorem.
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The Two “Big” Theorems
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Recalling two basic Theorems

Theorem (Strong Law of Large Numbers)

Let {Xn} be iid random variables with E[Xk ] = µ and E[|Xk |] <∞ for all
k ≥ 1. Then,

1

n

n∑
k=1

Xk
a.s.−→ µ.

“Strong” is as opposed to the “weak” law which gives “
p→” instead of

“
a.s.−→”.

This is insanely strong: E[|Xk |] <∞ is the weakest condition for it to
have an expected value. The theorem reads: if there is an expected
value, we can find it with the empirical mean.

The strong law says nothing useful about the size of the error.
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Recalling two basic theorems

Theorem (Central Limit Theorem)

Let {Xn} be an iid sequence of random vectors in Rd with mean µ and
covariance Σ and define X̄n :=

∑n
m=1 Xm/n. Then,

√
nΣ−

1
2 (X̄ − µ)

d→ Z ∼ Nd(0, Id).

Insanely strong theorem: as soon as the covariance exists, we are in
business.

Once more, no control about the size of the error.

There are many variants of this basic CLT.
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Convergence Rates

The mathematician rarely cares about convergence speed. The statistician
does (should?) because data is money.

Law of Large Numbers: assuming finite variance, L2 rate of n−1/2.
Optimal because of the CLT.

What about the Central Limit Theorem?
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The Berry-Esseen theorem

Theorem (Berry-Esseen {Bentkus, 2005, Theory Prob Appl})
Let X1, ...,Xn be iid random vectors taking values in Rd and such that
E[Xi ] = 0, cov[Xi ] = Id and E

[
‖Xi‖3

]
<∞. Define

Sn =
1√
n

(X1 + . . .+ Xn).

If A denotes the class of convex subsets of Rd , then for Z ∼ Nd(0, Id),

sup
A∈A
|P[Sn ∈ A]− P[Z ∈ A]| ≤ C

d1/4E
[
‖Xi‖3

]
√
n

,

where ‖.‖ denotes the Euclidean norm. The constant C is universal and
satisfies C ≤ 4.

It allows one to quantify the approximation error in the CLT and to build
confidence regions with guaranteed coverage.
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Statistical Theory (Week 3): Principles of Data
Reduction

Erwan Koch

Ecole Polytechnique Fédérale de Lausanne (Institute of Mathematics)
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1 Statistics of the data

2 Ancillarity

3 Sufficiency

4 Minimal Sufficiency

5 Completeness
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Statistical Models and The Problem of Inference

Recall our setup:

A random vector X = (X1, ...,Xn)>.

A family of distributions F parametrized by Θ ⊆ Rd , i.e., F = {Fθ : θ ∈ Θ}.
X ∼ Fθ ∈ F.

The Problem of Point Estimation

1 Assume that Fθ is known up to the parameter θ which is unknown.

2 Let (x1, ..., xn)> be a realization of X ∼ Fθ which is available to us.

3 Estimate the value of θ that generates X , given (x1, ..., xn)>.

The only guide (apart from knowledge of F) at hand is the data (x1, ..., xn)>:

↪→ We would like to summarize the information in (x1, ..., xn)> without loosing
too much information.

↪→ Anything we will use is a function of the data g(x1, ..., xn).

↪→ We need to study the properties of such functions and the corresponding
potential information loss.
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The data-processing inequality

Key idea: whatever we do with the data, it cannot increase our
information.

By transforming the data / projecting it down onto the value of a
statistic, at best we preserve the information that is in the data; any
function of x1, . . . , xn carries at most the same information but
usually less.

Only new data brings new information.
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Statistics of the data
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Statistics

Definition (Statistic)

Let X ∼ Fθ. A statistic T is a (measurable) function of X that does not depend
on θ. Thus, T = T (X ). Note that T is not necessarily real-valued.

↪→ Intuitively, any function of X alone is a statistic.
↪→ Any statistic is itself a random variable (or vector) with its own distribution.

Example

T (X ) = n−1
∑n

i=1 Xi is a statistic (since n, the sample size, is known).

Example

T (X ) = (X(1), . . . ,X(n))
> where X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics

of X . Since T depends only on the values of X , T is a statistic.

Example

T (X ) = c , where c is a known constant, is a statistic.
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Ancillarity
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Statistics and Information About θ

Evident from previous examples: some statistics are more informative
and others are less informative regarding the true value of θ.

Any T (X ) that is not “1–1” with X carries less information about θ
than X .

Which are “good” and which are “bad” statistics?

Definition (Ancillary Statistic)

A statistic T is an ancillary statistic (for θ) if its distribution does not
functionally depend θ.

↪→ So an ancillary statistic has the same distribution for any θ ∈ Θ.
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Ancillarity example

Example

Suppose that X1, ...,Xn
iid∼ N(µ, 1) (only the mean µ is unknown).

Let T (X1, ...,Xn) = X1 − X2.

Then T ∼ N(0, 2), giving that T is ancillary for the unknown parameter
µ. Nevertheless, if both µ and σ2 were unknown, T would not be ancillary
for θ = (µ, σ2).
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Statistics and Information about θ

If T is ancillary for θ then T contains no information about θ.

In order to contain any useful information about θ, the distribution of T must
depend explicitly on θ.

Intuitively, the amount of information that T gives on θ increases as the
dependence of dist(T ) on θ increases.

Example

Let X1, ...,Xn
iid∼ Unif(0, θ), S = min(X1, . . . ,Xn) and T = max(X1, . . . ,Xn). Then:

fS(x ; θ) = n
θ

(
1− x

θ

)n−1
, 0 ≤ x ≤ θ.

fT (x ; θ) = n
θ

(
x
θ

)n−1
, 0 ≤ x ≤ θ.

↪→ Neither S nor T are ancillary for θ.

↪→ As n ↑ ∞, fS becomes concentrated around 0.

↪→ As n ↑ ∞, fT becomes concentrated around θ.

↪→ Indicates that T provides more information about θ than does S .
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Sufficiency
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Statistics and Information about θ

Let X = (X1, . . . ,Xn)> ∼ Fθ and T (X ) be a statistic.

The level sets (also called fibres or contours) of T are the sets

At = {x ∈ Rn : T (x) = t}, t ∈ Range(T ).

For a given t, At is the set of all potential realizations that lead to
the value t for T .

↪→ T is constant when restricted to a level set.

Any realization of X that falls in a given level set is equivalent as far
as T is concerned.

Any inference drawn through T will be the same within level sets.

Now, look at dist(X ) on a level set At : fX |T=t(x).
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Statistics and Information about θ

Suppose that fX |T=t changes depending on θ: we are losing
information when using T .
Suppose fX |T=t is functionally independent of θ:

=⇒ X contains no information about θ on the set At .
=⇒ In other words, X is ancillary for θ on At .

If this is true for each t ∈ Range(T ) then T (X ) contains the same
information about θ as X does.

↪→ It does not matter whether we observe X = (X1, ...,Xn) or just T (X ).
↪→ Knowing the exact value X in addition to knowing T (X ) does not give

us any additional information — X is irrelevant if we already know
T (X ).

Definition (Sufficient Statistic)

A statistic T = T (X ) is said to be sufficient for the parameter θ if, for all
(Borel) sets B, P[X ∈ B|T (X ) = t] does not depend on θ for all
t ∈ Range(T ).
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Sufficient Statistics

Example (Bernoulli Trials)

Let X1, ...,Xn
iid∼ Bern(θ) and T (X ) =

∑n
i=1 Xi . For any x ∈ {0, 1}n and

t = Σn
i=1xi ,

P[X = x |T = t] =
P[X = x ,T = t]

P[T = t]
=

P[X = x ]

P[T = t]

=
θΣn

i=1xi (1− θ)n−Σn
i=1xi(

n
t

)
θt(1− θ)n−t

=
θt(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=

(
n

t

)−1

,

which is independent of θ.

=⇒ T is sufficient for θ → Given the number of tosses that came heads,
knowing which tosses came heads is irrelevant in deciding if the coin is fair. E.g.,
with n = 7 and t = 4, we do not care whether we obtained 0 0 1 1 1 0 1,
1 0 0 0 1 1 1 or 1 0 1 0 1 0 1.
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Sufficient Statistics

Definition hard to verify (especially for continuous variables).

Definition does not allow easy identification of sufficient statistics.

Theorem (Fisher-Neyman Factorization Theorem)

Suppose that X = (X1, . . . ,Xn)> has a joint density or frequency function
f (x ; θ), θ ∈ Θ. A statistic T = T (X ) is sufficient for θ if and only if

f (x ; θ) = g(T (x); θ)h(x).

Example

Let X1, ...,Xn
iid∼ Unif(0, θ) with density f (x ; θ) = 1{x ∈ [0, θ]}/θ. Then,

fX (x ; θ) =
1

θn
1{x ∈ [0, θ]n} =

1{max[x1, ..., xn] ≤ θ}1{min[x1, ..., xn] ≥ 0}
θn

.

Therefore, T (X ) = X(n) = max[X1, ...,Xn] is sufficient for θ.
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Sufficient Statistics

Proof of Neyman-Fisher Theorem - Discrete Case.
Suppose first that T is sufficient. Then

f (x ; θ) = P[X = x ] =
∑
t

P[X = x ,T = t]

= P[X = x ,T = T (x)]

= P[T = T (x)]P[X = x |T = T (x)].

Since T is sufficient, P[X = x |T = T (x)] is independent of θ and so
f (x ; θ) = g(T (x); θ)h(x).

Now suppose that f (x ; θ) = g(T (x); θ)h(x). Then if t = T (x),

P[X = x |T = t] =
P[X = x ]

P[T = t]
=

g(T (x); θ)h(x)∑
y :T (y)=t g(T (y); θ)h(y)

=
h(x)∑

T (y)=t h(y)
,

which does not depend upon θ.
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Minimal Sufficiency
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Minimally Sufficient Statistics

We saw that a sufficient statistic keeps what is important about the
parameter. But it can also contain useless information.

How much information can we throw away? Is there a “smallest”
sufficient statistic?

Definition (Minimally Sufficient Statistic)

A statistic T = T (X ) is said to be minimally sufficient for the parameter θ
if it is sufficient for θ and, for any other sufficient statistic S = S(X ),
there exists a function g such that

T (X ) = g(S(X )).

Lemma

If T and S are minimally sufficient statistics for the parameter θ, then
there exist injective functions g and h such that S = g(T ) and T = h(S).
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Theorem

Let X = (X1, ...,Xn)> have joint density or frequency function f (x ; θ) and
T = T (X ) be a statistic. Suppose that f (x ; θ)/f (y ; θ) is independent of θ if and
only if T (x) = T (y). Then T is minimally sufficient for θ.

Proof.

Assume for simplicity that f (x ; θ) > 0 for all x ∈ Rn and θ ∈ Θ.
[Sufficiency part] Let At , t ∈ Range(T ), be the level sets of T . For each t, we
denote by yt ∈ At a representative element of the level set At . For any x , yT (x) is
in the same level set as x , entailing by assumption that

f (x ; θ)/f (yT (x); θ)

does not depend on θ. Introducing g(t; θ) := f (yt ; θ), we have

f (x ; θ) =
f (yT (x); θ)f (x ; θ)

f (yT (x); θ)
= g(T (x); θ)h(x).

It follows from the factorization theorem that T is a sufficient statistic.
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(proof cont’d).

[Minimality part] Let T ′ be any other sufficient statistic. By the
factorization theorem, there exist g ′ and h′ such that

f (x ; θ) = g ′(T ′(x); θ)h′(x).

Let x , y be such that T ′(x) = T ′(y). Then

f (x ; θ)

f (y ; θ)
=

g ′(T ′(x); θ)h′(x)

g ′(T ′(y); θ)h′(y)
=

h′(x)

h′(y)
.

Since this ratio does not depend on θ, we have by assumption that
T (x) = T (y). Hence, the level sets of T ′ are subsets of the level sets of
T , which implies that T is a function of T ′. Thus, T is minimal as this is
true for any sufficient statistic T ′.
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Example (Bernoulli Trials)

Let X1, ...,Xn
iid∼ Bern(θ). Let x , y ∈ {0, 1}n be two possible realizations.

Then
f (x ; θ)

f (y ; θ)
=
θΣxi (1− θ)n−Σxi

θΣyi (1− θ)n−Σyi
,

which is constant if and only if T (x) =
∑

xi =
∑

yi = T (y), so that T is
minimally sufficient.

Exercise

Prove that the likelihood f (X ; θ) (which is a random function) is a
sufficient statistic. Let θ0 be some arbitrary value such that for all x ,
f (x ; θ0) 6= 0. Prove that the normalized likelihood f (X ; θ)/f (X ; θ0) is
minimally sufficient.

This exercise shows that a “minimal” statistic can be quite big.
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Completeness
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Complete Statistics

Ancillary Statistic → Contains no information on θ.

Minimally Sufficient Statistic → Contains all the relevant information
about θ and as little irrelevant as possible.

Should they be mutually independent?

Is it possible to remove the totality of the irrelevant information?

Definition (Complete Statistic)

Let {g(t; θ) : θ ∈ Θ} be a family of densities (or frequencies)
corresponding to a statistic T (X ). The statistic T is called complete if
given any measurable function h, it holds that∫

h(t)g(t; θ)dt = 0 ∀θ ∈ Θ =⇒ P[h(T ) = 0] = 1 ∀θ ∈ Θ.

Not clear why the term “complete” was chosen – one reason might be the
resemblance to the notion of complete system in a Hilbert space (whose
orthogonal complement is the zero space), in reference to {g(·; θ)}θ∈Θ.
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Complete Statistics

Example (Bernoulli Trials)

Let X1, ...,Xn
iid∼ Bern(θ), θ ∈ (0, 1), and T =

∑
Xi . Let h be an arbitrary

and measurable function. We have

E[h(T )] =
n∑

t=0

h(t)

(
n

t

)
θt(1− θ)n−t = (1− θ)n

n∑
t=0

h(t)

(
n

t

)(
θ

1− θ

)t

.

As θ ranges in (0, 1), the ratio θ/(1− θ) ranges in (0,∞). Thus,
E[h(T )] = 0 for all θ ∈ (0, 1) implies that, for all x > 0,

P(x) =
n∑

t=0

h(t)

(
n

t

)
x t = 0,

i.e., the polynomial P(x) is uniformly zero over the entire positive real line.
Hence, its coefficients must be all zero, so h(t) = 0, t = 1, ..., n. Thus,
P[h(T ) = 0] = 1 for all θ ∈ (0,∞).
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Complete Statistics

↪→ Why is completeness relevant to data reduction?

Lemma

If T is complete, then h(T ) is ancillary for θ if and only if h(T ) = c a.s.

Proof.

Let T be a complete statistic. If h(T ) = c a.s., h(T ) is obviously ancillary for θ.
Conversely, let now h(T ) be ancillary. Then its distribution does not depend on θ,
which implies that E[h(T )] = c , for some constant c , regardless of θ.
Equivalently, E[h(T )− c] = 0 for any θ. By completeness of T ,
P[h(T ) = c] = 1, i.e., h(T ) = c a.s.

It means that only the trivial (i.e., constant) functions of T are ancillary.

In other words, a complete statistic contains no ancillary information.

Contrast to a sufficient statistic:

A sufficient statistic keeps all the relevant information.
A complete statistic throws away all the irrelevant information.
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Complete Statistics

Theorem (Basu’s Theorem)

A complete sufficient statistic is independent of every ancillary statistic.

Proof.
We consider the discrete case only. Let T and S be complete sufficient and ancillary
statistics, respectively. It suffices to show that, for any s ∈ Range(S) and t ∈ Range(T ),

P[S(X ) = s|T (X ) = t] = P[S(X ) = s].

Define
h(t) = P[S(X ) = s|T (X ) = t]− P[S(X ) = s].

We have that:

1 P[S(x) = s] does not depend on θ (by ancillarity).

2 P[S(X ) = s|T (X ) = t] = P[X ∈ {x : S(x) = s}|T = t] does not depend on θ (by
sufficiency).

Thus, h does not depend on θ, which is necessary for h(T ) to be a statistic.
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(proof cont’d).

Now, for any θ ∈ Θ,

E[h(T )] =
∑
t

(P[S(X ) = s|T (X ) = t]− P[S(X ) = s])P[T (X ) = t]

=
∑
t

P[S(X ) = s|T (X ) = t]P[T (X ) = t]

−P[S(X ) = s]
∑
t

P[T (X ) = t]

= P[S(X ) = s]− P[S(X ) = s] = 0.

Since T is complete, it follows that h(t) = 0 a.s. for all t ∈ Range(T ).

Basu’s Theorem is useful for deducing independence of two statistics:

No need to determine their joint distribution.

Need to show completeness (usually hard analytical problem).

We will see models for which completeness is easy to check.
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Completeness and Minimal Sufficiency

Theorem (Lehmann-Scheffé)

Let X have density f (x ; θ). If T (X ) is sufficient and complete for θ then
T is minimally sufficient.

Proof.

First we show that a minimally sufficient statistic exists. We define an
equivalence relation, denoted by ≡, as x ≡ x ′ if and only if
f (x ; θ)/f (x ′; θ) is independent of θ. Let S be a function such that
S(z) = cx for any z belonging to the class with representative x (S is
constant on that class), and such that x (1) 6≡ x (2) ⇒ cx (1) 6= cx (2) . Then,
f (x ; θ)/f (y ; θ) is independent of θ if and only if S(x) = S(y), giving that
S is minimally sufficient. This establishes the existence.
Note that to be perfectly rigorous, we should check that S is measurably
constructible; see the proof by Lehmann–Scheffé (1950) for corresponding
details.
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(proof cont’d).

Therefore, as T is sufficient, there exists a function g1 such that
S = g1(T ). Let g2(S) = E[T |S ] (which does not depend on θ since S is
sufficient) and consider

g(T ) = T − g2(S).

We have

E[g(T )] = E[T ]− E {E[T |S ]} = E[T ]− E[T ] = 0.

for all θ. By completeness of T , it follows that g(T ) = 0, i.e., g2(S) = T
a.s. The function g2 has to be injective since otherwise it would contradict
the minimal sufficiency of S . As moreover S = g1(T ), there is a bijective
relationship between S and T , yielding that T is minimally sufficient.
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Sufficiency and completeness

The log-likelihood is minimally sufficient (if normalized), but not
necessarily complete!

Exercise

Consider the following situation:

We pick a random number N 3 N ∼ Fn

We gather N iid random variables X1 . . .XN ∼ N (µ, 1).

1 Write down the normalized log-likelihood function µ→ LL(µ)− LL(0)
as a function of N and X . This is a function-valued random
variable.

2 Prove that it is minimally sufficient. Note that the log-likelihood
µ→ LL(µ) is only sufficient, not minimally sufficient.

3 Prove that it is not complete.
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Summary

We looked at how to “summarize” the data by computing the value of a
statistic S(X ), where X ∼ Fθ:

Ancillarity: S carries no information on θ.

Sufficiency: S does not lose information on θ.

Minimal sufficiency: S does not lose information on θ and carries as
little ancillary information as possible.

Completeness: S carries no ancillary information.

Most of the time, a minimally sufficient statistic exists: the normalized
log-likelihood. A complete sufficient statistic may, however, not exist.
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Focus on Parametric Families
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Focus on Parametric Families

Recall our setup:

A random vector X = (X1, ...,Xn)>.

A family of distributions F parametrized by Θ ⊆ Rd , i.e., F = {Fθ : θ ∈ Θ}.
X ∼ Fθ ∈ F.

The Problem of Point Estimation

1 Assume that Fθ is known up to the parameter θ which is unknown.

2 Let (x1, ..., xn)> be a realization of X ∼ Fθ which is available to us.

3 Estimate the value of θ that generates X , given (x1, ..., xn)>.

The only guide (apart from knowledge of F) at hand is the data (x1, ..., xn)>:

↪→ Anything we will use is a function of the data g(x1, ..., xn).

So far we have focused on the aspects: approximation of the distributions of
g(X1, . . . ,Xn) + data reduction (how to find the best possible function g?)

But what about F?
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Focus on Parametric Families

We describe F by a parametrization Θ 3 θ 7→ Fθ.

Definition (Parametrization)

Let Θ be a set, F be a family of distributions and g : Θ→ F a surjective
mapping. The pair (Θ, g) is called a parametrization of F.

↪→ It assigns a label θ ∈ Θ to each member of F.

Definition (Parametric Model)

A parametric model with parameter space Θ ⊆ Rd is a family of probability
models F parametrized by Θ, F = {Fθ : θ ∈ Θ}.

So far we have seen a number of examples of distributions and have shown some
properties of each distribution individually.

Question
Are there general families of distributions that contain the standard ones as
special cases and for which a general and abstract study can be performed?
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Exponential Families of
Distributions
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Exponential Families of Distributions

Definition (Exponential Family)

Let X = (X1, ...,Xn)> have joint distribution Fθ with parameter θ ∈ Rp. We say that
the family of distributions Fθ is a k-parameter exponential family if the joint density or
joint frequency function of (X1, ...,Xn)> admits the form

f (x ; θ) = exp

{
k∑

i=1

ci (θ)Ti (x)− d(θ) + S(x)

}
, x ∈ X , θ ∈ Θ,

with supp{f (·; θ)} = X independent of θ.

k need not equal p, although they coincide in many cases.

Frequently, it is more convenient to re-parametrize this model by introducing
φi = ci (θ), i = 1, . . . , k. The vector φ = (φ1, . . . , φk)> is called the natural
parameter.

The value of k may be reduced if the φi or Ti satisfy linear constraints.

We will assume that the representation above is minimal in the sense that neither
the Ti nor the φi satisfy a linear constraint.
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Motivation: Maximum Entropy Under Constraints

Consider the following variational (i.e., optimization) problem:

Determine the probability distribution f supported on X which maximizes the
entropy

H(f ) = −
∫
X
f (x) log f (x)dx ,

under the linear (moment) constraints∫
X
Ti (x)f (x)dx = αi , i = 1, . . . , k.

Philosophy:

Question: how to choose a probability model for a given situation?

Solution: maximum entropy approach. In any given situation, the idea is to
choose the distribution that gives the highest uncertainty while satisfying
situation–specific required constraints.
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Proposition
When a solution to the constrained optimization problem exists, it is unique and has the
form

f (x) = Q(λ1, . . . , λk) exp

{
k∑

i=1

λiTi (x)

}
.

Proof.
Let f be written as above and g be a density also satisfying the constraints. Then,

H(g) = −
∫
X
g(x) log g(x)dx = −

∫
X
g(x) log

[
g(x)

f (x)
f (x)

]
dx

= −
∫
X
g(x) log

[
g(x)

f (x)

]
dx −

∫
X
g(x) log f (x)dx

= − KL(g‖ f )︸ ︷︷ ︸
≥0

−
∫
X
g(x) log f (x)dx

≤ − logQ(λ1, . . . , λk)

∫
X
g(x)dx︸ ︷︷ ︸

=1

−
∫
X
g(x)

(
k∑

i=1

λiTi (x)

)
dx .
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(proof cont’d).

As g also satisfies the moment constraints, the last term is

= − logQ(λ1, . . . , λk)−
∫
X
f (x)

(
k∑

i=1

λiTi (x)

)
dx = −

∫
X
f (x) log f (x)dx

= H(f ).

The uniqueness of the solution follows from the fact that strict equality can only
occur when KL(g‖ f ) = 0, which happens if and only if g = f .

The λi ’s are the Lagrange multipliers derived by the Lagrange form of the
optimization problem.

These are derived so that the constraints are satisfied.

They give us the ci (θ) in our definition of exponential families.

Note that the presence of S(x) in our definition is compatible:
S(x) = ck+1Tk+1(x), where ck+1 does not depend on θ.

(provision for a multiplier that may not depend on parameter)
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Example (Binomial Distribution)

Let X ∼Binom(n, θ) with n known. Then, for x = 1, . . . , n,

f (x ; θ) =

(
n

x

)
θx(1− θ)n−x = exp

[
log

(
θ

1− θ

)
x + n log(1− θ) + log

(
n

x

)]
,

and so dist(X ) belongs to a one-parameter exponential family.

Example (Gamma Distribution)

Let X1, ...,Xn
iid∼Gamma with unknown shape parameter α and unknown rate

parameter λ. Then, provided x1, . . . , xn > 0,

f (x ;α, λ) =
n∏

i=1

λαxα−1
i exp(−λxi )

Γ(α)

= exp

[
(α− 1)

n∑
i=1

log xi − λ
n∑

i=1

xi + nα log λ− n log Γ(α)

]
.

Hence dist(X ) belongs to a two-parameter exponential family.
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Example (Heteroskedastic Gaussian Distribution)

Let X1, ...,Xn
iid∼ N(θ, θ2), where θ > 0. Then, for any x ∈ Rn,

f (x ; θ) =
n∏

i=1

1

θ
√

2π
exp

[
− 1

2θ2
(xi − θ)2

]

= exp

[
− 1

2θ2

n∑
i=1

x2
i +

1

θ

n∑
i=1

xi −
n

2
{(1 + 2 log θ) + log(2π)}

]
.

Notice that even though k = 2 here, the dimension of the parameter space is 1.
This is an example of a curved exponential family.

Example (Uniform Distribution)

Let X ∼ Unif(0, θ). Then,

f (x ; θ) =
1{x ∈ [0, θ]}

θ
.

Since the support of f , X , depends on θ, dist(X ) does not belong to an
exponential family.
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Exponential Families of Distributions

Proposition

Suppose that X = (X1, ...,Xn)> has a one-parameter exponential family
distribution with density or frequency function

f (x ; θ) = exp [c(θ)T (x)− d(θ) + S(x)]

for x ∈ X , where

(a) the parameter space Θ is open;

(b) c(·) is twice continuously differentiable with non vanishing derivative.

Then, d is twice differentiable and

E[T (X )] =
d ′(θ)

c ′(θ)
& Var[T (X )] =

d ′′(θ)c ′(θ)− d ′(θ)c ′′(θ)

[c ′(θ)]3
.
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Proof.

Define φ = c(θ) the natural parameter of the exponential family. Since c ∈ C 2

and c ′ 6= 0, the inverse function theorem states that there exists an open
neighbourhood U of φ such that c−1(φ) exists and is continuously differentiable
on U, with derivative

d

dφ
c−1(φ) =

1

c ′(c−1(φ))
.

Since U is open, there exists s sufficiently small so that φ+ s ∈ U. Letting
γ(φ) = d(c−1(φ)) on U, the MGF of T (X ) is

E[exp[sT (X )]] =

∫
esT (x)eφT (x)−γ(φ)+S(x)dx

= eγ(φ+s)−γ(φ)

∫
e(φ+s)T (x)−γ(φ+s)+S(x)dx︸ ︷︷ ︸

=1

= exp[γ(φ+ s)− γ(φ)].
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(proof cont’d).

It follows that MT (s) <∞ for s sufficiently small, and thus that

all moments of T exist;

MT (s) is infinitely differentiable on an open neighbourhood of 0.

Therefore, γ(s + φ) is infinitely differentiable for s small enough, i.e., γ is infinitely
differentiable in an open neighbourhood of φ. Now, differentiating the MGF wrt s and
setting s = 0, we get

E[T (X )] = γ′(φ) & Var[T (X )] = γ′′(φ).

To complete the proof, we recall that γ(φ) = d(c−1(φ)). Using the fact that c ∈ C 2

and γ ∈ C∞, easy computations using the inverse function theorem yield

γ′(φ) = d ′(θ)/c ′(θ) and γ′′(φ) = [d ′′(θ)c ′(θ)− d ′(θ)c ′′(θ)]/[c ′(θ)]3.

Exercise
Extend the result to the means, variances and covariances of the random variables
T1(X ), ...,Tk(X ) in a k-parameter exponential family.
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Exponential Families and Sufficiency

Lemma

Suppose that X = (X1, ...,Xn)> has a k-parameter exponential family distribution with
density or frequency function

f (x ; θ) = exp

[
k∑

i=1

ci (θ)Ti (x)− d(θ) + S(x)

]

for x ∈ X . Then, the statistic (T1(X ), ...,Tk(X ))> is sufficient for θ.

The statistic (T1(X ), ...,Tk(X ))> is sometimes called the natural sufficient statistic.

Proof.

Let T (X ) = (T1(X ), ...,Tk(X ))>. We have

f (x ; θ) = g(T (x); θ)h(x),

where g(T (x); θ) = exp
{∑

i ci (θ)Ti (x)− d(θ)
}

and h(x) = exp{S(x)}1{x ∈ X}. The
factorization theorem yields the result.
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Sampling Exponential Families

The families of distributions obtained by sampling from exponential families
are themselves exponential families.

Let X1, ...,Xn be iid according to a k-parameter exponential family. The
density (or frequency function) of X = (X1, ...,Xn)> is

f (x ; θ) =
n∏

j=1

exp

[
k∑

i=1

ci (θ)Ti (xj)− d(θ) + S(xj)

]

= exp

 k∑
i=1

ci (θ)τi (x)− nd(θ) +
n∑

j=1

S(xj)

 ,
where τi (X ) =

∑n
j=1 Ti (Xj), i = 1, ..., k . The latter are called the natural

statistics.

Note that the natural sufficient statistic is k-dimensional for any n.

What about the distribution of τ = (τ1(X ), ..., τk(X ))>?
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The Natural Statistics

Lemma

The distribution of τ = (τ1(X ), ..., τk(X ))> is of exponential family form with
natural parameters c1(θ), ..., ck(θ).

Proof. (discrete case).

Let Ty = {x : τ1(x) = y1, ..., τk(x) = yk} be the level set of y ∈ Rk . We have

P[τ = y ] =
∑
x∈Ty

P[X = x ] = δ(θ)
∑
x∈Ty

exp

[
k∑

i=1

ci (θ)τi (x) +
n∑

j=1

S(xj)

]

= δ(θ) exp

[
k∑

i=1

ci (θ)yi

] ∑
x∈Ty

exp

[
n∑

j=1

S(xj)

]

= δ(θ)S(y) exp

[
k∑

i=1

ci (θ)yi

]
,

where δ(θ) = exp(−nd(θ)).

Erwan Koch (EPFL) Statistical Theory (Week 4) 18 / 34



The Natural Statistics

Lemma
For any A ⊆ {1, ..., k}, the joint distribution of {τi (X ); i ∈ A} conditional on
{τi (X ); i ∈ Ac} is of exponential family form, and depends only on {ci (θ); i ∈ A}.

Proof. (discrete case).

Let Ti = τi (X ), i = 1, . . . , k, TA = {τi (X ) : i ∈ A} and yA = {yi : i ∈ A}. Recall that

we have P[τ = y ] = δ(θ)S(y) exp
[∑k

i=1 ci (θ)yi
]
. Thus,

P[TA = yA|TAc = yAc ]

=
P[TA = yA,TAc = yAc ]∑

w∈R#(A) P[TA = w ,TAc = yAc ]

=
δ(θ)S((yA, yAc )) exp

[∑
i∈A ci (θ)yi

]
exp

[∑
i∈Ac ci (θ)yi

]
δ(θ)exp

[∑
i∈Ac ci (θ)yi

]∑
w∈R#(A) S((w , yAc )) exp

[∑
i∈A ci (θ)wi

]
= ∆({ci (θ) : i ∈ A})S(yA, yAc ) exp

[∑
i∈A

ci (θ)yi

]
.
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The Natural Statistics and Sufficiency

Look at the previous results through the prism of the canonical parametrization:

We already know that τ is sufficient for φ = (c1(θ), . . . , ck(θ))>.

But the previous result tells us something even stronger:

Each τi , i = 1, . . . , k , gives information about φi = ci (θ) (“conditionally
sufficient”).

In fact any τA gives information about φA (“conditionally sufficient”), ∀
A ⊆ {1, ..., k}.

Therefore, each natural statistic contains relevant information about each
natural parameter.

A useful result that is by no means true for any distribution.
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Exponential Families and Completeness

Theorem

Suppose that X = (X1, ...,Xn)> has a k-parameter exponential family distribution
with density or frequency function

f (x ; θ) = exp

[
k∑

i=1

ci (θ)Ti (x)− d(θ) + S(x)

]

for x ∈ X . Define C = {(c1(θ), ..., ck(θ))> : θ ∈ Θ}. If the set C contains an
open set (i.e., a k-dimensional rectangle), then the statistic (T1(X ), ...,Tk(X ))>

is complete for θ, and so minimally sufficient.

A k-parameter exponential family satisfying the condition on C is said to be of
full rank.

Intuitively, this result says that a k-dimensional sufficient statistic in a
k-parameter exponential family will also be complete for θ provided that the
effective dimension of C is k .
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Proof. (Case k = 1)

Recall that T also has a 1-parameter exponential family distribution, with natural
parameter c(θ) and density

fT (t) = δ(θ)S(t) exp{c(θ)t}.

Let g(·) be such that Eθ[g(T )] = 0 for all θ ∈ Θ. This translates into

δ(θ)

∫
R
g(t)S(t) exp{c(θ)t}dt = 0, ∀θ ∈ Θ.

We write g = g+ − g− = g(t)1{g(t) ≥ 0} − |g(t)|1{g(t) < 0}, i.e., we
decompose g into its positive and negative parts. This yields∫

R
g+(t)S(t) exp{c(θ)t}dt =

∫
R
g−(t)S(t) exp{c(θ)t}dt, ∀θ ∈ Θ.

Since Eθ[g(T )] exists for all θ, the two terms above are finite ∀θ.
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(proof cont’d)

Our trick will be to view the two previous integrands as probability densities, which is
possible as S(t) ≥ 0. Let θ0 be such that c(θ0) is in the interior of C (such a θ0 exists
by our assumption that C contains an open set). Let us define r by the value of either
side when θ = θ0, i.e.,

r =

∫
R
g+(t)S(t) exp{c(θ0)t}dt.

Then,

F (u) =

∫ u

−∞

1

r
g+(t)S(t) exp{c(θ0)t}dt & G(u) =

∫ u

−∞

1

r
g−(t)S(t) exp{c(θ0)t}dt

define two probability distribution functions, with densities given by the integrands.
Using this definition and dividing both sides of our previous equality by r , we obtain

E[exp{[c(θ)− c(θ0)]Z}] = E[exp{[c(θ)− c(θ0)]W }],

where Z ∼ F and W ∼ G . These equalities are valid for all θ, and so for an open
neighbourhood of φ = c(θ)− c(θ0) containing zero. By the characterization property of
the MGFs, we obtain that F = G , and so g+ = g− almost everywhere (a.e.), i.e., g = 0
a.e. Thus, T is complete.
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Summary on exponential families

An exponential family gives a max-entropy model of the data.

The statistic T (X ) = (T1(X ), ...,Tk(X ))> is sufficient for θ.

If the exponential family is full rank, then T (X ) is also complete for θ. The
conjunction of “sufficient” and “complete” almost never occurs outside of
exponential families.

The natural sufficient statistic is k-dimensional whatever the sample size n.

BUT, KEY LESSON: For our data, it’s better to have a good model which has
drawbacks from a mathematical viewpoint than a bad one which has great
mathematical properties!!
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Transformation Families
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Groups Acting on the Data Space

Basic Idea

Often we can generate a family of distributions of the same form (but with
different parameters) by letting a group act on our data space X .

Recall: a group is a set G along with a binary operator ◦ such that:

1 g , g ′ ∈ G =⇒ g ◦ g ′ ∈ G .

2 (g ◦ g ′) ◦ g ′′ = g ◦ (g ′ ◦ g ′′), ∀g , g ′, g ′′ ∈ G .

3 ∃ e ∈ G : e ◦ g = g ◦ e = g , ∀g ∈ G .

4 ∀g ∈ G ∃ g−1 ∈ G : g ◦ g−1 = g−1 ◦ g = e.

Often, groups are sets of transformations and the binary operator is the
composition operator (e.g., SO(2), the group of rotations of R2):[

cosφ − sinφ
sinφ cosφ

] [
cosψ − sinψ
sinψ cosψ

]
=

[
cos(φ+ ψ) − sin(φ+ ψ)
sin(φ+ ψ) cos(φ+ ψ)

]
.
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Groups Acting on the Data Space

Let (G , ◦) be a group of transformations, with G 3 g : X → X .

gX := g(X ) and (g2 ◦ g1)X := g2(g1(X )).

Obviously dist(gX ) changes as g ranges in G .

Is this change completely arbitrary or are there situations where it has a simple
structure?

Definition (Transformation Family)

Let G be a group of transformations acting on X and let {fθ(x); θ ∈ Θ} be a parametric
family of densities on X . If there exists a bijection h : G → Θ then the family {fθ}θ∈Θ

will be called a (group) transformation family if

X ∼ fθ ⇒ g(X ) ∼ fh(g)∗θ,

where ∗ is a binary operator on Θ.

Hence Θ admits a group structure Ḡ := (Θ, ∗) via

θ1 ∗ θ2 := h(h−1(θ1) ◦ h−1(θ2)).

Usually we write gθ = h−1(θ), so gθ ◦ gθ′ = gθ∗θ′
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Invariance and Equivariance

Define an equivalence relation on X via G , by

x
G≡ x ′ ⇐⇒ ∃ g ∈ G : x ′ = g(x).

This partitions X into equivalence classes called the orbits of X under G .

Definition (Invariant Statistic)

A statistic T that is constant on the orbits of X under G is called an invariant
statistic. That is, T is invariant with respect to G if, for any arbitrary x ∈ X , we
have T (x) = T (gx) for any g ∈ G .

Notice that it may be that T (x) = T (y) but x , y are not in the same orbit, i.e.,
in general the orbits under G are subsets of the level sets of an invariant statistic
T . When orbits and level sets coincide, we have:

Definition (Maximal Invariant)

A statistic T will be called a maximal invariant for G when

T (x) = T (y) ⇐⇒ x
G≡ y .
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Invariance and Equivariance

Intuitively, a maximal invariant is a reduced version of the data that
represent it as closely as possible, under the requirement of remaining
invariant with respect to G .

If T is an invariant statistic with respect to the group defining a
transformation family, then it is ancillary.

Definition (Equivariance)

A statistic S : X → Θ will be called equivariant for a transformation family if
S(gθx) = θ ∗ S(x), ∀ gθ ∈ G & x ∈ X .

Equivariance may be a natural property to require if S is used as an
estimator of the true parameter θ ∈ Θ, as it suggests that a transformation
of a sample by gψ would yield an estimator that is the original one
transformed by ψ.
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Invariance and Equivariance

Lemma (Constructing Maximal Invariants)

Let S : X → Θ be an equivariant statistic for a transformation family with
parameter space Θ and transformation group G. Then, T (X ) = g−1

S(X )X defines a

maximally invariant statistic.

Proof.

T (gθx)
def
= (g−1

S(gθx) ◦ gθ)x
eqv
= (g−1

θ∗S(x) ◦ gθ)x = [(g−1
S(x) ◦ g

−1
θ ) ◦ gθ]x = T (x)

so that T is invariant. To show maximality, notice that

T (x) = T (y) =⇒ g−1
S(x)x = g−1

S(y)y =⇒ y = gS(y) ◦ g−1
S(x)︸ ︷︷ ︸

=g∈G

x

so that ∃g ∈ G with y = gx which completes the proof.
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Location-Scale Families

An important transformation family is the location-scale model:

Let X = η + τε with ε ∼ f completely known.

Parameter is θ = (η, τ) ∈ Θ = R× R+.

Define set of transformations on X by gθx = g(η,τ)x = η + τx .

We have

g(η,τ) ◦ g(µ,σ)x = η + τµ+ τσx = g(η+τµ,τσ)x , giving that the set of
transformations is closed under composition.
g(µ,σ) ◦ g(η,τ)x = g(η,τ) ◦ g(µ,σ)x ;
g(0,1) ◦ g(η,τ) = gη,τ ◦ g(0,1) = g(η,τ) (so ∃ identity);
g(−η/τ, τ−1) ◦ g(η,τ) = g(η,τ) ◦ g(−η/τ, τ−1) = g(0,1) (so ∃ inverse).

Hence G = ({gθ : θ ∈ R× R+}, ◦) is a group.

The action of G on random sample X = {Xi}ni=1 is g(η,τ)X = η1n + τX .

The (unique) induced group action on Θ is (η, τ) ∗ (µ, σ) = (η + τµ, τσ).
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Location-Scale Families

The sample mean and sample variance are equivariant, because with
S(X ) = (X̄ ,V 1/2), where V = 1

n−1

∑
(Xj − X̄ )2, we have

S(g(η,τ)X ) =

(
η + τX ,

{
1

n − 1

∑
(η + τXj − (η + τX ))2

}1/2
)

=

(
η + τ X̄ ,

{
1

n − 1

∑
(η + τXj − η − τ X̄ )2

}1/2
)

= (η + τ X̄ , τV 1/2) = (η, τ) ∗ S(X ).

A maximal invariant is given by A = g−1
S(X )X the corresponding parameter

being (−X̄/V 1/2,V−1/2). Hence the vector of residuals is a maximal
invariant:

A =
(X − X̄1n)

V 1/2
=

(
X1 − X̄

V 1/2
, . . . ,

Xn − X̄

V 1/2

)
.
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Transformation Families

Example (The Multivariate Gaussian Distribution)

Let Z ∼ Nd(0, I ) and consider X = µ + ΩZ ∼ N (µ,ΩΩT).

The parameter is (µ,Ω) ∈ Rd × GL(d).

It holds that

The set of transformations is closed under ◦.
g(0,I ) ◦ g(µ,Ω) = gµ,Ω ◦ g(0,I ) = g(µ,Ω).
g(−Ω−1µ,Ω−1) ◦ g(µ,Ω) = g(µ,Ω) ◦ g(−Ω−1µ,Ω−1) = g(0,I ).

Hence G = ({gθ : θ ∈ Rd × GL(d)}, ◦) is a group (affine group).

The action of G on X is g(µ,Ω)X = µ + ΩX .

The induced group action on Θ is (µ,Ω) ∗ (ν,Ψ) = (ν + Ψµ,ΨΩ).
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Summary

We have presented two useful types of parametric models for data:

The exponential families: defined from a max-entropy principle. Most often,
T (X ) is a complete and minimally sufficient statistic.

The transformation families, most often of the form X = µ+ σY .

We will further study these two types of models in the remainder of the course.
We will focus on exponential families.
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The Problem of Point Estimation
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Point Estimation for Parametric Families

Recall our setup:

A random vector X = (X1, ...,Xn)>.

A family of distributions F parametrized by Θ ⊆ Rd , i.e., F = {Fθ : θ ∈ Θ}.
X ∼ Fθ ∈ F.

The Problem of Point Estimation

1 Assume that Fθ is known up to the parameter θ which is unknown.

2 Let (x1, ..., xn)> be a realization of X ∼ Fθ which is available to us.

3 Estimate the value of θ that generates X , given (x1, ..., xn)>.

Aspects considered so far in link with point estimation:

Approximation of the distribution of g(X1, ...,Xn) by letting n ↑ ∞.

Appropriate data reduction by studying the information on θ carried by
g(X1, ..,Xn).

Study of general parametric models.

Today: How do we estimate θ in general? Presentation of some general recipes.
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Point Estimators

Definition (Point Estimator)

Let {Fθ} be a parametric model with parameter space Θ ⊆ Rd and let
X = (X1, ...,Xn)> ∼ Fθ0 for some θ0 ∈ Θ. A point estimator θ̂ of θ0 is a
statistic T : Rn → Θ, whose primary purpose is to estimate θ0.

Therefore any statistic T : Rn → Θ is a candidate estimator!

↪→ Harder to answer what a good estimator is!

Any estimator is of course a random variable.

Hence as a general principle, good should mean:

dist(θ̂) concentrated around θ.

↪→ An infinite-dimensional description of quality.

Look at some simpler measures of quality?
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Concentration around a Parameter

D
ensity

D
ensity
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Bias, Variance and Mean Squared
Error
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Bias and Mean Squared Error

Definition (Bias)

The bias of an estimator θ̂ of θ ∈ Θ is defined to be

bias(θ̂) = Eθ[θ̂]− θ.

Describes how “off” we are from the target on average when employing θ̂.

Definition (Unbiasedness)

An estimator θ̂ of θ ∈ Θ is unbiased if Eθ[θ̂] = θ, i.e., bias(θ̂) = 0.

We will see that not too much weight should be placed on unbiasedness.

Definition (Mean Squared Error)

The mean squared error (MSE) of an estimator θ̂ of θ ∈ Θ ⊆ R is defined
to be

MSE(θ̂) = Eθ
[
(θ̂ − θ)2

]
.
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Bias and Mean Squared Error

Bias and MSE combined provide a coarse but simple description of concentration
around θ:

Bias gives us an indication of the location of dist(θ̂) relative to θ (somehow
assumes that the mean is a good measure of location).

MSE gives us a measure of spread/dispersion of dist(θ̂) around θ.

If θ̂ is unbiased for θ ∈ R then MSE(θ̂) = Var(θ̂).

For Θ ⊆ Rd , MSE(θ̂) := E[‖θ̂− θ‖2], where ‖.‖ denotes the Euclidean norm.

Example

Let X1, ...,Xn
iid∼ N(µ, σ2) and let µ̂ := X . Then

E[µ̂] = µ and MSE(µ̂) = Var(µ̂) =
σ2

n
.

In this case bias and MSE yield a complete description of the concentration of
dist(µ̂) around µ, since µ̂ is Gaussian and hence completely determined by its
mean and its variance.
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The Bias-Variance Decomposition of MSE

Bias-Variance Decomposition for Θ ⊆ R

MSE(θ̂) = Var(θ̂) + bias2(θ̂).

Proof.

We have

E
[(
θ̂ − θ

)2
]

= E
[(
θ̂ − E

[
θ̂
]

+ E
[
θ̂
]
− θ
)2
]

= E
[(
θ̂ − E

[
θ̂
])2

+
(
E
[
θ̂
]
− θ
)2

+ 2
(
θ̂ − E

[
θ̂
])(

E
[
θ̂
]
− θ
)]

= E
[
θ̂ − E

[
θ̂
]]2

+
(
E
[
θ̂
]
− θ
)2
.
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The Bias-Variance Decomposition of MSE

A simple yet fundamental relationship.

Requiring a small MSE does not necessarily require unbiasedeness.

Unbiasedeness is a sensible property, but sometimes biased estimators
perform better than unbiased ones.

Sometimes, better to have a bias/variance tradeoff (e.g., in
non-parametric regression).
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Bias–Variance Tradeoff
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Consistency

We can also consider the quality of an estimator not for a given sample
size, but as the sample size increases.

Consistency

A sequence of estimators {θ̂n}n≥1 of θ ∈ Θ is said to be consistent if

θ̂n
p→ θ.

A consistent estimator becomes increasingly concentrated around the
true value θ as the sample size grows (usually, θ̂n is an estimator
based on n random variables X1, . . . ,Xn).

Often considered as a “must have” property, but . . .

A more detailed understanding of the “asymptotic quality” of θ̂
requires the study of dist[θ̂n] as n ↑ ∞.
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Consistency

Let X1, . . . ,Xn
iid∼ N(0, 1). Plots of X̄n wrt n for 3 different samples.
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The Plug-In Principle
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Plug-In Estimators

We want to find general procedures for constructing estimators. ↪→ Here
we use the definition of a general parameter: a parameter is a function
ν : F → N . Under identifiability ν(Fθ) = q(θ), for some q : Θ→ N .

The Plug-In Principle

Let ν(Fθ) be a parameter of interest for a parametric model {Fθ}θ∈Θ. If
we can construct an estimator F̂ of Fθ using our sample X , then we can
use ν(F̂ ) as an estimator of ν(Fθ). Such an estimator is called a plug-in
estimator.

In practice such a principle is useful when we can explicitly describe
the mapping Fθ 7→ ν(Fθ).

In the case of θ, we are essentially “reversing” our point of view:
viewing θ as a function of Fθ instead of Fθ as a function of θ, and
estimating Fθ instead of θ.

Note here that ν(Fθ) = θ = θ(Fθ) if q is taken to be the identity.
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Parameters as Functionals of F

Examples of “functional parameters”:

The mean: µ(F ) :=

∫ +∞

−∞
xdF (x).

The variance: σ2(F ) :=

∫ +∞

−∞
[x − µ(F )]2dF (x).

The median: med(F ) := inf{x : F (x) ≥ 1/2}.
An indirectly defined parameter θ(F ) such that∫ +∞

−∞
ψ(x − θ(F ))dF (x) = 0.

The density (when it exists) at x0: θ(F ) :=
d

dx
F (x)

∣∣∣∣
x=x0

.
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The Empirical Distribution Function

Plug-in Principle

We need to estimate F . In the case of θ, this principle converts the problem of
estimating θ into the problem of estimating F . But how to estimate F?

Consider the case when X = (X1, . . . ,Xn)> has iid components. Let F be the
distribution function of each Xi . We may define the empirical version of F as

F̂n(x) =
1

n

n∑
i=1

1{Xi ≤ x},

called the empirical distribution function (edf).

It places mass 1/n on each observation.

For any x ∈ R, letting Yi = 1{Xi ≤ x}, i = 1 . . . , n, we have

Y1, . . . ,Yn
iid∼ Bern(F (x)). Thus, the SLLN gives, for any x ∈ R,

F̂n(x)
a.s.−→ F (x).

Suggests using ν(F̂n) as estimator of ν(F ).
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The Empirical Distribution Function

We are actually doing better than just pointwise convergence!

Theorem (Glivenko-Cantelli)

Let X1, . . . ,Xn be independent random variables, distributed according to
F . Then, F̂n(x) = n−1

∑n
i=1 1{Xi ≤ x} converges uniformly to F with

probability 1, i.e.,
sup
x∈R
|F̂n(x)− F (x)| a.s.−→ 0.

Proof.

Assume first that F (x) = x1{0 ≤ x ≤ 1}, i.e, Xi ∼ Unif(0, 1). Fix a
regular finite partition 0 = x1 ≤ x2 ≤ . . . ≤ xm = 1 of [0, 1]; for any
k = 1, . . . ,m, xk+1 − xk = 1/(m − 1). Using the monotonicity of F and
F̂n, it is not too difficult to see that

sup
x
|F̂n(x)− F (x)| < max

k
|F̂n(xk)− F (xk+1)|+ max

k
|F̂n(xk)− F (xk−1)|.
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(proof cont’d)

Adding and subtracting F (xk) within each absolute value and applying the
triangle inequality, we can upper-bound the previous expression by

2 max
k
|F̂n(xk)− F (xk)|+ max

k
|F (xk)− F (xk+1)|+ max

k
|F (xk)− F (xk−1)|︸ ︷︷ ︸

=maxk |xk−xk+1|+maxk |xk−xk−1|= 2
m−1

.

Letting n ↑ ∞, the SLLN implies that the first term vanishes a.s. Since m
is arbitrary, we have for any ε > 0

lim
n→∞

[
sup
x
|F̂n(x)− F (x)|

]
< ε a.s.,

which gives the result when F is the uniform df.

Let now X1, . . . ,Xn
iid∼ F , where F is a general df (here assumed strictly

increasing for simplicity). For i = 1, . . . , n, let Ui = F (Xi ). It is clear that

U1, . . . ,Un
iid∼ Unif(0, 1).
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(proof cont’d).

Letting Ĝn be the edf of U1, . . . ,Un, we have

F̂n(x) = n−1
n∑

i=1

1{Xi ≤ x} = n−1
n∑

i=1

1{Ui ≤ F (x)} = Ĝn(F (x)), a.s.

In other words, F̂n = Ĝn ◦ F , a.s.

Now let A = F (R) ⊆ [0, 1]. From the first part of the proof,

sup
x∈R
|F̂n(x)− F (x)| = sup

t∈A
|Ĝn(t)− t| ≤ sup

t∈[0,1]
|Ĝn(t)− t| a.s.→ 0

since obviously A ⊆ [0, 1].
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Example (Mean of a function)

Consider µh(F ) =
∫ +∞
−∞ h(x)dF (x). A plug-in estimator based on the edf is

µ̂h := µh(F̂n) =

∫ +∞

−∞
h(x)dF̂n(x) =

1

n

n∑
i=1

h(Xi ).

Example (Variance)

Consider now σ2(F ) =
∫ +∞
−∞ (x − µ(F ))2dF (x). Plugging in F̂n gives

σ2(F̂n) =

∫ +∞

−∞
x2dF̂n(x)−

(∫ +∞

−∞
xdF̂n(x)

)2

=
1

n

n∑
i=1

X 2
i −

(
1

n

n∑
i=1

Xi

)2

=
1

n

n∑
i=1

(Xi − X̄n)2.

Exercise

Show that σ2(F̂n) is a biased but consistent estimator for any F .
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Example (Density Estimation)

Let θ(F ) = f (x0), where f is the density of F . The latter satisfies

F (t) =

∫ t

−∞
f (x)dx .

If we tried to plug-in F̂n then our estimator would require differentiation of
F̂n at x0. Clearly, the edf plug-in estimator does not exist since F̂n is a step
function. We will need a “smoother” estimate of F to plug in, e.g.,

F̃n(x) :=

∫ ∞
−∞

G (x − y)dF̂n(y) =
1

n

n∑
i=1

G (x − Xi )

for some continuous df G concentrated closely around 0.

We saw that plug-in estimators are usually easy to obtain via F̂n.

But such estimators are not necessarily as “innocent” as they seem.
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The Moment Principle
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The Method of Moments

Prof. Panaretos: “Perhaps the oldest estimation method (K. Pearson)”.

Method of Moments

Let X1, ...,Xn be an iid sample from Fθ, θ ∈ Rp. The method of moments
(MoM) estimator θ̂ of θ is the solution wrt θ to the p random equations∫ +∞

−∞
xkjdF̂n(x) =

∫ +∞

−∞
xkjdFθ(x), {kj}pj=1 ⊂ N.

In some sense this is a plug-in estimator — we estimate the theoretical
moments by the sample moments in order to then estimate θ.

Useful when exact functional form of θ(F ) unavailable.

While the initially introduced method involves equating moments, it
may be generalized to equating p theoretical functionals to their
empirical analogues. The choice of the functionals can be important.
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Motivational Diversion: The Moment Problem

Theorem

Suppose that F is a distribution determined by its moments. Let {Fn} be a
sequence of distributions such that

∫
xkdFn(x) <∞ for all n and k. Then,

lim
n→∞

∫
xkdFn(x) =

∫
xkdF (x), ∀ k ≥ 1 =⇒ Fn

d→ F .

BUT: Not all distributions are determined by their moments!

Lemma

The distribution of X is determined by its moments, provided that there
exists an open neighbourhood A containing zero such that

MX (u) = E
[
euX
]
<∞, ∀ u ∈ A.
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Example (Exponential Distribution)

Suppose X1, ...,Xn
iid∼ Exp(λ). Then, for any r > 0, E[X r

i ] = λ−rΓ(r + 1). Hence,
we may define a class of estimators of λ depending on r ,

λ̂ =

[
1

nΓ(r + 1)

n∑
i=1

X r
i

]−1/r

.

Then, we need to tune the value of r to get a “best estimator” (will see later . . . ).

Example (Gamma Distribution)

Let X1, ...,Xn
iid∼ Gamma(α, λ). The first two moment equations are

α

λ
=

1

n

n∑
i=1

Xi = X̄ and
α

λ2
=

1

n

n∑
i=1

(Xi − X̄ )2,

yielding the estimators α̂ = X̄ 2/σ̂2 and λ̂ = X̄/σ̂2.
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Example (Discrete Uniform Distribution)

Let X1, ...,Xn
iid∼ Unif{1, 2, ..., θ}, for θ ∈ N. Using the first moment of the

distribution we obtain the equation

X̄ =
1

2
(θ + 1)

yielding the MoM estimator θ̂ = 2X̄ − 1.

A nice feature of MoM estimators is that they generalize to non-iid data.
→ if X = (X1, ...,Xn)> has distribution depending on θ ∈ Rp, one can
choose statistics T1, ...,Tp whose expectations depend on θ:

Eθ[Tk ] = gk(θ),

and then equate
Tk(X ) = gk(θ), k = 1, . . . , p.

→ Important here that Tk is a reasonable estimator of E[Tk ].
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Comments on Plug-In and MoM Estimators

Usually easy to compute and can be valuable as preliminary estimates
for algorithms that attempt to compute better (but not easily
computable) estimates.

Can give a starting point to search for better estimators in situations
where simple intuitive estimators are not available.

Often these estimators are consistent =⇒ corresponding estimates
likely to be close to the true parameter value for large sample size.
Methods of proof for consistency:

↪→ Use empirical process theory for plug-in estimators.
↪→ Estimating equation theory for MoM’s.

Can lead to biased estimators, or even completely ridiculous
estimators (see later).
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Comments on Plug-In and MoM Estimators

The estimate provided by an MoM estimator may /∈ Θ! (Exercise:
show that this can happen with the binomial distribution, with both n
and p unknown).

We will later discuss optimality in estimation, and appropriateness (or
inappropriateness) will become clearer.

Many of these estimators do not depend solely on sufficient statistics.

↪→ Sufficiency seems to play an important role in optimality — and it does
(more later).

We now see a method where estimator depends only on a sufficient
statistic, when such a statistic exists.
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The Likelihood Principle
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The Likelihood Function

A central theme in statistics. Introduced by Ronald Fisher.

Definition (The Likelihood Function)

Let X = (X1, ...,Xn)> be a random vector with density (or frequency
function) f (x ; θ), θ ∈ Θ ⊆ Rp. The likelihood function L(θ) is the random
function

L(θ) = f (X ; θ).

Notice that we consider L as a function of θ and NOT of X .
Interpretation: Most easily interpreted in the discrete case → How
likely does the value θ make what we observed? In the the continuous
case: how likely does θ make a value in a small neighbourhood of
what we observed?
When X has iid coordinates with density f (·; θ), then the likelihood is

L(θ) =
n∏

i=1

f (Xi ; θ).
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Maximum Likelihood Estimators

Definition (Maximum Likelihood Estimators)

Let X = (X1, ...,Xn)> be a random vector from Fθ, and suppose that θ̂ is
such that

L(θ̂) ≥ L(θ), ∀ θ ∈ Θ.

Then θ̂ is called a maximum likelihood estimator (MLE) of θ.

We call θ̂ the maximum likelihood estimator, when it is the unique
maximum of L(θ),

θ̂ = arg max
θ∈Θ

L(θ).

Intuitively, a maximum likelihood estimator chooses that value of θ which
is the most compatible with our observation in the sense that it makes
what we observed most probable. In not-so-mathematical terms, θ̂ is the
value of θ that is most likely to have produced the data.
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Comments on MLEs

Saw that MoM and Plug-In estimators often do not depend only on
sufficient statistics

↪→ they also use too much “irrelevant” information.

If T is a sufficient statistic for θ then the Factorization theorem
implies that

L(θ) = g(T (X ); θ)h(X ) ∝ g(T (X ); θ),

i.e., any MLE depends on the data ONLY through the sufficient statistic.

MLEs are also invariant. If g : Θ→ Θ′ is a bijection, and if θ̂ is the
MLE of θ, then g(θ̂) is the MLE of g(θ).
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Comments on MLEs

When the support of a distribution depends on a parameter,
maximization is usually performed by direct inspection.

For a very broad class of statistical models, the likelihood can be
maximized via differential calculus. If Θ is open, the support of the
distribution does not depend on θ and the likelihood is differentiable,
then the MLE satisfies the log-likelihood equations

∇θ log L(θ) = 0.

Maximizing log L(θ) is equivalent to maximizing L(θ).

When Θ is not open, likelihood equations can be used provided that
we verify that the maximum is not reached on the boundary of Θ.
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Example (Uniform Distribution)

Let X1, ...,Xn
iid∼ Unif(0, θ). The likelihood is

L(θ) = θ−n
n∏

i=1

1{0 ≤ Xi ≤ θ} = θ−n1{θ ≥ X(n)}.

Hence if θ < X(n) the likelihood equals zero and, in the domain [X(n),∞), it is a

decreasing function of θ. Thus, θ̂ = X(n).

Example (Poisson Distribution)

Let X1, ...,Xn
iid∼ Poisson(λ). Then,

L(λ) =
n∏

i=1

{
λXi

Xi !
e−λ

}
, giving log L(λ) = −nλ+ log λ

n∑
i=1

Xi −
n∑

i=1

log(Xi !).

Therefore, ∇λ log L(λ) = −n + λ−1
∑

Xi = 0 we obtain λ̂ = X̄ since
∇2
λ log L(λ) = −λ−2

∑
Xi < 0.
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The Problem of Point Estimation
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Point Estimation for Parametric Families

Recall our setup:

A random vector X = (X1, ...,Xn)>.
A family of distributions F parametrized by Θ ⊆ Rd , i.e.,
F = {Fθ : θ ∈ Θ}.
X ∼ Fθ ∈ F.

The Problem of Point Estimation
1 Assume that Fθ is known up to the parameter θ which is unknown.

2 Let (x1, ..., xn)> be a realization of X ∼ Fθ which is available to us.

3 Estimate the value of θ that generates X , given (x1, ..., xn)>.

Last week, we saw three estimation methods:

The plug-in method.
The method of moments.
The maximum likelihood method.

Today: focus on maximum likelihood. Why does it make sense? What are
the properties of the maximum likelihood estimator?
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Maximum Likelihood Estimators
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Maximum Likelihood Estimators

Recall our definition of a maximum likelihood estimator:

Definition (Maximum Likelihood Estimators)

Let X = (X1, . . . ,Xn)> be a random vector from Fθ, and suppose that θ̂ is
such that

L(θ̂) ≥ L(θ), ∀ θ ∈ Θ.

Then θ̂ is called a maximum likelihood estimator (MLE) of θ.

We call θ̂ the maximum likelihood estimator, when it is the unique
maximum of L(θ). We have

θ̂ = arg max
θ∈Θ

L(θ).

→ θ̂ makes what we observed most probable, or, “most likely” → Makes
sense intuitively. But why should it make sense mathematically?
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Kullback-Leibler Divergence

Definition (Kullback-Leibler Divergence)

Let p(x) and q(x) be two probability density (or frequency) functions on R. The
Kullback-Leibler divergence of q with respect to p is defined as

KL(p‖q) :=

∫ +∞

−∞
p(x) log

(
p(x)

q(x)

)
dx = E

[
log

(
p(X )

q(X )

)]
,

where X has p(x) as density (or frequency) function.

We have KL(p‖p) = 0.

Let X ∼ p(·). By Jensen’s inequality and using the fact that q integrates to 1, we
have

KL(p‖q) = E{− log[q(X )/p(X )]} ≥ − log

{
E
[
q(X )

p(X )

]}
= 0.

p 6= q implies that KL(p‖q) > 0.

=⇒ KL is, in a sense, a distance between probability distributions.
But KL is not a metric: no symmetry and no triangle inequality!
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Relationship with Kullback-Leibler
Divergence
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Likelihood through KL-divergence

Lemma (Maximum Likelihood as Minimum KL-Divergence)

An estimator θ̂ based on an iid sample X1, . . . ,Xn is a MLE if and only if
KL(F̂n‖Fθ̂) ≤ KL(F̂n‖Fθ) for all θ ∈ Θ.

Proof (discrete case).

Let δy be the Dirac measure at y . We recall that
∫
h(x)dF̂n(x) = n−1

∑
h(Xi ), which yields

KL(F̂n‖Fθ) =

∫ +∞

−∞
log

(∑n
i=1 δXi

(x)/n

f (x ; θ)

)
dF̂n(x) =

1

n

n∑
i=1

log

(
n−1

f (Xi ; θ)

)

= −
1

n

n∑
i=1

log n −
1

n

n∑
i=1

log f (Xi ; θ)

= − log n −
1

n
log

(
n∏

i=1

f (Xi ; θ)

)

= − log n −
1

n
log L(θ),

which is minimized wrt to θ iff L(θ) is maximized wrt θ.
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Likelihood through KL-divergence

→ Therefore, maximizing the likelihood is equivalent to choosing the
element of the parametric family {Fθ}θ∈Θ that minimizes the
KL-divergence with the empirical distribution function.
Intuition:

F̂n is (with probability 1) a uniformly good approximation of Fθ0 ,
where θ0 the true parameter, for large n.
=⇒ So Fθ0 is “very close” to F̂n for n large.

So taking the MLE is equivalent to take the “projection” of F̂n into
{Fθ}θ∈Θ as the estimator of Fθ0 . The “projection” is with respect to
the KL-divergence.

Advanced remarks on KL-divergence:

KL(p‖q) measures how likely it would be to distinguish if an
observation X came from q or p given that it came from p.

A related quantity is the entropy of p, defined as −
∫

log(p(x))p(x)dx
which measures the “inherent randomness” of p (how “surprising” an
outcome from p is on average).
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Asymptotic Properties of the MLE
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Asymptotic theory for MLEs

Under what conditions is an MLE consistent?

How does the distribution of θ̂MLE concentrate around θ as n→∞?

In many cases (e.g., when the MLE coincides with an MoM estimator),
this can be seen directly.

Example (Geometric distribution)

Let X1, . . . ,Xn be iid Geometric random variables with frequency function

f (x ; θ) = θ(1− θ)x , x = 0, 1, 2, . . .

It is easy to see that the MLE of θ is

θ̂n =
1

X̄n + 1
.

By the central limit theorem,
√
n
[
X̄n − (θ−1 − 1)

] d→ N(0, θ−2(1− θ)).
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Example (Geometric distribution)

Now applying the delta method with g(x) = 1/(1 + x) and thus g ′(x) = −1/(1 + x)2,
we get √

n
[
g(X̄n)− g(θ−1 − 1)

]
d→ g ′(θ−1 − 1)N(0, θ−2(1− θ)),

and therefore √
n(θ̂n − θ)

d→ N(0, θ2(1− θ)).

Example (Uniform distribution)

Suppose that X1, . . . ,Xn
iid∼ Unif(0, θ). The MLE of θ is

θ̂n = X(n) = max{X1, . . . ,Xn}

and its df is
P[θ̂n ≤ x ] = (x/θ)n1{x ∈ [0, θ]}.

Thus for any ε > 0,

P[|θ̂n − θ| > ε] = P[θ̂n < θ − ε] =

(
θ − ε
θ

)n
n→∞−→ 0,

so that the MLE is a consistent estimator.
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Example (Uniform distribution)

To determine the asymptotic concentration of dist(θ̂n) around θ, we study
the magnified difference n(θ − θ̂n). We have

P[n(θ − θ̂n) ≤ x ] = P
[
θ̂n ≥ θ −

x

n

]
= 1−

(
1− x

θn

)n
n→∞−→ 1− exp(−x/θ),

so that n(θ − θ̂n) weakly converges to an exponential random variable.
Thus we understand the concentration of dist(θ− θ̂n) around zero for large
n as that of an exponential distribution with variance θ2/n2.
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Asymptotic theory for the MLE

From now on, assume that X1, . . . ,Xn are iid with density (frequency)
f (x ; θ), θ ∈ R. Notations:

`(x ; θ) = log f (x ; θ).

`′(x ; θ), `′′(x ; θ) and `′′′(x ; θ) are partial derivatives wrt θ.

Regularity Conditions

(A1) Θ is an open subset of R.

(A2) The support of f , supp f = {x : f (x ; θ) > 0}, is independent of θ.

(A3) f is thrice continuously differentiable wrt θ for all x ∈ supp f .

(A4) Eθ[`′(Xi ; θ)] = 0 ∀θ and Varθ[`′(Xi ; θ)] = I (θ) ∈ (0,∞) ∀θ.

(A5) −Eθ[`′′(Xi ; θ)] = J(θ) ∈ (0,∞) ∀θ.

(A6) ∃ M(x) > 0 and δ > 0 such that Eθ0 [M(Xi )] <∞ and

|θ − θ0| < δ =⇒ |`′′′(x ; θ)| ≤ M(x).
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Asymptotic theory for the MLE

The fact that Θ is open allows any estimator θ̂ to have a symmetric
distribution around the true parameter θ (e.g., Gaussian).

Under (A2) we have, for all θ ∈ Θ,

d

dθ

∫
supp f

f (x ; θ)dx = 0,

so that, if we can interchange integration and differentiation,

0 =

∫
∂

∂θ
f (x ; θ)dx =

∫
`′(x ; θ)f (x ; θ)dx = Eθ[`′(Xi ; θ)].

Hence, if (A2) is satisfied, (A4) can be seen as a condition that
enables one to differentiate once under the integral and states that the
random variable `′(Xi ; θ) has a finite second moment for any θ ∈ Θ.
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Asymptotic theory for the MLE

Similarly, (A5) requires that `′′(Xi ; θ) has a first moment for all θ.

(A2) and (A6) are smoothness conditions that will make the
“linearization” of the problem useful, while (A4) and (A5) will allow
us to “control” the random linearization.

Furthermore, if we can differentiate twice under the integral, we have

0 =

∫
∂

∂θ
[`′(x ; θ)f (x ; θ)]dx

=

∫
`′′(x ; θ)f (x ; θ)dx +

∫
(`′(x ; θ))2f (x ; θ)dx ,

which gives I (θ) = J(θ).
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Example (Exponential Family)

Let X1, . . . ,Xn be iid random variables distributed according to a
one-parameter exponential family

f (x ; θ) = exp{c(θ)T (x)− d(θ) + S(x)}, x ∈ supp f .

It follows that

`′(x ; θ) = c ′(θ)T (x)− d ′(θ),

`′′(x ; θ) = c ′′(θ)T (x)− d ′′(θ).

On the other hand, recall that

Eθ[T (Xi )] =
d ′(θ)

c ′(θ)
,

Varθ[T (Xi )] =
1

[c ′(θ)]2

(
d ′′(θ)− c ′′(θ)

d ′(θ)

c ′(θ)

)
.

Hence Eθ[`′(Xi ; θ)] = c ′(θ)Eθ[T (Xi )]− d ′(θ) = 0.
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Example (Exponential Family)

Furthermore,

I (θ) = [c ′(θ)]2Varθ[T (Xi )]

= d ′′(θ)− c ′′(θ)
d ′(θ)

c ′(θ)
,

and

J(θ) = d ′′(θ)− c ′′(θ)Eθ[T (Xi )]

= d ′′(θ)− c ′′(θ)
d ′(θ)

c ′(θ)
,

so that I (θ) = J(θ).
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Asymptotic Normality of the MLE

Regularity Conditions

(A1) Θ is an open subset of R.

(A2) The support of f , supp f , is independent of θ.

(A3) f is thrice continuously differentiable wrt θ for all x ∈ supp f .

(A4) Eθ[`′(Xi ; θ)] = 0 ∀θ and Varθ[`′(Xi ; θ)] = I (θ) ∈ (0,∞) ∀θ.

(A5) −Eθ[`′′(Xi ; θ)] = J(θ) ∈ (0,∞) ∀θ.

(A6) ∃ M(x) > 0 and δ > 0 such that Eθ0 [M(Xi )] <∞ and

|θ − θ0| < δ =⇒ |`′′′(x ; θ)| ≤ M(x),

where θ0 is the true value of the parameter.
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Asymptotic Normality of the MLE

Theorem (Asymptotic Distribution of the MLE)

Let X1, . . . ,Xn be iid random variables with density (frequency) f (x ; θ) (θ
is the true value of the parameter) and satisfying conditions (A1)-(A6).

Suppose that the sequence of MLEs θ̂n satisfies θ̂n
p→ θ where

n∑
i=1

`′(Xi ; θ̂n) = 0, n = 1, 2, . . .

Then,
√
n(θ̂n − θ)

d→ N
(

0,
I (θ)

J2(θ)

)
.

When I (θ) = J(θ), we have of course
√
n(θ̂n − θ)

d→ N (0, 1/I (θ)).
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Why I−1(θ)? Curvature!
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Why I−1(θ)? Curvature!
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Proof.

Under Conditions (A1)–(A3), if θ̂n maximizes the likelihood, then

n∑
i=1

`′(Xi ; θ̂n) = 0.

Expanding this equation in a Taylor series (centered on the true parameter
θ), we get

0 =
n∑

i=1

`′(Xi ; θ̂n) =
n∑

i=1

`′(Xi ; θ) + (θ̂n − θ)
n∑

i=1

`′′(Xi ; θ)

+
1

2
(θ̂n − θ)2

n∑
i=1

`′′′(Xi ; θ
∗
n),

with θ∗n lying between θ and θ̂n.
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(proof cont’d)

Dividing accross by
√
n yields

0 =
1√
n

n∑
i=1

`′(Xi ; θ) +
√
n(θ̂n − θ)

1

n

n∑
i=1

`′′(Xi ; θ)

+
1

2

√
n(θ̂n − θ)2 1

n

n∑
i=1

`′′′(Xi ; θ
∗
n),

which gives that
√
n(θ̂n − θ) equals

−n−1/2
∑n

i=1 `
′(Xi ; θ)

n−1
∑n

i=1 `
′′(Xi ; θ) + (θ̂n − θ)(2n)−1

∑n
i=1 `

′′′(Xi ; θ∗n)
.

Now, from (A4) and the CLT, it follows that

1√
n

n∑
i=1

`′(Xi ; θ)
d→ N (0, I (θ)).
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(proof cont’d)

Next, the WLLN along with (A5) implies

1

n

n∑
i=1

`′′(Xi ; θ)
p→ −J(θ).

Now we show that the remainder vanishes in probability, i.e.,

Rn = (θ̂n − θ)
1

2n

n∑
i=1

`′′′(Xi ; θ
∗
n)

p→ 0.

Since θ̂n − θ
p→ 0, this only requires us to prove that 1

2n

∑n
i=1 `

′′′(Xi ; θ
∗
n) is

bounded.

Erwan Koch (EPFL) Statistical Theory (Week 6) 26 / 34



(proof cont’d)

We want to use condition (A6), which only holds if |θ∗n − θ| ≤ δ. First,

|θ∗n − θ| ≤ |θ̂n − θ|
p→ 0, we have P(|θ∗n − θ| < δ)

n→∞−→ 1. It easily follows from (A6) that

P

(
n∑

i=1

∣∣`′′′(Xi ; θ
∗
n )
∣∣ ≤ n∑

i=1

M(Xi )

)
n→∞−→ 1.

By the WLLN,

1

2n

n∑
i=1

M(Xi )
p→ Eθ[M(x)]/2 <∞.

At this point, we would like to use Slutsky’s theorem to conclude that

Rn = (θ̂n − θ)
1

2n

n∑
i=1

`′′′(Xi ; θ
∗
n )

p→ 0× Eθ[M(x)]/2 = 0,

but we cannot really do that because we only have that the second term is bounded
with probability tending to one.
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(proof cont’d).

Instead, we use the facts that

P

(
|Rn| ≤ |θ̂n − θ|

1

2n

n∑
i=1

M(Xi )

)
n→∞−→ 1,

and, from Slutsky’s theorem, that

|θ̂n − θ|
1

2n

n∑
i=1

M(Xi )
p→ 0.

Now, observe that if Yn and Zn are sequences of random variables such that
P(|Yn| ≤ Zn)

n→∞−→ 1 and Zn
p→ 0, then Yn

p→ 0. Indeed, for ε > 0, we have

P(|Yn| > ε) = P(|Yn| > ε, |Yn| ≤ Zn) + P(|Yn| > ε, |Yn| > Zn)

≤ P(|Yn| > ε, |Yn| ≤ Zn) + P(|Yn| > Zn)

≤ P(Zn > ε) + P(|Yn| > Zn)
n→∞−→ 0.

Consequently, we conclude that Rn
p→ 0.

Finally, applying Slutsky’s theorem, the continuous mapping theorem and again
Slutsky’s theorem, yields the result.
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Consistency of the MLE

CRITICALLY!!! The previous theorem assumes that the MLE is consistent and
proves that it is then asymptotically Gaussian. Proving consistency can be very
hard/frustrating!

Consider the random function

φn(t) =
1

n

n∑
i=1

[log f (Xi ; t)− log f (Xi ; θ)],

which is maximized at t = θ̂n. By the WLLN, for each t ∈ Θ,

φn(t)
p→ φ(t) = E

[
log

(
f (Xi ; t)

f (Xi ; θ)

)]
,

which is minus the KL-divergence KL(f (·; θ)‖f (·; t)).

The latter is minimized when t = θ and so φ(t) is maximized at t = θ.
Furthermore, φ(θ) = 0.

Moreover, unless f (x ; t) = f (x ; θ) for all x ∈ supp f , we have φ(t) < 0.

Since we are assuming identifiability, it follows that φ is uniquely maximized
at θ.
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Consistency of the MLE

Does the fact that φn(t)
p→ φ(t) ∀t, with φn maximized at θ̂n and φ

maximized uniquely at θ, imply that θ̂n
p→ θ? Unfortunately, the answer is

in general no.

Example (A Deterministic Example)

Define φn(t) =


1− n|t − n−1| for 0 ≤ t ≤ 2/n,

1/2− |t − 2| for 3/2 ≤ t ≤ 5/2,

0 otherwise.
It is easy to see that φn → φ pointwise, with

φ(t) =
[

1
2 − |t − 2|

]
1{3/2 ≤ t ≤ 5/2}.

But now note that φn is maximized at tn = n−1 with φn(tn) = 1 for all n.
On the other hand, φ is maximized at t0 = 2.
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More assumptions are needed on the φn(t)!

Theorem

Suppose that {φn(t)} and φ(t) are real-valued random functions defined on the
real line. Suppose that

1 For each M > 0, sup|t|≤M |φn(t)− φ(t)| p→ 0.

2 Tn maximizes φn(t) and T0 is the unique maximizer of φ(t).

3 For any ε > 0, there exists Mε such that P[|Tn| > Mε] < ε for all n.

Then, Tn
p→ T0.

If all the φn and φ are concave, we can considerably weaken the assumptions.

Theorem

Suppose that {φn(t)} and φ(t) are random concave functions defined on the real
line. Suppose that

1 φn(t)
p→ φ(t) for all t.

2 Tn maximizes φn and T0 is the unique maximizer of φ.

Then, Tn
p→ T0.
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Example (Exponential Families)

Let X1, . . . ,Xn be iid random variables from a one-parameter exponential
family

f (x ; θ) = exp{c(θ)T (x)− d(θ) + S(x)}, x ∈ suppf .

The MLE of θ maximizes

φn(t) =
1

n

n∑
i=1

[c(t)T (Xi )− d(t)].

If c(·) is continuous and 1-1 with inverse c−1(·), we can define u = c(t)
and consider

φ∗n(u) =
1

n

n∑
i=1

[uT (Xi )− d0(u)],

where d0(u) = d(c−1(u)). For any n, φ∗n is concave since
(φ∗n)′′(u) = −d ′′0 (u), which is negative (as d ′′0 (u) can be written as a
variance, see Week 4).
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Example (Exponential Families)

Now, by the WLLN, for each u, we have

φ∗n(u)
p→ uE[T (X1)]− d0(u) = φ∗(u).

Furthermore, φ∗(·) is concave and φ∗(u) is maximized when
d ′0(u) = E[T (X1)]. But since (see Week 4)

E[T (X1)] = d ′0(c(θ)),

φ∗ is maximized when d ′0(u) = d ′0(c(θ)). The condition holds if we set
u = c(θ), so c(θ) is a maximizer of φ∗. By concavity, it is its unique
maximizer.
Now, as θ̂n maximizes φn, c(θ̂n) maximizes φ∗n. Hence, the previous

theorem yields that c(θ̂n)
p→ c(θ). But as c(·) is 1-1 and continuous,

c−1(·) is continuous and thus the continuous mapping theorem implies

θ̂n
p→ θ.
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Summary

We studied the sampling distribution of the MLE in detail.

Under some fairly mild assumptions, if the MLE is consistent, then it
is asymptotically Gaussian.

Provided I (θ) = J(θ) (which happens very frequently), its asymptotic
variance depends on the inverse of the Fisher information I (θ). We
will see later why we distinguished between I (θ) and J(θ).

The asymptotic variance decreases in 1/n.

The most difficult problem is to prove the consistency of the MLE. A
sufficient condition is the log-likelihood being concave. This typically
occurs in exponential families if we work with the natural parameters.
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Maximum Likelihood Estimators

Recall our definition of a maximum likelihood estimator:

Definition (Maximum Likelihood Estimators)

Let X = (X1, ...,Xn)> be a random sample from Fθ, and suppose that θ̂ is
such that

L(θ̂) ≥ L(θ), ∀ θ ∈ Θ.

Then θ̂ is called a maximum likelihood estimator (MLE) of θ.

Last week, we saw that, under regularity conditions, the distribution of a
consistent sequence of MLEs converges weakly to the normal distribution
centred around the true parameter value. Today, we focus on the following
issues:

Consistent likelihood equation roots.

Newton-Raphson and “one-step” estimators.

The multivariate parameter case.

What happens if the model has been mis-specified?
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Consistent Roots of the Likelihood
Equations
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Consistent Likelihood Roots

Theorem

Let {f (·; θ)}θ∈R be an identifiable parametric class of densities
(frequencies) and let X1, ...,Xn be iid random variables each having density
f (x ; θ0). If the support of f (·; θ) is independent of θ,

P[L(θ0|X1, . . . ,Xn) > L(θ|X1, . . . ,Xn)]
n→∞−→ 1

for any fixed θ 6= θ0.

Therefore, with high probability, the likelihood of the true parameter
exceeds the likelihood of any other choice of parameter, provided that
the sample size is large.

This indicates that extrema of L(θ; X ) should have something to do
with θ0 (even though we saw that without further assumptions, a
maximizer of L is not necessarily consistent).
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Proof.

We introduce the notation Xn = (X1, . . . ,Xn)>. We have

L(θ0|Xn) > L(θ|Xn) ⇐⇒ 1

n

n∑
i=1

log

[
f (Xi ; θ)

f (Xi ; θ0)

]
< 0.

Now, by the WLLN,

1

n

n∑
i=1

log

[
f (Xi ; θ)

f (Xi ; θ0)

]
p→ E

{
log

[
f (X ; θ)

f (X ; θ0)

]}
= −KL(fθ0‖fθ),

which is zero only at θ0 and negative everywhere else.
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Consistent Sequences of Likelihood Roots

Theorem (Cramér)

Let {f (·; θ)}θ∈R be an identifiable parametric class of densities (or frequencies),
and Θ open. Let X1, . . . ,Xn be iid random variables each having density f (x ; θ0).
Assume that the support of f (·; θ) is independent of θ and that f (x ; θ) is
differentiable with respect to θ for (almost) all x. Then, there exists a sequence
of random variables ξn such that

`′(X1, . . . ,Xn; ξn) = 0, ∀ n ≥ 1,

and
ξn

p→ θ0.

In other words, there exists a sequence of roots of the likelihood equations
that is consistent for θ0.

In general ξn is not a statistic (and so not an estimator), since
ξn = g(X1, ...,Xn; θ0) — we need to know the true θ0 in order to choose
which of the likelihood roots to select as our ξn for a given sample
(X1, . . . ,Xn)>.
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Proof.

Let α > 0 be sufficiently small so that (θ0 − α, θ0 + α) ⊂ Θ, and define the set

Sn(α, θ0) :=
{
x ∈ Rn : `(x; θ0) > `(x; θ0 − α) & `(x; θ0) > `(x; θ0 + α)

}
.

If x ∈ Sn(α, θ0), by continuity of ` there exists at least one local maximum of
`(x ; θ) in (θ0 − α, θ0 + α), and hence at least one t ∈ (θ0 − α, θ0 + α) such that
`′(x; t) = 0. Define ξ̃(x, α, θ0) to be the closest local maximum to θ0 when
x ∈ Sn(α, θ0) and 0 if x /∈ Sn(α, θ0).

Now, by our previous theorem, there existsa αn ↓ 0 such that
Pθ0 [X ∈ Sn(αn, θ0)]

n→∞−→ 1. Set ξn = ξ̃(x, αn, θ0) and take δ > 0. Then, for n
sufficiently large (so that αn < δ), we have

Pθ0 [|ξn − θ0| < δ] ≥ Pθ0 [|ξn − θ0| < αn] ≥ Pθ0 [X ∈ Sn(αn, θ0)],

as X ∈ Sn(αn, θ0) =⇒ |ξn − θ0| < αn. This completes the proof as

Pθ0 [X ∈ Sn(αn, θ0)]
n→∞−→ 1.

aExercise: show this using the same trick as with the Ky-Fan definition of
p→.
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Corollary (Consistency of Unique Solutions)

Under the assumptions of the previous theorem, if the likelihood equation
has a unique root ξn for each n and all x, then ξn is a valid estimator and
is consistent for θ0.

The statement remains true if the uniqueness requirement is
substituted with the requirement that the probability of multiple roots
tends to zero as n→∞.

The statement does not claim that the root corresponds to a
maximum: it merely requires that we have a root.

On the other hand, even when the root is unique, the corollary says
nothing about its properties for finite n.

Example (Minimum Likelihood Estimation)

Let X take the values 0, 1, 2 with probabilities 6θ2 − 4θ + 1, θ − 2θ2 and
3θ − 4θ2 (θ ∈ (0, 1/2)). Then, the likelihood equation has a unique root
for all x , which is a minimum for x = 0 and a maximum for x = 1, 2.
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Consistent Sequences of Likelihood Roots

Cramér’s theorem does not tell us which root to choose, so not useful in practice.

The easiest case is when the root is unique!

Otherwise, we need some “external help” (non-MLE help). . .

Fortunately, if some “good” estimator is already available, then . . .

Lemma
Let αn be any consistent sequence of estimators of the true parameter θ. For each n, let
θ∗n denote the root of the likelihood equations that is the closest to αn. Then, under the
assumptions of Cramér’s theorem, θ∗n

p→ θ.

Exercise: prove the lemma.

Therefore, when the likelihood equations do not have a single root, we may still

choose a root based on some estimator that is readily available.

↪→ Only requires that the estimator used is consistent.
↪→ Often the case with Plug-In or MoM estimators.

Very often, the roots are not available in closed form. In these cases, an iterative
approach is required to approximate them.
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Approximate Solution of the
Likelihood Equations
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The Newton-Raphson Algorithm

We wish to solve the equation

`′(θ) = 0.

Assuming that θ̃ is close to a root θ̂ (which is perhaps a consistent
estimator), a second-order Taylor expansion yields

0 = `′(θ̂) ' `′(θ̃) + (θ̂ − θ̃)`′′(θ̃),

which gives

θ̂ ' θ̃ − `′(θ̃)

`′′(θ̃)
.

The procedure can then be iterated by replacing θ̃ by the right hand side
of the above relation. In principle, each iteration improves the finite
sample accuracy of the estimator. But in terms of asymptotic behaviour, a
single iteration suffices!
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Construction of Asymptotically MLE-like Estimators

Theorem

Suppose that Assumptions (A1)–(A6) hold and let θ̃n be a consistent estimator of θ0

such that
√
n(θ̃n − θ0) is bounded in probability (i.e., θ̃n is a

√
n−consistent estimator).

Then, the sequence of estimators

δn = θ̃n − `′(θ̃n)/`′′(θ̃n)

satisfies √
n(δn − θ0)

d→ N (0, I (θ)/J(θ)2).

With a single Newton-Raphson step, we may obtain an estimator (the so-called
“one-step” estimator) that, asymptotically, behaves like a consistent MLE
(provided that we start with a

√
n−consistent estimator).

The “one-step” estimator does not necessarily behave like an MLE for finite n!

The one-step δn satisfies the conditions of the theorem (i.e., is consistent and
bounded in probability). Hence iterating to get ζn = δn − `′(δn)/`′′(δn) also leads
to the same conclusion.
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Proof.

A Taylor expansion around the true value, θ0, yields

`′(θ̃n) = `′(θ0) + (θ̃n − θ0)`′′(θ0) + 1
2 (θ̃n − θ0)2`′′′(θ∗n),

where θ∗n between θ0 and θ̃n. Substituting this expression into the
definition of δn yields

√
n(δn − θ0) =

(1/
√
n)`′(θ0)

−(1/n)`′′(θ̃n)
+
√
n(θ̃n − θ0)

×
[

1− `′′(θ0)

`′′(θ̃n)
− 1

2
(θ̃n − θ0)

`′′′(θ∗n)

`′′(θ̃n)

]
.

Exercise

Use CLT/LLN/Slutsky to complete the proof. Hint: by Taylor expansion,

1
n`
′′(θ̃n) = 1

n

∑
i `
′′(Xi ; θ̃n) = 1

n

∑
i `
′′(Xi ; θ0) + (θ̃n − θ0) 1

n

∑
i `
′′′(Xi ; θ0).
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The Multiparameter Case
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The Multiparameter Case

→ Extension of asymptotic results to multiparameter models easy under
similar assumptions, but notationally cumbersome. → Same ideas: the
MLE will be a zero of the likelihood equations

n∑
i=1

∇`(Xi ;θ) = 0

A Taylor expansion can be formed

0 =
1√
n

n∑
i=1

∇`(Xi ;θ) +

(
1

n

n∑
i=1

∇2`(Xi ;θ
∗
n)

)
√
n(θ̂n − θ).

Under regularity conditions we should have

1√
n

∑n
i=1∇`(Xi ;θ)

d→ Np(0,Cov[∇`(Xi ;θ)]).

1
n

∑n
i=1∇2`(Xi ;θ

∗
n)

p→ E[∇2`(Xi ;θ)].
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The Multiparameter Case

Regularity Conditions

(B1) The parameter space Θ ∈ Rp is open.

(B2) The support of f (·;θ), supp f (·;θ), is independent of θ.

(B3) All mixed partial derivatives of ` wrt θ up to degree 3 exist and are
continuous.

(B4) E[∇`(Xi ;θ)] = 0 ∀θ and Cov[∇`(Xi ;θ)] =: I (θ) � 0 ∀θ.

(B5) −E[∇2`(Xi ;θ)] =: J(θ) � 0 ∀θ.

(B6) ∃δ > 0 s.t. ∀θ ∈ Θ and for all 1 ≤ j , k , l ≤ p,∣∣∣∣ ∂

∂θj∂θk∂θl
`(x ; u)

∣∣∣∣ ≤ Mjkl(x)

for ‖θ − u‖ ≤ δ with Mjkl such that E[Mjkl(Xi )] <∞.

The interpretation of these conditions is the same as in the
one-dimensional case.
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The Multiparameter Case

Theorem (Asymptotic Normality of the MLE)

Let X1, . . . ,Xn be iid random variables with density (frequency) f (x ;θ),
satisfying conditions (B1)-(B6). If θ̂n = θ̂(X1, . . . ,Xn) is a consistent
sequence of MLEs, then

√
n(θ̂n − θ)

d→ Np(0, J−1(θ)I (θ)J−1(θ)).

The theorem remains true if each Xi is a random vector.

The proof mimics that of the one-dimensional case.
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Misspecified Models and Likelihood
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Misspecification of Models

Statistical models are typically merely approximations to reality.

George P. Box: “All models are wrong, but some are useful.”

As worrying as this may seem, it may not be a problem in practice.

Often the model is wrong, but is “close enough” to the true situation.

Even if the model is wrong, the parameters often admit a fruitful
interpretation in the context of the problem.

Example

Let X1, . . . ,Xn
iid∼ Exp(λ). However, assume that we decide that the

appropriate model for our data is given by the two-parameter family of
densities

f (x ;α, θ) =
α

θ

(
1 +

x

θ

)−(α+1)
, x > 0,

where α and θ are positive unknown parameters to be estimated.
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Example (cont’d)

Notice that the exponential distribution is not a member of this
parametric family.

However, letting α, θ →∞ such that α/θ → λ, we have

f (x ;α, θ)→ λ exp(−λx).

Thus, we may approximate the true model from within this class.
Reasonable α̂ and θ̂ will yield a density “close” to the true density.

Example

Let X1, . . . ,Xn be independent random variables with variance σ2 and
mean

E[Xi ] = α + βti .

If we assume that the Xi are normal when they are in fact not, the MLEs
of the parameters α, β, σ2 remain good (in fact optimal in a sense) for the
true parameters (Gauss-Markov theorem).
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Misspecified Models and Likelihood

The Framework

X1, . . . ,Xn are iid random variables with distribution function F and
density (or frequency) function g .

We build a MLE assuming that the Xi admit a density in
{f (x ; θ)}θ∈Θ.

The true density g does not correspond to any of the {fθ}.

Let θ̂n be a root of the likelihood equation,

n∑
i=1

`′(Xi ; θ̂n) = 0,

where the log-likelihood `(θ) is wrt f (·; θ).

What exactly is θ̂n estimating?

What is the behaviour of the sequence {θ̂n}n≥1 as n→∞?
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Misspecified Models and Likelihood

Consider the functional parameter θ(F ) defined by∫ +∞

−∞
`′(x ; θ(F ))dF (x) = 0.

Then, the plug-in estimator of θ(F ) when using the edf F̂n as an estimator
of F is given by solving∫ +∞

−∞
`′(x ; θ(F̂n))dF̂n(x) = 0 ⇐⇒

n∑
i=1

`′(Xi ; θ̂n) = 0,

so that the MLE is a plug-in estimator of θ(F ).
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Model Misspecification and the Likelihood

Theorem

Let X1, ...,Xn
iid∼ F and let θ̂n be a random variable solving the equation∑n

i=1 `
′(Xi ; θ) = 0 for θ in the open set Θ. Assume that

(a) `′ is a strictly monotone function on Θ for each x.

(b)
∫ +∞
−∞ `′(x ; θ)dF (x) = 0 has a unique solution θ = θ(F ) on Θ.

(c) I (F ) :=
∫ +∞
−∞ [`′(x ; θ(F ))]2dF (x) <∞.

(d) J(F ) := −
∫ +∞
−∞ `′′(x ; θ(F ))dF (x) <∞.

(e) |`′′′(x ; t)| ≤ M(x) for t ∈ (θ(F )− δ, θ(F ) + δ), some δ > 0 and∫ +∞
−∞ M(x)dF (x) <∞.

Then
θ̂n

p→ θ(F )

and √
n(θ̂n − θ(F ))

d→ N (0, I (F )/J2(F )).
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Proof.

Assume without loss of generality that `′(x ; θ) is strictly decreasing in θ.
Let ε > 0 and observe that

P[|θ̂n − θ(F )| > ε] = P
[{
θ̂n − θ(F ) > ε

}
∪
{
θ(F )− θ̂n > ε

}]
≤ P

[{
θ̂n − θ(F ) > ε

}]
+ P

[{
θ(F )− θ̂n > ε

}]
.

By our monotonicity assumption, we have

θ̂n − θ(F ) > ε =⇒ θ(F ) + ε < θ̂n =⇒ 1

n

n∑
i=1

`′(Xi ; θ(F ) + ε) > 0

because θ̂n is the solution to the equation 1
n

∑n
i=1 `

′(Xi ; θ) = 0.
Similarly,

θ(F )− θ̂n > ε =⇒ θ(F )− ε > θ̂n =⇒ 1

n

n∑
i=1

`′(Xi ; θ(F )− ε) < 0.
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Hence P[|θ̂n − θ(F )| > ε] ≤ P
[

1

n

n∑
i=1

`′(Xi ; θ(F ) + ε) > 0

]

+ P
[

1

n

n∑
i=1

`′(Xi ; θ(F )− ε) < 0

]
.

We may re-write the first term on the right-hand side as

P
[

1

n

n∑
i=1

`′(Xi ; θ(F ) + ε) > 0

]
= P

[
1

n

n∑
i=1

`′(Xi ; θ(F ) + ε)

−
∫ ∞
−∞

`′(x ; θ(F ) + ε)dF (x) > −
∫ ∞
−∞

`′(x ; θ(F ) + ε)dF (x)

]
.

We will show that this probability converges to zero. Define

Wn = 1
n

∑n
i=1 `

′(Xi ; θ(F ) + ε)−
∫∞
−∞ `

′(x ; θ(F ) + ε)dF (x)

κ = −
∫∞
−∞ `

′(x ; θ(F ) + ε)dF (x).
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First of all, we claim that κ > 0. To see this, note that (a) implies that

−`′(x ; θ(F )) < −`′(x ; θ(F ) + ε), ∀x

=⇒ −
∫ ∞
−∞

`′(x ; θ(F ))dF (x) < −
∫ ∞
−∞

`′(x ; θ(F ) + ε)dF (x).

since θ(F ) < θ(F ) + ε. So κ > 0 since LHS is zero by assumption (b). By
assumption (c) we can use the WLLN to conclude that

1

n

n∑
i=1

`′(Xi ; θ(F ) + ε)
p−→
∫ ∞
−∞

`′(x ; θ(F ) + ε)dF (x).

and, by Slutsky’s theorem we conclude that

Wn
p→ 0.

By definition of convergence in probability, and since κ > 0, we conclude

P[Wn > κ] ≤ P [{Wn > κ} ∪ {−Wn > κ}] = P[|Wn| > κ]
n→∞−→ 0.
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Similar arguments give

P

[
1

n

n∑
i=1

`′(Xi ; θ(F )− ε) < 0

]
→ 0

and thus
θ̂n

p−→ θ(F ).

Expanding the equation that defines the estimator in a Taylor series, gives

0 =
1√
n

n∑
i=1

`′(Xi ; θ̂n) =
1√
n

n∑
i=1

`′(Xi ; θ(F )) +

+
√
n(θ̂n − θ(F ))

1

n

n∑
i=1

`′′(Xi ; θ(F ))

+
√
n(θ̂n − θ(F ))2 1

2n

n∑
i=1

`′′′(Xi ; θ
∗
n).

Erwan Koch (EPFL) Statistical Theory (Week 7) 28 / 31



Here, θ∗n lies between θ(F ) and θ̂n.

Exercise: complete the proof by mimicking the proof of asymptotic
normality of MLEs.

The result extends immediately to the multivariate parameter case.

Notice that the proof is essentially identical to MLE asymptotics
proof.

The difference is the first part, where we show consistency.

This is where assumptions (a) and (b) come in.

These can be replaced by any set of assumptions yielding consistency.
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Model Misspecification and the Likelihood

What is the interpretation of the parameter θ(F ) in the misspecified setup?

Suppose that F has density (frequency) g and assume that
integration/differentiation may be interchanged:∫ +∞

−∞

d

dθ
log f (x ; θ)dF (x) = 0 ⇐⇒ d

dθ

∫ +∞

−∞
log f (x ; θ)dF (x) = 0

⇐⇒ d

dθ

[∫ +∞

−∞
log f (x ; θ)dF (x)−

∫ +∞

−∞
log g(x)dF (x)

]
= 0

⇐⇒ d

dθ
KL(g(x)‖f (x ; θ)) = 0

We are minimizing the KL-distance between the true model F and
our model.

Hence we may intuitively think of the θ(F ) as the element of Θ for
which fθ is “closest” to g in the KL-sense.
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Summary

Last week, we talked about the MLE which is asymptotically Gaussian
if it is consistent. Consistency proved slightly hard to study.

This week, we showed that by adding a small Newton-Raphson
correction to a

√
n-consistent estimator θ̂, we obtain a true estimator

that is
√
n-consistent and asymptotically Gaussian.

We also considered what happens when the true model is not inside
our parametric family:

We are trying to infer the best approximation of the truth inside our
model class, given by θ(F ).
Up to possible issues of consistency, the MLE correctly recovers θ(F )
and is asymptotically Gaussian.
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1 Statistics as a Random Game

2 Risk of a Decision Rule

3 Admissibility and Inadmissibility

4 Minimax Rules

5 Bayes Rules

6 Randomized Rules
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Statistics as a Random Game
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Statistics as a Random Game?

Nature and a statistician decide to play a game. What’s in the box?

A family of distributions F, usually assumed to admit densities (or
frequencies). This is the variant of the game we decide to play.

A parameter space Θ ⊆ Rp which parametrizes the family, i.e.,
F = {Fθ}θ∈Θ. This represents the space of possible
plays/moves available to Nature.

A data space X , on which the parametric family is supported. This
represents the space of possible outcomes following a play by Nature.

An action space A, which represents the space of possible actions or
decisions or plays/moves available to the statistician.

A loss function L : Θ×A → R+. This represents how much
the statistician has to pay nature when losing.

A set D of decision rules. Any δ ∈ D is a (measurable) function
δ : X → A. All these decision rules represent the possible strategies
available to the statistician.
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Statistics as a Random Game?

How the game is played:

First we agree on the rules of the game:
1 We fix a parametric family {Fθ}θ∈Θ.
2 We fix an action space A.
3 We fix a loss function L.

Then we play:
1 Nature selects (plays) θ0 ∈ Θ.
2 The statistician observes X ∼ Fθ0 .
3 The statistician plays δ(X ) ∈ A in response.
4 The statistician has to pay Nature L(θ0, δ(X )).

Framework proposed by A. Wald in 1939. Encompasses three basic
statistical problems:

Point estimation.

Interval estimation.

Hypothesis testing.
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Point Estimation as a Game

In the problem of point estimation we have:

1 A fixed parametric family {Fθ}θ∈Θ.

2 A fixed action space A = Θ.

3 A fixed loss function L(θ, α); e.g., ‖θ − α‖2.

The game now evolves simply as:

1 Nature picks θ0 ∈ Θ.

2 The statistician observes X ∼ Fθ0 .

3 The statistician plays δ(X ) ∈ A = Θ.

4 The statistician loses L(θ0, δ(X )).

Notice that in this setup, δ is an estimator (it is a statistic X → Θ).

The statistician always loses.
↪→ Is there a good strategy δ ∈ D for the statistician to restrict his losses?
↪→ Is there an optimal strategy?
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Risk of a Decision Rule
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Risk of a Decision Rule

The statistician would like to choose a strategy δ so as to minimize his
losses. But losses are random since they depend on X .

Definition (Risk)

Given a parameter θ ∈ Θ, the risk of a decision rule δ : X → A is the
expected loss incurred when employing δ: R(θ, δ) = Eθ [L(θ, δ(X ))] .

Key notion of decision theory

Decision rules should be compared by comparing their risk functions.

Example (Mean Squared Error)

In point estimation, the mean squared error

MSEθ(δ(X )) = Eθ
[
‖θ − δ(X )‖2

]
is the risk corresponding to a squared error loss function.
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Coin Tossing Revisited

Consider the “coin tossing game” with squared error loss:

Nature picks θ ∈ [0, 1].

We observe n variables Xi
iid∼ Bern(θ).

The action space is A = [0, 1].

The loss function is L(θ, α) = (θ − α)2.

We consider 3 different decision rules {δj}j=1,2,3:

1 δ1(X ) = 1
n

∑n
i=1 Xi .

2 δ2(X ) = X1.

3 δ3(X ) = 1/2.

Let us compare these using their associated risks as benchmarks.

Erwan Koch (EPFL) Statistical Theory (Week 8) 9 / 31



Coin Tossing Revisited

We consider the risks associated with the different decision rules:

Rj(θ) = R(θ, δj(X )) = Eθ
[
(θ − δj(X ))2

]
, j = 1, 2, 3.

We easily obtain

R1(θ) = 1
nθ(1− θ).

R2(θ) = θ(1− θ).

R3(θ) =
(
θ − 1

2

)2
.
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Coin Tossing Revisited – Every dog has its day
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Admissibility and Inadmissibility
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Inadmissible Decision Rules

Definition (Inadmissible Decision Rule)

Let δ be a decision rule for the experiment ({Fθ}θ∈Θ,L). If there exists a
decision rule δ∗ that strictly dominates δ, i.e.,

R(θ, δ∗) ≤ R(θ, δ), ∀θ ∈ Θ & ∃ θ′ ∈ Θ : R(θ′, δ∗) < R(θ′, δ),

then δ is called an inadmissible decision rule.

An inadmissible decision rule is a “silly” strategy since we can find a
strategy that always does at least as well and sometimes better.

However “silly” is with respect to L and Θ. It may be that our choice
of L is “silly”!!!

If we change the rules of the game (i.e., different loss function or
different parameter space) then domination may break down.

For example, R2(θ) is inadmissible as R2(θ)>R1(θ) for any θ ∈ (0, 1),
R2(0) = R1(0) = 0 and R2(1) = R1(1) = 0.
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Inadmissible Decision Rules

Example (Exponential Distribution)

Let X1, . . . ,Xn
iid∼ Exp(λ), n ≥ 2. It is easy to see that the MLE of λ is

λ̂ = 1/X̄n,

where X̄n is the empirical mean. It can be shown that

Eλ[λ̂] =
nλ

n − 1
,

which yields that λ̃ = (n − 1)λ̂/n is an unbiased estimator of λ. Observe
now that

MSEλ(λ̃) < MSEλ(λ̂)

since λ̃ is unbiased and Varλ(λ̃) < Varλ(λ̂). Hence the MLE is an
inadmissible rule for the squared error loss.
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Inadmissible Decision Rules

Example (Exponential Distribution)

The parameter space in this example is (0,∞), in which case a quadratic loss tends to
penalize over-estimation more heavily than under-estimation (the maximum possible
under-estimation is bounded!). Taking a different loss function might change the result!
Now, instead, we consider the loss function

L(a, b) = a/b − 1− log(a/b),

which satisfies, for each fixed a, limb→0 L(a, b) = limb→∞ L(a, b) =∞. Now, using the
fact that

nλX̄n

n − 1
= λX̄n +

λX̄n

n − 1
,

we obtain, for n > 1,

R(λ, λ̃) = Eλ
[
nλX̄n

n − 1
− 1− log

(
nλX̄n

n − 1

)]
= Eλ

[
λX̄n − 1− log(λX̄n)

]︸ ︷︷ ︸
R(λ,λ̂)

+
Eλ(λX̄n)

n − 1
− log

(
n

n − 1

)
︸ ︷︷ ︸

g(n)

.
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Example (Exponential Distribution)

As Eλ[X̄n] = λ−1, we have

g(n) =
1

n − 1
− log

(
n

n − 1

)
.

We claim that g(n) > 0 for n ≥ 2. Indeed, this is true if, for any x ≥ 1,

1

x
> log(x + 1)− log x , i.e.,

1

x
>

∫ x+1

x

1

t
dt,

which obviously holds as, for t ∈ (x , x + 1), 1/x > 1/t. Consequently,
R(λ, λ̃) > R(λ, λ̂) and λ̂ strictly dominates λ̂.
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Criteria for Choosing Decision Rules

Definition (Admissible Decision Rule)

A decision rule δ is admissible for the experiment ({Fθ}θ∈Θ,L) if it is not strictly
dominated by any other decision rule.

In non-trivial problems, it may not be easy at all to decide whether a given
decision rule is admissible.
↪→ E.g., Stein’s paradox (“one of the most striking post-war results in
mathematical statistics”-Brad Efron).

Admissibility is a minimal requirement — what about the opposite end
(optimality)?

In almost any non-trivial experiment, there is no decision rule that makes
risk uniformly smallest over θ.
↪→ Solutions:

Narrow down the class of possible decision rules by
unbiasedness/symmetry/. . . considerations, and try to find uniformly
dominating rules of all other rules (next week!).
Use global rather than local criteria (with respect to θ).
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Minimax Rules
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Minimax Decision Rules

Rather than look at risk at every θ, concentrate on maximum risk.

Definition (Minimax Decision Rule)

Let D be a class of decision rules for an experiment ({Fθ}θ∈Θ,L). If
δ ∈ D is such that

sup
θ∈Θ

R(θ, δ) ≤ sup
θ∈Θ

R(θ, δ′), ∀ δ′ ∈ D,

then δ is called a minimax decision rule.

A minimax rule δ satisfies supθ∈Θ R(θ, δ) = infκ∈D supθ∈Θ R(θ, κ).

In the minimax setup, a rule is preferable to another if it has smaller
maximum risk.
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Minimax Decision Rules

Motivated as follows: we do not know anything about θ so let us
insure ourselves against the worst thing that can happen.

Makes sense if you are in a zero-sum game: if your opponent chooses
θ to maximize L then one should look for minimax rules. But is
Nature really an opponent?

If there is no reason to believe that Nature is trying to “do her
worst”, then the minimax principle is overly conservative: it places
emphasis on the “bad θ”.

Minimax rules may not be unique, and may not even be admissible. A
minimax rule may very well dominate another minimax rule.

A unique minimax rule is obviously admissible.

Minimaxity can lead to counterintuitive results. A rule may dominate
another rule, except for a small region in Θ, where the other rule
achieves a smaller supremum risk.
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Minimax Decision Rules

Inadmissible minimax rule
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Bayes Rules
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Bayes Decision Rules

Suppose we have some prior belief about the value of θ. How can this be
incorporated in our risk-based considerations?
↪→ Rather than looking at risk at every θ, concentrating on average risk.

Definition (Bayes Risk)

Let π(θ) be a probability density (or frequency) function on Θ and let δ be
a decision rule for the experiment ({Fθ}θ∈Θ,L). The π-Bayes risk of δ is
defined as

r(π, δ) =

∫
Θ
R(θ, δ)π(θ)dθ =

∫
Θ

∫
X
L(θ, δ(x))dFθ(x)π(θ)dθ.

The prior π(θ) places different emphasis for different values of θ based on
our prior belief/knowledge.
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Bayes Decision Rules

Bayes principle: a decision rule is preferable to another if it has a smaller
Bayes risk (depends on the prior π(θ)!).

Definition (Bayes Decision Rule)

Let D be a class of decision rules for an experiment ({Fθ}θ∈Θ,L) and let
π(·) be a probability density (or frequency) function on Θ. If δ ∈ D is such
that

r(π, δ) ≤ r(π, δ′) ∀ δ′ ∈ D,

then δ is called a Bayes decision rule with respect to π.

The minimax principle aims at minimizing the maximum risk.

The Bayes principle aims at minimizing the average risk.

Sometimes no Bayes rule exists because the infimum may not be
attained for any δ ∈ D. However in such cases ∀ε > 0 ∃δε ∈ D:
r(π, δε) < infδ∈D r(π, δ) + ε.
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Admissibility of Bayes Rules

Rule of thumb: Bayes rules are nearly always admissible.

Theorem (Discrete Case Admissibility)

Assume that Θ = {θ1, . . . , θt} is a finite space and that the prior π(θi ) > 0, i = 1, ..., t.
Then a Bayes rule with respect to π is admissible.

Proof.
Let δ be a Bayes rule, and suppose that κ strictly dominates δ. Then, for any j ,

R(θj , κ) ≤ R(θj , δ),

and there exists k ∈ {1, . . . , t} such that R(θk , κ) < R(θk , δ). Thus, as π(θj) > 0 for
any j ,

R(θj , κ)π(θj) ≤ R(θj , δ)π(θj) and R(θk , κ)π(θk) < R(θk , δ)π(θk),

which yield
t∑

j=1

R(θj , κ)π(θj) <
t∑

j=1

R(θ, δ)π(θj),

which contradicts the fact that δ is a Bayes rule with respect to π.
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Admissibility of Bayes Rules

Theorem (Uniqueness and Admissibility)

If a Bayes rule is unique, it is admissible.

Proof.

Suppose that δ is a unique Bayes rule and assume that κ strictly
dominates it. Then,∫

Θ
R(θ, κ)π(θ)dθ ≤

∫
Θ
R(θ, δ)π(θ)dθ,

as a result of strict domination and by π(θ) being non-negative. If there is
equality, it contradicts the uniqueness of the Bayes rule and if the
inequality is strict, it contradicts the fact that δ is a Bayes rule. Either
possibility contradicts our assumption.
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Admissibility of Bayes Rules

Theorem (Continuous Case Admissibility)

Let Θ ⊂ Rd . Assume that the risk functions R(θ, δ) are continuous in θ
for all decision rules δ ∈ D. Suppose that π places positive mass on any
open subset of Θ. Then a Bayes rule with respect to π is admissible.

Proof.

Let κ be a decision rule that strictly dominates δ. Let Θ0 be the set on
which R(θ, κ) < R(θ, δ). Given a θ0 ∈ Θ0, we have R(θ0, κ) < R(θ0, δ).
By continuity, there exists ε > 0 such that R(θ, κ) < R(θ, δ) for all θ
satisfying ‖θ − θ0‖ < ε. It follows that Θ0 is open and hence, by our
assumption, π(Θ0) > 0. Therefore,∫

Θ0

R(θ, κ)π(θ)dθ <

∫
Θ0

R(θ, δ)π(θ)dθ.
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Admissibility of Bayes Rules

(proof cont’d).

Hence, using the fact that
∫

Θc
0
R(θ, κ)π(θ)dθ ≤

∫
Θc

0
R(θ, δ)π(θ)dθ, we obtain

r(π, κ) =

∫
Θ

R(θ, κ)π(θ)dθ

=

∫
Θ0

R(θ, κ)π(θ)dθ +

∫
Θc

0

R(θ, κ)π(θ)dθ

<

∫
Θ0

R(θ, δ)π(θ)dθ +

∫
Θc

0

R(θ, δ)π(θ)dθ

= r(π, δ),

which contradicts our assumption that δ is a Bayes rule.

The continuity assumption and the assumption on π ensure that Θ0 is not an
isolated set and has positive measure, so that it “contributes” to the integral.
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Randomized Rules
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Randomized Decision Rules

Given

decision rules δ1, . . . , δk ,

probabilities pi ≥ 0,
∑k

i=1 pi = 1,

we may define a new decision rule, δ∗ “=
∑k

i=1 piδi”, called a randomized
decision rule.

Interpretation

Given data X , we choose a rule δi with probability pi independently of X .
If δj is the outcome (1 ≤ j ≤ k), then we take decision/action δj(X ).

→ The risk of δ∗ is the average risk: R(θ, δ∗) =
∑k

i=1 piR(θ, δi ).

Such rules appear artificial but, often, minimax rules are randomized
decision rules.

Examples of randomized rules with supθ R(θ, δ∗) < supθ R(θ, δi )∀i .
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Summary

Decision theory gives us tools to compare different
estimators/statistical procedures inside parametric models.

In order to use decision theory, we have to choose an appropriate loss
function from which we derive a risk function.

Comparing risk functions is hard because there is no canonical
ordering on positive functions! We saw three possibilities:

Admissibility: corresponding to a partial order.
Minimax rules: ordering risk functions according to their maximum.
Bayes rules: corresponding to a weighting of the different θ.

Amazingly, Bayes rules and admissible rules have a very close
relationship.

We presented randomized decision rules which might appear silly but
are useful for minimaxity.
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1 Optimality in the Decision Theory Framework

2 Uniform Optimality in Unbiased Quadratic Estimation

3 The role of sufficiency and “Rao-Blackwellization”

4 The role of completeness in Uniform Optimality

5 Lower Bounds for the Risk and Achieving them
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Optimality in the Decision Theory
Framework

Erwan Koch (EPFL) Statistical Theory (Week 9) 3 / 33



Decision Theory Framework

Saw how point estimation can be seen as a game: Nature vs Statistician.
The decision theory framework includes:

A family of distributions F, usually assumed to admit densities
(frequencies) and a parameter space Θ ⊆ Rp which parametrizes the
family, i.e., F = {Fθ}θ∈Θ.

A data space X , on which the parametric family is supported.

An action space A, which represents the space of possible actions
available to the statistician. In point estimation, A = Θ.

A loss function L : Θ×A → R+. In point estimation, L(θ, α)
represents the lost incurred when estimating θ ∈ Θ by α ∈ A.

A set D of decision rules. Any δ ∈ D is a (measurable) function
δ : X → A. In point estimation, decision rules are simply estimators.

The performance of decision rules has to be judged by the risk they induce:

R(θ, δ) = Eθ[L(θ, δ(X ))], θ ∈ Θ,X ∼ Fθ, δ ∈ D.

Erwan Koch (EPFL) Statistical Theory (Week 9) 4 / 33



Optimality in Point Estimation

An optimal decision rule would be one that uniformly minimizes the risk:

R(θ, δOPTIMAL) ≤ R(θ, δ), ∀θ ∈ Θ & ∀δ ∈ D.

But such rules can very rarely be determined.
↪→ Optimality becomes a vague concept.

↪→ Can be made precise in many ways . . .

Avenues to studying optimal decision rules include:

Restricting attention to global risk criteria rather than local
↪→ Bayes and minimax risk.

Focusing on restricted classes of rules D
↪→ e.g., Minimum Variance Unbiased Estimation.

Studying the risk behaviour asymptotically (n→∞)

↪→ e.g., Asymptotic Relative Efficiency.
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Uniform Optimality in Unbiased
Quadratic Estimation
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Unbiased Estimators under Quadratic Loss

Focus on Point Estimation
1 Assume that Fθ is known up to the parameter θ which is unknown.

2 Let (x1, ..., xn)> be a realization of X ∼ Fθ which is available to us.

3 Estimate the value of θ that generated X , given (x1, ..., xn)>.

Focus on Quadratic Loss

Error incurred when estimating θ by θ̂ = δ(X ) is

L(θ, θ̂) = ‖θ − θ̂‖2,

giving MSE as risk: R(θ, θ̂) = Eθ[‖θ − θ̂‖2] = Var(θ̂) + bias2(θ̂).

RESTRICT the class of estimators (=decision rules)

Consider ONLY unbiased estimators: D = {δ : X → Θ|Eθ[δ(X )] = θ}.

Erwan Koch (EPFL) Statistical Theory (Week 9) 7 / 33



Comments on Unbiasedness

Unbiasedness requirement is one means of reducing the class of
rules/estimators we are considering.

↪→ Other requirements could be invariance or equivariance, e.g.,

δ(X + c) = δ(X ) + c .

Risk reduces to variance since bias is zero.

Unbiased Estimators may not exist in a particular problem.

Unbiased Estimators may be silly for a particular problem.

Not necessarily a sensible requirement.

↪→ e.g., violates the “likelihood principle”.

However, unbiasedness can be a reasonable/natural requirement in a
wide class of point estimation problems.
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Comments on Unbiasedness

Example (Unbiased Estimators Do Not Always Exist)

Let X ∼Binom(n, θ), with θ unknown but n known.

We wish to find an unbiased estimator of

ψ = sin θ,

i.e., an estimator δ(X ) such that Eθ[δ] = ψ = sin θ. Such an
estimator must satisfy

n∑
x=0

δ(x)

(
n

x

)
θx(1− θ)n−x = sin θ,

but this cannot hold for all θ, since the sine function cannot be
represented as a finite polynomial.
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Comments on Unbiasedness

Example (Unbiased Estimators Do Not Always Exist)

Now, we wish to find an unbiased estimator of

ψ = 1/θ.

We need to find δ(0), . . . , δ(n) such that

n∑
x=0

δ(x)

(
n

x

)
θx(1− θ)n−x =

1

θ
,

i.e.,
n∑

x=0

δ(x)

(
n

x

)
θx+1(1− θ)n−x =

n+1∑
k=1

a(k)θk = 1,

where a(0), . . . , a(n + 1) depend on δ(0), . . . , δ(n). Whatever the values of
δ(0), . . . , δ(n), the latter equation is satisfied for at most n + 1 values of θ.

Thus, the class of unbiased estimators is empty in both cases.
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Comments on Unbiased Estimators

Example (Unbiased Estimators May Be “Silly”)

Let X ∼Poisson(λ). We wish to estimate the parameter

ψ = e−2λ.

If δ(X ) is an unbiased estimator of ψ, then we must have

∞∑
x=0

δ(x)
λx

x!
e−λ = e−2λ,

i.e.,
∞∑
x=0

δ(x)
λx

x!
= e−λ,

or, equivalently,
∞∑
x=0

δ(x)
λx

x!
=
∞∑
x=0

(−1)x
λx

x!
.

Hence δ(X ) = (−1)X is the only unbiased estimator of ψ. But as 0 < ψ < 1 for λ > 0,
this is clearly a ridiculous estimator.

Erwan Koch (EPFL) Statistical Theory (Week 9) 11 / 33



Comments on Unbiased Estimators

Example (A Non-Trivial Example)

Let X1, . . . ,Xn be iid random variables with density

f (x ;µ) = e−(x−µ), x ≥ µ ∈ R.

Two possible unbiased estimators are

µ̂ = X(1) −
1

n
& µ̃ = X̄ − 1,

and, for any t, tµ̂+ (1− t)µ̃ is also unbiased. Simple calculations yield

R(µ, µ̂) = Var(µ̂) =
1

n2
& R(µ, µ̃) = Var(µ̃) =

1

n
,

meaning that µ̂ strictly dominates µ̃. Note that µ̂ depends only on the
one-dimensional sufficient statistic X(1). Will it dominate any other
unbiased estimator?
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Unbiased Estimation and Sufficiency

Theorem (Rao-Blackwell Theorem)

Let X be distributed according to a distribution depending on an unknown parameter θ
and let T be a sufficient statistic for θ. Let δ be a statistic such that

1 Eθ[δ(X )] = g(θ) for all θ.

2 Varθ(δ(X )) <∞, for all θ.

Then δ∗ := E[δ|T ] is an unbiased estimator of g(θ) that dominates δ, i.e.,

1 Eθ[δ∗(X )] = g(θ) for all θ.

2 Varθ(δ∗(X )) ≤ Varθ(δ(X )) for all θ.

Moreover, inequality is strict unless Pθ[δ∗ = δ] = 1.

Indicates that any candidate for the minimum variance unbiased estimator should
be a function of the sufficient statistic.

Intuitively, by conditioning on a sufficient statistic, we throw away only irrelevant
information for θ, and we keep the relevant information for θ which was already
contained in δ. This decreases the variance.
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Proof.

Since T is sufficient for θ, E[δ|T = t] = h(t) is independent of θ, and thus
δ∗ is a statistic (it depends only on X ). Then,

Eθ[δ∗(X )] = Eθ[E[δ(X )|T (X )]] = Eθ[δ(X )] = g(θ).

Furthermore, we have

Varθ(δ) = Varθ[E(δ|T )] + Eθ[Var(δ|T )] ≥ Varθ[E(δ|T )] = Varθ(δ∗).

In addition,

Var(δ|T ) := E[(δ − E[δ|T ])2|T ] = E[(δ − δ∗)2|T ],

so that Eθ[Var(δ|T )] = Eθ[(δ − δ∗)2] > 0 unless Pθ(δ∗ = δ) = 1.

Exercise

Show that Var(Y ) = E[Var(Y |X )] + Var[E(Y |X )] when Var(Y ) <∞.
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The role of sufficiency and
“Rao-Blackwellization”
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Unbiasedness and Sufficiency

Any admissible unbiased estimator should be a function of a sufficient
statistic

↪→ If not, we can dominate it by its conditional expectation given a
sufficient statistic.

But which sufficient statistic should we choose to compute the
conditional expectation? Is any function of a sufficient statistic
(provided that it is unbiased) admissible?

Suppose that δ is an unbiased estimator of g(θ) and T , S are sufficient
statistics for θ.

What is the relationship between Varθ(E[δ|T ]︸ ︷︷ ︸
δ∗T

)
?

T Varθ(E[δ|S ]︸ ︷︷ ︸
δ∗S

)?

Intuition suggests that the statistics which carries the least irrelevant
information (in addition to the relevant information) should “win”.

↪→ More formally, if T = h(S) then we expect δ∗T to dominate δ∗S .
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Unbiasedness and Sufficiency

Proposition

Let δ be an unbiased estimator of g(θ) and define

δ∗T := E[δ|T ] & δ∗S := E[δ|S ],

where T and S are sufficient statistics for θ. Then,

T = h(S) =⇒ Varθ(δ∗T ) ≤ Varθ(δ∗S).

1 Essentially means that the best possible “Rao-Blackwellization” of δ
is achieved by conditioning on a minimal sufficient statistic.

2 Does not necessarily imply that for T minimally sufficient and δ
unbiased, E[δ|T ] will have the minimum variance among all unbiased
estimators.

↪→ In fact it does not even imply that E[δ|T ] is admissible.
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Proof.

Recall the tower property of conditional expectation:

E[X |g(Y )] = E{E(X |Y )|g(Y )}.

Thus, assuming that T = h(S) we have

δ∗T = E[δ|T ] = E[δ|h(S)] = E[E(δ|S)|h(S)] = E[δ∗S |T ].

The conclusion follows from the Rao-Blackwell theorem.

A mathematical remark

Recall that E[Z |Y ] is the minimizer of E[(Z − ϕ(Y ))2] over all
(measurable) functions ϕ of Y . Moreover,

√
E[X 2] defines a Hilbert norm

on the space of random variables with finite variance. This yields a
geometric intuition about the tower property.
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The role of completeness in Uniform
Optimality
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Completeness, Sufficiency, Unbiasedness, and Optimality

Theorem (Lehmann-Scheffé Theorem)

Let T be a complete sufficient statistic for θ and let δ be a statistic such that
Eθ[δ] = g(θ) and Varθ(δ) <∞, ∀θ ∈ Θ. Let δ∗ := E[δ|T ] and V be any other unbiased
estimator of g(θ). Then,

1 Varθ(δ∗) ≤ Varθ(V ), ∀θ ∈ Θ.

2 Varθ(δ∗) = Varθ(V ) =⇒ Pθ[δ∗ = V ] = 1.

Thus δ∗ is the unique Uniformly Minimum Variance Unbiased Estimator (UMVU
estimator or UMVUE) of g(θ).

States that if a complete sufficient statistic T exists, then the Minimum Variance
Unbiased Estimator (MVUE) of g(θ) (if it exists) must be a function of T .

Establishes that whenever there exists an UMVUE, it is unique.

Can be used to examine whether unbiased estimators exist at all: if a complete
sufficient statistic T exists, but there exists no function h with E[h(T )] = g(θ),
then no unbiased estimator of g(θ) exists.
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Proof.
1 Let V be an arbitrary unbiased estimator of g(θ) with finite variance,

and define its “Rao-Blackwellized” version V ∗ := E[V |T ]. Now, by
unbiasedness of V and V ∗, we have, for any θ ∈ Θ,

0 = Eθ[V ∗ − δ∗] = Eθ[E[V |T ]− E[δ|T ]] = Eθ[h(T )],

where h(T ) = E[V |T ]− E[δ|T ]. It follows by completeness of T
that, for all θ, Pθ[h(T ) = 0] = 1, i.e, Pθ[V ∗ = δ∗] = 1. Now, as
Varθ(V ∗) ≤ Varθ(V ) (by the Rao-Blackwell theorem), we obtain

Varθ(δ∗) ≤ Varθ(V ).

2 We assume that Varθ(V ) = Varθ(δ∗). From above, this implies that
Varθ(V ) = Varθ(V ∗), which, by the Rao-Blackwell theorem, yields
Pθ[V = V ∗] = 1. As Pθ[V ∗ = δ∗] = 1, we obtain Pθ[V = δ∗] = 1.
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Completeness, Sufficiency, Unbiasedness, and Optimality

Taken together, the Rao-Blackwell and Lehmann-Scheffé theorems also
suggest two approaches to finding the UMVUE when a complete sufficient
statistic T exists:

1 Find a function h such that Eθ[h(T )] = g(θ). If Varθ[h(T )] <∞ for
all θ, then δ = h(T ) is the unique UMVUE of g(θ).
↪→ The function h can be found by solving the equation Eθ[h(T )] = g(θ)

or by an educated guess.

2 Given an unbiased estimator δ of g(θ), we obtain the UMVUE by
“Rao-Blackwellizing” it wrt the complete sufficient statistic.

Example (Bernoulli Trials)

Let X1, . . . ,Xn
iid∼Bern(θ). What is the UMVUE of θ2?

As already seen (see week 3), T = X1 + . . .+ Xn is sufficient and also
complete. Sufficiency can easily be obtained from the Neyman
factorization theorem, and completeness directly stems from the fact that
the distribution of X1, . . . ,Xn belongs to a 1-parameter exponential family.
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Example (Bernoulli Trials)

First suppose that n = 2. If a UMVUE exists, it must be of the form h(T ) with h
satisfying

θ2 =
2∑

k=0

h(k)

(
2

k

)
θk(1− θ)2−k .

It is easy to see that h(0) = h(1) = 0 while h(2) = 1. Thus, for n = 2,
h(T ) = T (T − 1)/2 is the unique UMVUE of θ2.
For n > 2, set δ = 1{X1 + X2 = 2}, which is an unbiased estimator of θ2. By the
Lehmann-Scheffé theorem, δ∗ = E[δ|T ] is the unique UMVUE estimator of θ2.
We have

E[δ|T = t] = P[X1 + X2 = 2|T = t]

=
Pθ[X1 + X2 = 2,X3 + . . .+ Xn = t − 2]

Pθ[T = t]

=

{
0 if t ≤ 1(
n−2
t−2

)
/
(
n
t

)
if t ≥ 2

}
=

t(t − 1)

n(n − 1)
.

Thus, δ∗ = T (T − 1)/[n(n − 1)] is the UMVUE of θ2.
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Lower Bounds for the Risk and
Achieving them
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Variance Lower Bounds for Unbiased Estimators

Often a minimal sufficient statistic exists but is not complete. In such cases,
we cannot use the Lehmann-Scheffé theorem to find an UMVUE.

However, if we could establish a lower bound for the variance as a function
of θ, then an estimator achieving this bound would be an UMVUE.

The Aim

For iid X1, . . . ,Xn with density (frequency) depending on θ unknown, we want to
establish conditions under which

Varθ[δ] ≥ φ(θ), ∀θ,

for any unbiased estimator δ. We also wish to determine φ(θ).
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Cauchy-Schwarz Bounds

Theorem (Cauchy-Schwarz Inequality)

Let U,V be random variables with finite second moment. Then,

Cov(U,V ) ≤
√
Var(U)Var(V ).

It yields an immediate lower bound for the variance of an unbiased estimator δ0:

Varθ(δ0) ≥ Cov2
θ(δ0,U)

Varθ(U)
,

which is valid for any random variable U with Varθ(U) <∞ for all θ.

The bound can be made tight be choosing a suitable U.

However this is still not very useful. The bound will be specific to δ0, while
we want a bound that holds for any unbiased estimator δ and depends
merely on θ.

Is there a smart choice of U for which Covθ(δ0,U) depends on
g(θ) = Eθ(δ0) only (and so is not specific to δ0)?
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Optimizing the Cauchy-Schwarz Bound

Let θ be a real and f (·, θ) be the density of X = (X1, . . . ,Xn)>. Assume that the
following regularity conditions hold.

Regularity Conditions

(C1) The support of f , {x ∈ Rn : f (x ; θ) > 0}, is independent of θ.

(C2) f (x ; θ) is differentiable wrt θ, ∀θ ∈ Θ.

(C3) Eθ
[
∂
∂θ log f (X ; θ)

]
= 0.

(C4) For a statistic T = T (X ) with Eθ[|T |] <∞ and g(θ) = Eθ[T ]
differentiable,

g ′(θ) = Eθ
[
T
∂

∂θ
log f (X ; θ)

]
, ∀θ.

To make sense of (C3) and (C4), let us take any statistic S . Then

d

dθ

∫
S(x)f (x ; θ)dx !

=

∫
S(x)

f (x ; θ)

f (x ; θ)

d

dθ
f (x ; θ)dx = Eθ

[
S(X )

∂

∂θ
log f (X ; θ)

]
,

provided integration and differentiation can be interchanged.
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The Cramér-Rao Lower Bound

Theorem

Let X = (X1, . . . ,Xn)> have joint density (frequency) f (x ; θ) satisfying (C1),
(C2) and (C3). If the statistic T satisfies (C4), then

Varθ(T ) ≥ [g ′(θ)]2

In(θ)
,

where

In(θ) = Eθ

[(
∂

∂θ
log f (X ; θ)

)2
]
.
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The Cramér-Rao Lower Bound

Proof.

By the Cauchy-Schwarz inequality with U = ∂
∂θ log f (X ; θ),

Varθ(T ) ≥
Cov2

θ

(
T , ∂∂θ log f (X ; θ)

)
Varθ

(
∂
∂θ log f (X ; θ)

)
Since

Eθ
[
∂

∂θ
log f (X ; θ)

]
= 0,

we have

Varθ

(
∂

∂θ
log f (X ; θ)

)
= In(θ),

and, using (C4),

Covθ

(
T ,

∂

∂θ
log f (X ; θ)

)
= Eθ

[
T
∂

∂θ
log f (X ; θ)

]
= g ′(θ),

which completes the proof.
Erwan Koch (EPFL) Statistical Theory (Week 9) 29 / 33



The Cramér-Rao Lower Bound

When is the Cramér-Rao lower bound achieved? Note that

Varθ[T ] =
[g ′(θ)]2

In(θ)
=⇒ Varθ[T ] =

Cov2
θ

[
T , ∂∂θ log f (X ; θ)

]
Varθ

[
∂
∂θ log f (X ; θ)

] .

which occurs if and only if ∂
∂θ log f (X ; θ) is an affine function of T with

probability one (case where the correlation equals 1), i.e.,

∂

∂θ
log f (X ; θ) = A(θ)T (x) + B(θ).

Solving this differential equation yields, for all x ,

log f (x ; θ) = A∗(θ)T (x) + B∗(θ) + S(x),

i.e.,
f (x ; θ) = exp{A∗(θ)T (x) + B∗(θ) + S(x)}.

Conclusion

Thus, Varθ(T ) attains the lower bound if and only if the density (frequency) of X
has a one-parameter exponential family form as above.
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The Cramér-Rao bound asymptotically

If the X1, . . . ,Xn are iid, then the Fisher information is

In(θ) = Eθ

[(
∂

∂θ
log f (X ; θ)

)2
]

= nEθ

[(
∂

∂θ
log f (X1; θ)

)2
]

= nI (θ).

More generally, the Fisher information of several independent observations is the
sum of the Fisher informations of each one.

Definition

The asymptotic efficiency of a sequence of estimators θ̂n of θ based on iid
observations X1, . . . ,Xn is the ratio

Var(θ̂n)/ [nI (θ)]−1
.

The asymptotic efficiency measures whether a given estimator asymptotically
saturates the Cramér-Rao bound or falls short.
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Summary

Unbiasedness is one criteria we can follow to find a good estimator.

”Rao-Blackwellizing” an unbiased estimator with a sufficient statistic gives a
better estimator (with a lower variance).

If there exists a complete sufficient statistic, there may exist a unique
uniformly minimum variance unbiased estimator (UMVUE). But recall that,
besides exponential families, a complete and sufficient statistic rarely exists!

More generally, all estimators must obey the Cramér-Rao lower bound. If we
can prove that an estimator saturates the Cramér-Rao bound, then that
proves that it is optimal.

Erwan Koch (EPFL) Statistical Theory (Week 9) 32 / 33



The MLE dominates

From the results presented in this lecture, we see that the MLE is a great
estimator:

It automatically depends only on a minimally sufficient statistic: its already
Rao-Blackwellized!

If there exists a complete sufficient statistic AND the MLE is unbiased, then
it is the UMVUE.

Even without completeness, the MLE is asympotically:

Unbiased: E(θ̂) = θ.
Gaussian with variance 1/[nI (θ)]. Asymptotically, it saturates the
Cramér-Rao bound!

It is a great estimator if the model is correctly specified!
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Statistical Theory (Week 10): Testing Statistical
Hypotheses
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Contrasting Theories With
Experimental Evidence
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Using Data to Evaluate Theories/Assertions

Scientific theories lead to assertions/implications that are testable
using empirical data.

If the theory (or hypothesis) is true, then the data should be
compatible with corresponding implications.

Data may discredit the theory or not.

Similarities with the logical/mathematical concept of necessary
condition and reasoning by contradiction.

Example: Large Hadron Collider in CERN, Genève. To gain insight
about the existence of the Higgs Boson, study if particle trajectories
are consistent with what theory predicts.

Example: The theory of “luminoferous aether” in late 19th century to
explain light travelling in vacuum was discredited by the
Michelson-Morley’s experiment.

What would be the appropriate formal statistical framework?

Erwan Koch (EPFL) Statistical Theory (Week 10) 4 / 29



Hypothesis Testing Setup
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Statistical Framework for Testing Hypotheses

The Problem of Hypothesis Testing

X = (X1, . . . ,Xn)> random vector with joint density/frequency f (x ; θ)

θ ∈ Θ where Θ = Θ0 ∪Θ1 and Θ0 ∩Θ1 = ∅

We observe a realization x = (x1, . . . , xn)> of X ∼ fθ

Decide on the basis of x whether θ ∈ Θ0 or θ ∈ Θ1

↪→ Often dim(Θ0) < dim(Θ) so θ ∈ Θ0 represents a simplified model.

Example

Let X1, . . . ,Xn
iid∼ N (µ, 1) and Y1, . . . ,Yn

iid∼ N (ν, 1). Let θ = (µ, ν)> and

Θ = {(µ, ν)> : µ ∈ R, ν ∈ R} = R2.

May be interesting to test if X and Y have the same distribution, even though
they may be measurements on characteristics of different groups. In this case
Θ0 = {(µ, ν)> ∈ R2 : µ = ν}.
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Type I vs Type II Error
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Decision Theory Perspective on Hypothesis Testing

Given X we need to decide between two hypotheses:

H0: θ ∈ Θ0 (the NULL HYPOTHESIS)
H1: θ ∈ Θ1 (the ALTERNATIVE HYPOTHESIS)

We want decision rule that allows us to choose between H0 and H1.
We take δ : X → A = {0, 1} and we choose H0 if δ(X ) = 0 and H1 if
δ(X ) = 1.

In hypothesis testing δ is called a test function
Often δ depends on X only through some real-valued statistic
T = T (X ) called a test statistic.

Unlikely that a test function is perfect. Possible errors to be made?

Action / Truth H0 H1

0 Type II Error

1 Type I Error

Potential asymmetry of errors in practice: false positive VS
false negative (e.g., spam filters for e-mail).
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Decision Theory Perspective on Hypothesis Testing

Typically the loss function is a “0–1” loss, i.e.,

L(θ, a) =


1 if θ ∈ Θ0 & a = 1 (Type I Error)

1 if θ ∈ Θ1 & a = 0 (Type II Error),

0 otherwise (No Error)

i.e., we lose 1 unit whether we commit a type I or type II error. −→ Leads
to the risk function

R(θ, δ) =

{
Eθ[1{δ = 1}] = Pθ[δ = 1] if θ ∈ Θ0 (prob of type I error)

Eθ[1{δ = 0}] = Pθ[δ = 0] if θ ∈ Θ1 (prob of type II error)
.

In short,

R(θ, δ) = Pθ[δ = 1]1{θ ∈ Θ0}+ Pθ[δ = 0]1{θ ∈ Θ1}
“ = ” “Pθ[choose H1|H0 is true]” or “Pθ[choose H0|H1 is true]”.
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Optimal Testing?

As with point estimation, we may wish to find optimal test functions.
↪→ Test functions that uniformly minimize risk?

Almost never exist

In general there is a trade-off between the two error probabilities

How to relax problem in this case? Treat each type I and type II error
probabilities separately?

For example consider: X ∼ N (µ, 1) where H0 : µ = −1 and H1 : µ = 1.
Take the parametric decision rule: δt(X ) = 1(X ≥ t) (it’s optimal). If we
increase t, probability of type I error decreases, but probability of type II
error increases.
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The Neyman-Pearson Setup
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The Neyman-Pearson Setup

Classical approach: restrict class of test functions by “minimax reasoning”

1 We fix an α ∈ (0, 1), usually small (called the significance level)

2 We only consider test functions δ : X → {0, 1} such that

δ ∈ D(Θ0, α) =
{
δ : supθ∈Θ0

Pθ[δ = 1] ≤ α
}

,

i.e., rules for which probability of type I error is bounded above by α

↪→ Jargon: we fix a significance level for our test

3 Within this restricted class of rules, we choose δ to minimize the
probability of type II error uniformly on Θ1, i.e., to minimize

Pθ[δ(X ) = 0] = 1− Pθ[δ(X ) = 1], θ ∈ Θ1.

4 Equivalently, to maximize the power uniformly over Θ1, i.e., maximize

β(θ, δ) = Pθ[δ(X ) = 1]= Eθ[δ(X )], θ ∈ Θ1
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The Neyman-Pearson Setup

Intuitive rationale of the approach:

Suppose we observe δ(X ) = 1 (so we take action 1). As α is usually
small and δ = 1 has probability at most α under H0, if H0 is indeed
true, we have observed something rare or unusual under H0.
=⇒ Evidence that H0 is false (i.e., in favour of H1)
=⇒ Taking action 1 (choosing H1) is a highly reasonable decision.

But what if we observe δ(X ) = 0 (so we take action 0)?

Due to the low significance level, this does not guarantee at all that
our decision is the right one, i.e, that H0 is true (a low significance
level is generally associated with a low power).
We would be more confident in our decision if δ was such that the type
II error was also low or if we had maximized the power β (given the
significance level α).
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The Neyman-Pearson Setup

Neyman-Pearson setup naturally exploits any asymmetric structure

But, if natural asymmetry absent, need judicious choice of H0 (must depend on
the goal)

Example: Obama VS Romney 2012. Pollsters gather iid sample X from Ohio with
Xi = 1{vote Romney}. Which pair of hypotheses to test?{

H0 : Romney wins Ohio

H1 : Obama wins Ohio
OR

{
H0 : Obama wins Ohio

H1 : Romney wins Ohio

Which pair to choose to make a prediction? (confidence intervals?)

Assume that Romney wonders whether he should spend more money to campaign

in Ohio. His possible losses due to errors are:

(a) Spend more $’s to campaign in Ohio even though he would win
anyway: lose $’s

(b) Lose Ohio to Obama because he thought he would win without any
extra effort

(b) is much worse than (a) (especially since Romney had lots of $’s)

Hence Romney would pick H0 = {Obama wins Ohio} as his null
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Optimality in the Neyman-Pearson
Setup
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Finding Good Test Functions

We consider the simplest situation. Assume that (X1, . . . ,Xn)> ∼ f (·; θ)
with Θ = {θ0, θ1}

The Neyman-Pearson Lemma - Continuous Case

Let X = (X1, . . . ,Xn)> have density function f ∈ {f0, f1} and suppose we
wish to test

H0 : f = f0 vs H1 : f = f1,

at the significance level α ∈ (0, 1). If Λ(X ) = f1(X )/f0(X ) is a continuous
random variable, then there exists a k > 0 such that

P0[Λ ≥ k] = α,

and the test whose test function is given by

δ(X ) = 1{Λ(X ) ≥ k},

is a most powerful (MP) test of H0 versus H1 at significance level α.
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Proof.

Use obvious notation E0, E1, P0, P1 corresponding to H0 or H1. Let
G0(t) = P0[Λ ≤ t]. By assumption, G0 is a continuous distribution
function and thus takes values over the whole range [0, 1]. Consequently,
the set K1−α = {t : G0(t) = 1− α} is non-empty for any α ∈ (0, 1).
Setting k = inf{t ∈ K1−α}, i.e., the 1− α quantile of the distribution G0,
we have P0[Λ ≥ k] = α. Thus

P0[δ = 1] = α (since P0[δ = 1] = P0[Λ ≥ k])

and therefore δ ∈ D({θ0}, α) (i.e., δ indeed respects the level α).

To show that δ is also most powerful, it suffices to prove that if ψ is any
function with ψ(x) ∈ {0, 1}, then

E0[ψ(X )] ≤ E0[δ(X )]︸ ︷︷ ︸
=α (by first part of proof)

=⇒ E1[ψ(X )]︸ ︷︷ ︸
β1(ψ)

≤ E1[δ(X )]︸ ︷︷ ︸
β1(δ)

.

(recall that β1(δ) = 1− P1[δ = 0] = P1[δ = 1] = E1[δ]).
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Since

f1(x)− k · f0(x) ≥ 0 if δ(x) = 1 & f1(x)− k · f0(x) < 0 if δ(x) = 0

and ψ can only take the values 0 or 1, we have

ψ(x)(f1(x)− k · f0(x)) ≤ δ(x)(f1(x)− k · f0(x)), and thus∫
Rn

ψ(x)(f1(x)− k · f0(x))dx ≤
∫
Rn

δ(x)(f1(x)− k · f0(x))dx .

Rearranging the terms yields∫
Rn

(ψ(x)− δ(x))f1(x)dx ≤ k

∫
Rn

(ψ(x)− δ(x))f0(x)dx , i.e.,

E1[ψ(X )]− E1[δ(X )] ≤ k (E0[ψ(X )]− E0[δ(X )]) .

As k > 0 by assumption, E0[ψ(X )] ≤ E0[δ(X )] implies that the RHS is
non-positive. Hence, δ is an MP test of H0 vs H1 at level α.
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The Neyman-Pearson Lemma

Basically we reject H0 if the likelihood of θ1 is at least k times higher
than the likelihood of θ0. This is called a likelihood ratio test, and Λ
is the likelihood ratio statistic: how much more plausible is the
alternative than the null?

When Λ is a continuous random variable, the choice of k is essentially
unique. That is, if k ′ is such that δ′ = 1{Λ ≥ k ′} ∈ D({θ0}, α), then
δ = δ′ almost surely.

• The result does not guarantee uniqueness when an MP test exists.

• The existence of an MP test is guaranteed only if Λ is continuous. If
Λ has a discontinuous distribution, there may exist no k for which the
equation P0[Λ ≥ k] = α has a solution.

In the latter case, we need to consider randomized decision rules in
order to guarantee the existence of a most powerful test.

Erwan Koch (EPFL) Statistical Theory (Week 10) 19 / 29



The Neyman-Pearson Lemma

General version of the Neyman-Pearson lemma considers the relaxed
problem:

Maximize E1[δ] subject to E0[δ] = α and 0 ≤ δ(X ) ≤ 1 a.s.

→ The solution does not need to be a test function since now
δ : X → [0, 1]! Interpretation? Think of relaxation≡randomization:

We are willing to consider also randomized decision rules.

How does a randomized decision rule work?
1 If δ(X ) = 1, reject.
2 If δ(X ) = 0, don’t reject.
3 If δ(X ) = p ∈ (0, 1), then sample an independent Bernoulli random

variable Y with probability of success p.
(3a) If Y takes the value 1, then reject.
(3b) If Y takes the value 0, don’t reject.

The last step is randomization: we inject randomness which is completely
independent of the data.
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The Neyman-Pearson Lemma

Neyman-Pearson Lemma - General Case

Let X = (X1, . . . ,Xn)> have density (frequency) function f ∈ {f0, f1} and
suppose we wish to test

H0 : f = f0 vs H1 : f = f1,

at level α ∈ (0, 1). Let Λ(X ) = f1(X )/f0(X ). Then, there exist k > 0 and
p ∈ [0, 1] such that the decision rule

δ(X ) =


1 if Λ(X ) > k ,

p if Λ(X ) = k ,

0 if Λ(X ) < k ,

satisfies
E0[δ(X )] = α & E1[ψ(X )] ≤ E1[δ(X )]

for all ψ : X → [0, 1] such that E0[ψ(X )] ≤ α.
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Proof.

Let G0(t) = P0[Λ ≤ t] and k = inf{t : G0(t) ≥ 1− α}. If G0(k) = 1− α,
then set p = 0 and proceed as in the continuous version of the NP-lemma.
Otherwise, if G0(k) > 1− α, define ξ := limε→0 G0(k − ε) < (1− α) and

p =
G0(k)− (1− α)

G0(k)− ξ
.

By definition of ξ, it must be that p ∈ (0, 1). Furthermore,

G0(k)− ξ = P0[Λ ≤ k]− limε→0 P0[Λ ≤ k − ε] = P0[Λ = k]

(limε→0 P0[Λ ≤ k − ε] = P0[Λ < k] by continuity of probability measures from above),

which yields

E0[δ] = 1× P0[Λ > k] + p × P0[Λ = k] + 0× P0[Λ < k]

= 1− G0(k) +
G0(k)− (1− α)

P0[Λ = k]
× P0[Λ = k] = α.

For the power, repeat the steps in the proof of continuous NP-lemma. �
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(recall that G0 is necessarily càdlàg: continue à droite, limite à gauche)
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The Neyman-Pearson Setup

Example (Exponential Distribution)

Let X1, . . . ,Xn
iid∼ Exp(λ) and λ ∈ {λ0, λ1}, with λ1 > λ0 (H1 leads to

small values of Xi ).
We want to test

H0 : λ = λ0 vs H1 : λ = λ1

at the level α ∈ (0, 1). We have

f (X ;λ) =
n∏

i=1

λe−λXi = λne−λ
∑n

i=1 Xi .

So Neyman-Pearson Lemma says that it is optimal to base our test on the statistic

Λ =
f (X ;λ1)

f (X ;λ0)
=

(
λ1

λ0

)n

exp

[
(λ0 − λ1)

n∑
i=1

Xi

]

and to reject the null if Λ ≥ k , for k such that the level is α.
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The Neyman-Pearson Setup

Example (cont’d)

Now, we note that Λ is a decreasing function of S =
∑n

i=1 Xi (since
λ0 < λ1), which gives that

Λ ≥ k ⇐⇒ S ≤ K ,

for some K , so that

α = Pλ0 [Λ ≥ k] ⇐⇒ α = Pλ0 [S ≤ K ] .

For given values of λ0 and α it is easy to find the appropriate K . Indeed,
under the null hypothesis, S has a gamma distribution with parameters n
and λ0 and thus we reject H0 at level α if S is below the α-quantile of the
Gamma(n, λ0) distribution.
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Example (Uniform Distribution)

Let X1, . . . ,Xn
iid∼ Unif(0, θ) with θ ∈ {θ0, θ1} where θ0 > θ1. Consider

H0 : θ = θ0 vs H1 : θ = θ1.

As

f (X ; θ) =
1

θn
1

{
max

1≤i≤n
Xi ≤ θ

}
,

an MP test of H0 vs H1 can be based on the discrete test statistic

Λ =
f (X ; θ1)

f (X ; θ0)
=

(
θ0

θ1

)n

1{X(n) ≤ θ1}.

So if the test rejects H0 when X(n) ≤ θ1 then it is MP for H0 vs H1 at

α = Pθ0 [X(n) ≤ θ1] = (θ1/θ0)n

with power Pθ1 [X(n) ≤ θ1] = 1. What about smaller values of α?
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Example (cont’d)

↪→ What about finding an MP test for α < (θ1/θ0)n?
An intuitive test statistic is the sufficient statistic X(n), and it would be
natural to reject H0 iff X(n) ≤ k , where k solves the equation

Pθ0 [X(n) ≤ k] =

(
k

θ0

)n

= α,

i.e., k = θ0α
1/n. This test has power

Pθ1 [X(n) ≤ θ0α
1/n] =

(
θ0α

1/n

θ1

)n

= α

(
θ0

θ1

)n

.

Is this the MP test at level α < (θ1/θ0)n?
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Example (cont’d)

Use general form of the Neyman-Pearson lemma to solve relaxed problem:

Maximize E1[δ(X )] subject to Eθ0 [δ(X )] = α <
(
θ1
θ0

)n
& 0 ≤ δ(x) ≤ 1.

One solution to this problem is given by

δ(X ) =

{
α(θ0/θ1)n if X(n) ≤ θ1,

0 otherwise,

which is not a test function. However, we see that its power is

Eθ1 [δ(X )] = α

(
θ0

θ1

)n

= Pθ1 [X(n) ≤ θ0α
1/n],

which is the power of the test we proposed. Hence the test that rejects H0

if X(n) ≤ θ0α
1/n is an MP test for all levels α < (θ1/θ0)n.
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Summary

Hypothesis testing is a key statistical problem.

Key insight: the errors are not symmetric.

Neyman-Pearson setup:

First, we choose a significance level α ∈ (0, 1).
We seek to maximize (if possible) the power of the test while
maintaining the significance level.

In a simple vs simple test, there exists an optimal test for any level α.
If the likelihood ratio is a discrete random variable, this test is
randomized for most values of α.

Many statisticians strongly disagree with randomized decision rules in
the context of tests.
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Statistical Theory (Week 11): Testing Statistical
Hypotheses II

Erwan Koch

Ecole Polytechnique Fédérale de Lausanne (Institute of Mathematics)
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1 Uniformly Most Powerful Tests

2 Situations When UMP Tests Exist

3 Locally Most Powerful Tests

4 Likelihood Ratio Tests
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Uniformly Most Powerful Tests
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Neyman-Pearson Framework for Testing Hypotheses

The Problem of Hypothesis Testing

X = (X1, . . . ,Xn)> random variables with joint density/frequency
f (x ; θ)

θ ∈ Θ where Θ = Θ0 ∪Θ1 and Θ0 ∩Θ1 = ∅
We observe a realization x = (x1, . . . , xn)> of X ∼ fθ

Decide on the basis of x whether θ ∈ Θ0 (H0) or θ ∈ Θ1 (H1)

Neyman-Pearson Framework:

1 Fix a significance level α for the test

2 Among all rules respecting the significance level, pick the one that
uniformly maximizes power

When H0/H1 both simple→ Neyman-Pearson lemma settles the problem.

↪→ What about more general structure of Θ0,Θ1?
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Uniformly Most Powerful Tests

A uniformly most powerful (UMP) test of H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 at
level α:

1 Respects the level for all θ ∈ Θ0, i.e.,

δ ∈ D(Θ0, α) = {δ : X → {0, 1} : Eθ[δ] ≤ α, ∀ θ ∈ Θ0}

2 Is most powerful for all θ ∈ Θ1 (for all possible simple alternatives),
i.e.,

Eθ[δ] ≥ Eθ[δ′] ∀θ ∈ Θ1 & δ′ ∈ D(Θ0, α)

Unfortunately UMP tests rarely exist. Why?
E.g., in the situation H0 : θ = θ0 vs H1 : θ 6= θ0, UMP tests typically do
not exist:

A UMP test must be MP test for any θ1 6= θ0.

But the form of the MP test typically differs for θ1 > θ0 and θ1 < θ0!

↪→ e.g., recall the example with exponential distribution (week 10)
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Example (No UMP test exists)

Let X ∼Binom(n, θ) and suppose we want to test:

H0 : θ = θ0 vs H1 : θ 6= θ0

at some level α. To this aim, consider first

H ′0 : θ = θ0 vs H ′1 : θ = θ1

Neyman-Pearson lemma states that an optimal test statistic is

Λ =
f (X ; θ1)

f (X ; θ0)
=

(
1− θ1

1− θ0

)n (θ1(1− θ0)

θ0(1− θ1)

)X

.

If θ1 > θ0 then Λ increasing in X

↪→ MP test would reject for large values of X

If θ1 < θ0 then Λ decreasing in X

↪→ MP test would reject for small values of X
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Example (A UMP test exists)

Let X1, . . . ,Xn
iid∼ Exp(λ) and suppose we wish to test

H0 : λ ≤ λ0 vs H1 : λ > λ0

at some level α. To this aim, consider first the pair

H ′0 : λ = λ0 vs H ′1 : λ = λ1

with λ1 > λ0 which we saw last time to admit a MP test ∀ λ1 > λ0:

Reject H ′0 for
n∑

i=1

Xi ≤ k, with k such that Pλ0

[
n∑

i=1

Xi ≤ k

]
= α

But for λ < λ0, Pλ0 [
∑n

i=1 Xi ≤ k] = α =⇒ Pλ [
∑n

i=1 Xi ≤ k] < α. So
the same test respects level α for all singletons under H0.
=⇒ The test is UMP of H0 vs H1
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Situations When UMP Tests Exist
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When do UMP tests exist?

Previous examples give insight on which composite pairs typically admit
UMP tests:

1 Hypothesis pair concerns a single real-valued parameter
2 Hypothesis pair is “one-sided”

But existence of UMP test does not only depend on hypothesis
structure. . . ↪→ Also depends on the specific model considered. Sufficient
condition?

Definition (Monotone Likelihood Ratio Property)

A family of density (frequency) functions {f (x ; θ) : θ ∈ Θ} with Θ ⊆ R is
said to have monotone likelihood ratio (MLR) if there exists a real-valued
function T (x) such that, for any θ0 < θ1, the function

f (x ; θ1)/f (x ; θ0)

is non-decreasing wrt T (x) for x such that f (x ; θ1)/f (x ; θ0) ∈ (0,∞).

Such a statistic T will necessarily be sufficient for θ (Fisher-Neyman).
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MLR example

Example

Let X ∼ Binom(n, θ) and let θ1 > θ0. The likelihood ratio is

f (x , θ1)

f (x , θ0)
=

(
1− θ1

1− θ0

)n (θ1(1− θ0)

θ0(1− θ1)

)x

,

and so it is an increasing function of T (x) = x , x = 0, 1, . . . , n.

Intuition: increasing T shifts the likelihood to the right.
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When do UMP tests exist?

Theorem (MLR and UMP)

Let X = (X1, . . . ,Xn)> have density (or frequency) function depending on
θ ∈ R and satisfying the monotone likelihood ratio property with respect
to a statistic T . Furthermore, assume that T is a continuous random
variable. Then, the test function given by

δ(X ) =

{
1 if T (X ) ≥ k

0 if T (X ) < k
k such that Eθ0 [δ(X )] = α

is UMP among all tests at level α for the hypothesis pair{
H0 : θ ≤ θ0

H1 : θ > θ0

[The assumption of continuity of the random variable T can be removed,
by considering randomized tests as well, similarly as before]
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Proof.

We will show that:

1 δ ∈ D(Θ0, α), i.e. Eθ[δ] ≤ α (= Eθ0 [δ]) for all θ ∈ Θ0 = (−∞, θ0].

2 For any δ′ ∈ D(Θ0, α) and all θ1 ∈ Θ1, Eθ1 [δ′] ≤ Eθ1 [δ].

To show (1) it suffices to show that Eθ0 [δ]− Eθ[δ] ≥ 0 for θ ≤ θ0. Notice
that δ is a non-decreasing function of T . Thus, by the MLR property, it is
in fact a non-decreasing function of f (x ; θ0)/f (x ; θ) for θ ≤ θ0. Call this
function q(·). Then

Eθ0 [δ]− Eθ[δ] =

∫
X
q

(
f (x ; θ0)

f (x ; θ)

)
(f (x ; θ0)− f (x ; θ))dx

Letting A = {x ∈ X : f (x ; θ0) > f (x ; θ)}, the RHS becomes∫
A q
(
f (x ;θ0)
f (x ;θ)

)
(f (x ; θ0)− f (x ; θ))dx +

∫
Ac q

(
f (x ;θ0)
f (x ;θ)

)
(f (x ; θ0)− f (x ; θ))dx
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Letting q∗ = infx∈A q
(
f (x ;θ0)
f (x ;θ)

)
and q∗ = supx∈Ac q

(
f (x ;θ0)
f (x ;θ)

)
we may

bound the last expression from below by

q∗

∫
A

(f (x ; θ0)− f (x ; θ))dx + q∗
∫
Ac

(f (x ; θ0)− f (x ; θ))dx =

= q∗(Pθ0 [A]− Pθ[A]) + q∗(Pθ0 [Ac ]− Pθ[Ac ])

= q∗(Pθ0 [A]− Pθ[A]) + q∗(1− Pθ0 [A]− 1 + Pθ[A])

= (q∗ − q∗)(Pθ0 [A]− Pθ[A]) = (q∗ − q∗)

∫
A

(f (x ; θ0)− f (x ; θ))dx︸ ︷︷ ︸
≥0

.

Part (1) will thus follow if q∗ − q∗ ≥ 0. But q is nondecreasing, so

q

(
f (u; θ0)

f (u; θ)

)
≥ q

(
f (v ; θ0)

f (v ; θ)

)
, ∀u ∈ A & ∀v ∈ Ac ,

and hence q∗ = infu∈A q
(
f (u;θ0)
f (u;θ)

)
≥ supv∈Ac q

(
f (v ;θ0)
f (v ;θ)

)
= q∗.
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For part (2), note that D(Θ0, α) ⊆ D({θ0}, α), because

φ ∈ D(Θ0, α) =⇒ sup
θ∈Θ0

Eθ[φ] ≤ α =⇒ Eθ0 [φ] ≤ α =⇒ φ ∈ D({θ0}, α).

Thus, if we show that for any δ′ ∈ D({θ0}, α) and any θ1 ∈ Θ1,
Eθ1 [δ′] ≤ Eθ1 [δ], assertion (2) will follow. For θ1 ∈ Θ1, we have θ0 < θ1

and thus f (X ; θ1)/f (X ; θ0) = h(T ) for some non-decreasing h by the
MLR property of T . Let K = h(k) and let

Ik = [k − a, k + b], a, b > 0,

the interval on which h(t) = K (this set is an interval since h is
non-decreasing; it could also be half open, or open). Define

ψ(X ) =


1, if f (X ; θ1) > Kf (X ; θ0)

P[k ≤ T < k + b]/P[T ∈ Ik ], if f (X ; θ1) = Kf (X ; θ0).

0, if f (X ; θ1) < Kf (X ; θ0)
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Now we note that (recall that T is continuous, so strict inequalities
irrelevant)

Eθ[ψ] = 0× Pθ[T < k − a]

+
Pθ[k ≤ T < k + b]

Pθ[T ∈ Ik ]
Pθ[T ∈ Ik ] + 1× Pθ[T ≥ k + b]

= Pθ[T ≥ k]

= Eθ[δ].

Thus, Eθ0 [ψ] = Eθ0 [δ]. Therefore, it follows from the generalized
NP-lemma that ψ is most powerful at level Eθ0 [δ], i.e., Eθ1 [δ′] ≤ Eθ1 [ψ]
for all δ′ ∈ D({θ0}, α). As Eθ1 [ψ] = Eθ1 [δ], we obtain that
Eθ1 [δ′] ≤ Eθ1 [δ] for all δ′ ∈ D({θ0}, α) and the proof is complete.
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When do UMP tests exist?

Example (One-Parameter Exponential Family)

Let X = (X1, . . . ,Xn)> have a density (frequency)

f (x ; θ) = exp[c(θ)T (x)− b(θ) + S(x)]

and assume WLOG that c(θ) is strictly increasing. For θ0 < θ1,

f (x ; θ1)

f (x ; θ0)
= exp{[c(θ1)− c(θ0)]T (x) + b(θ0)− b(θ1)}

is strictly increasing in T by strict increasingness of c(·).

Hence the UMP test defined above of H0 : θ ≤ θ0 vs H1 : θ > θ0 would
reject H0 iff T (x) ≥ k , with k such that α = Pθ0 [T ≥ k].
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Locally Most Powerful Tests
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Locally Most Powerful Tests

↪→ What if MLR property fails to be satisfied? Can optimality be “saved”?

Consider θ ∈ R and the test: H0 : θ ≤ θ0 vs H1 : θ > θ0

Intuition: if true θ far from θ0, then any reasonable test powerful

? So focus on maximizing power in small neighbourhood of θ0

→ Consider power function β(θ) = Eθ[δ(X )] of some δ
→ Require β(θ0) = α (notice that θ0 ∈ Θ0 so β(θ0) is the probability of
type I error)
→ Assume that β(θ) is differentiable, so for θ close to θ0 and such that
θ > θ0,

β(θ) ≈ β(θ0) + β′(θ0)(θ − θ0) = α + β′(θ0)(θ − θ0)︸ ︷︷ ︸
>0

.

Since Θ1 = (θ0,∞), this suggests approach for locally most powerful test

Choose δ to Maximize β′(θ0) Subject to β(θ0) = α
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How do we solve this constrained optimization problem?

Supposing that X = (X1, . . . ,Xn)> has density f (x ; θ), then

β(θ) =

∫
Rn

δ(x)f (x ; θ)dx

=⇒ ∂

∂θ
β(θ) =

∫
Rn

δ(x)
∂

∂θ
f (x ; θ)dx [provided interchange possible]

=

∫
Rn

δ(x)
f (x ; θ)

f (x ; θ)

∂

∂θ
f (x ; θ)dx

=

∫
Rn

δ(x)

[
∂

∂θ
log f (x ; θ)

]
f (x ; θ)dx

= Eθ

δ(X )
∂

∂θ
log f (X ; θ)︸ ︷︷ ︸
S(X ;θ)

 = Cov(δ, S(X , θ))

The last equality follows if we can differentiate under the integral, in which
case E[S(X ; θ)] = 0. So δ must be a “linear functional” of S(X ; θ)!
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Locally Most Powerful Tests

Theorem (Score Tests are Locally Most Powerful)

Let X = (X1, . . . ,Xn)> have density (frequency) f (x ; θ) and define the
test function

δ(X ) =

{
1 if S(X ; θ0) ≥ k ,

0 otherwise

where k is such that Eθ0 [δ(X )] = α. Then δ maximizes

Eθ0 [ψ(X )S(X ; θ0)]

over all test functions ψ satisfying the constraint Eθ0 [ψ(X )] = α.

Gives recipe for constructing LMP test

We were concerned about power only locally around θ0

• BEWARE ! May not even give a level α test for some θ < θ0
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Proof.

Consider ψ with ψ(x) ∈ {0, 1} ∀ x and Eθ0 [ψ(X )] = α. Then,

δ(x)− ψ(x) =

{
≥ 0 if S(x ; θ0) ≥ k,

≤ 0 if S(x ; θ0) ≤ k.

Therefore
Eθ0 [(δ(X )− ψ(X ))(S(X ; θ0)− k)] ≥ 0.

Expanding the product and since Eθ0 [δ(X )− ψ(X )] = 0, we obtain

Eθ0 [δ(X )S(X ; θ0)] ≥ Eθ0 [ψ(X )S(X ; θ0)]

How is the critical value k evaluated in practice? (obviously to give level α)

When X1, . . . ,Xn are iid, then S(X ; θ) =
∑n

i=1 `
′(Xi ; θ)

Under regularity conditions, sum of iid random variables with mean zero and
variance I (θ).

Hence, for θ = θ0 and large n, S(X ; θ)
d
≈ N (0, nI (θ))
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Example (Cauchy distribution)

Let X1, . . . ,Xn
iid∼Cauchy(θ) with density

f (x ; θ) =
1

π(1 + (x − θ)2)
, x ∈ R,

and consider the hypothesis pair

{
H0 : θ ≥ 0

H1 : θ < 0.
We have

S(X ; 0) =
n∑

i=1

2Xi

1 + X 2
i

so that the LMP test at level α rejects the null if S(X ; 0) ≤ k , where

P0[S(X ; 0) ≤ k] = α.

While the exact distribution is difficult to obtain, for large n,

S(X ; 0)
d
≈ N (0, n/2).
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Likelihood Ratio Tests
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Likelihood Ratio Tests

So far, tests for θ ∈ R with simple vs simple or one sided vs one sided hypothesis.
↪→ Extension to multiparameter case θ ∈ Rp? General Θ0, Θ1?

Unfortunately, optimality theory breaks down in higher dimensions and for more general
Θ0, Θ1.

General method for constructing reasonable tests?

→ The idea: Combine Neyman-Pearson paradigm with Max Likelihood

Definition (Likelihood Ratio)

The likelihood ratio (LR) statistic corresponding to the pair of hypotheses H0 : θ ∈ Θ0 vs
H1 : θ ∈ Θ1 is defined to be

Λ(X ) =
supθ∈Θ1

f (X ; θ)

supθ∈Θ0
f (X ; θ)

=
supθ∈Θ1

L(θ)

supθ∈Θ0
L(θ)

“Neyman-Pearson”-esque approach: reject H0 for large Λ.

Intuition: choose the “most favourable” θ ∈ Θ0 (in favour of H0) and compare it against
the “most favourable” θ ∈ Θ1 (in favour of H1) in a simple vs simple setting (applying
NP-lemma)

Provided the likelihood is continuous wrt θ and Θ0 is a lower dimensional subspace of Θ,
then supθ∈Θ1

L(θ) = supθ∈Θ L(θ). In those cases, for convenience of the MLE
computation, we generally take supθ∈Θ L(θ) as numerator in the above definition.
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Example

Let X1, . . . ,Xn
iid∼ N (µ, σ2) where both µ and σ2 are unknown. Consider

H0 : µ = µ0 vs H1 : µ 6= µ0.

We have

Λ(X ) =
sup(µ,σ2)∈R×R+ f (X ;µ, σ2)

sup(µ,σ2)∈{µ0}×R+ f (X ;µ, σ2)
=

(
σ̂2

0

σ̂2

) n
2

=

(∑n
i=1(Xi − µ0)2∑n
i=1(Xi − X̄ )2

) n
2

.

We reject H0 when Λ ≥ k , where k is s.t. P0[Λ ≥ k] = α. Distribution of Λ? By
monotonicity look only at∑n

i=1(Xi − µ0)2∑n
i=1(Xi − X̄ )2

= 1 +
n(X̄ − µ0)2∑n
i=1(Xi − X̄ )2

= 1 +
1

n − 1

(
n(X̄ − µ0)2

S2

)
= 1 +

T 2

n − 1
.

Denoting S2 = 1
n−1

∑n
i=1(Xi − X̄ )2, we have T =

√
n(X̄ − µ0)/S

H0∼ tn−1. So

T 2 H0∼ F1,n−1 and k may be chosen appropriately.
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Example

Let X1, . . . ,Xm
iid∼ Exp(λ) and Y1, . . . ,Yn

iid∼ Exp(θ) and X indep Y .

Consider: H0 : θ = λ vs H1 : θ 6= λ.

Unrestricted MLEs:
sup

(λ,θ)∈R2
+
f (X ,Y ;λ,θ)

λ̂ = 1/X̄ & θ̂ = 1/Ȳ .

Restricted MLEs:
sup

(λ,θ)∈{(x,y)∈R2
+:x=y} f (X ,Y ;λ,θ)

λ̂0 = θ̂0 =

[
mX̄ + nȲ

m + n

]−1

.

=⇒ Λ =

(
m

m + n
+

n

n + m

Ȳ

X̄

)m (
n

n + m
+

m

m + n

X̄

Ȳ

)n

.

Depends on T = X̄/Ȳ and can make Λ large/small by varying T .

↪→ But T
H0∼ F2m,2n so given α we may find the critical value k .
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Distribution of Likelihood Ratio?

More often than not, dist(Λ) intractable (and no simple dependence on a
statistic T having tractable distribution).

Consider asymptotic approximations?
Setup:

Θ open subset of Rp

either Θ0 = {θ0} or Θ0 open subset of Rs , where s < p

X = (X1, . . . ,Xn)> where the components are iid

Initially restrict attention to H0 : θ = θ0 vs H1 : θ 6= θ0. LR becomes:

Λn(X ) =
n∏

i=1

f (Xi ; θ̂n)

f (Xi ;θ0)

where θ̂n is the MLE of θ.

Impose regularity conditions from MLE asymptotics
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Asymptotic Distribution of the Likelihood Ratio

Theorem (Wilks’ Theorem, case p = 1)

Let X1, . . . ,Xn be iid random variables with density (frequency) depending
on θ ∈ R and satisfying conditions (A1)-(A6), with I (θ) = J(θ). If the
MLE sequence θ̂n is consistent for θ, then the likelihood ratio statistic Λn

for H0 : θ = θ0 satisfies

2 log Λn
d→ V ∼ χ2

1

when H0 is true.

Obviously, knowing approximate distribution of 2 log Λn is as good as
knowing approximate distribution of Λn for the purposes of testing
(by monotonicity and rejection method).

Theorem extends immediately and trivially to the case of general p
and for a hypothesis pair H0 : θ = θ0 vs H1 : θ 6= θ0.
(i.e. when null hypothesis is simple)
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Asymptotic Distribution of the Likelihood Ratio

Proof.

Let `(x ; θ) = log f (x ; θ), x ∈ X . By a Taylor series expansion around θ̂n,

log Λn =
n∑

i=1

[`(Xi ; θ̂n)− `(Xi ; θ0)] =
n∑

i=1

[`(Xi ; θ̂n)− `(Xi ; θ̂n)]

−(θ0 − θ̂n)
n∑

i=1

`′(Xi ; θ̂n)− 1

2
(θ̂n − θ0)2

n∑
i=1

`′′(Xi ; θ
∗
n)

= −1

2
n(θ̂n − θ0)2 1

n

n∑
i=1

`′′(Xi ; θ
∗
n)

where θ∗n lies between θ̂n and θ0.
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Asymptotic Distribution of the Likelihood Ratio

If H0 is true, then θ̂n
p→ θ0 by assumption. Hence, as θ∗n lies between θ̂n and θ0, we have

θ∗n
p→ θ0.

Hence under (A1)-(A6) and if H0 is true, a first order Taylor expansion about θ0,
Slutsky’s theorem and the WLLN give

−1

n

n∑
i=1

`′′(Xi ; θ
∗
n )

p→ −Eθ0 [`′′(Xi ; θ0)] = I (θ0).

Now, under the conditions of the theorem and when H0 is true,

√
n(θ̂n − θ0)

d→ N (0, I−1(θ0)).

which, by the continuous mapping theorem, yields

n(θ̂n − θ0)2 d→ V

I (θ0)
.

Slutsky’s theorem gives the result.
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Asymptotic Distribution of the Likelihood Ratio

Theorem (Wilk’s theorem, general p, general r ≤ p)

Let X1, . . . ,Xn be iid random variables with density (frequency) depending
on θ ∈ Rp and satisfying conditions (B1)-(B6), with I (θ) = J(θ). If the
MLE sequence θ̂n is consistent for θ, then the likelihood ratio statistic Λn

for H0 : {θj = θj ,0}rj=1 satisfies 2 log Λn
d→ V ∼ χ2

r when H0 is true.

Exercise

Prove Wilks’ theorem. Note that it may potentially be that r < p: some
of the components of θ might be adjustable under H0!

Hypotheses of the form H0 : {gj(θ) = aj}rj=1, for gj differentiable
real-valued functions, can also be handled by Wilks’ theorem:

Define φ = (φ1, . . . , φp)> = g(θ) = (g1(θ), . . . , gp(θ))>

gr+1, . . . , gp defined so that θ 7→ g(θ) is 1-1

Apply theorem with parameter φ
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Other Tests?

Many other tests possible once we “liberate” ourselves from strict
optimality criteria. For example:

Wald’s test

↪→ For a simple null, may compare the unrestricted MLE with the MLE
under the null. Large deviations indicate evidence against null
hypothesis. Distributions are approximated for large n via the
asymptotic normality of MLEs.

Score Test

↪→ For a simple null, if the null hypothesis is false, then the loglikelihood
gradient at the null should not be close to zero, at least when n
reasonably large: so measure its deviations from zero. Use asymptotics
for distributions (under conditions we end up with a χ2)

. . .
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Summary

In general, UMP tests do not exist, because they would need to be
MP for all pairs: θ0 ∈ Θ0, θ1 ∈ Θ1. However, in the case of a
real-valued parameter:

If there is a monotone LR, one-sided vs one-sided situation has a MP
test.
We can consider locally MP tests like the score test.

When the parameter is a vector and/or we want to test: θ = θ0 vs
θ 6= θ0, we need to give up on optimality.

But we can extend the likelihood-ratio test to these situations. Wilks’
theorem gives us the asymptotic sampling distribution of the
likelihood-ratio under the null hypothesis.

Other tests can also be used.
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Statistical Theory (Week 12): From Hypothesis Tests
to Confidence Regions
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Ecole Polytechnique Fédérale de Lausanne (Institute of Mathematics)

Erwan Koch (EPFL) Statistical Theory (Week 12) 1 / 33



1 p-values

2 Confidence Intervals

3 The Pivotal Method

4 Extension to Confidence Regions

5 Inverting Hypothesis Tests
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p-values
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Beyond Neyman-Pearson?

So far we have considered the Neyman-Pearson Framework:

1 Fix a significance level α for the test
2 Consider the rules δ respecting this significance level

↪→ We choose one of those rules, δ∗, based on power considerations

3 We reject at level α if δ∗(x) = 1.

Useful for attempting to determine optimal test statistics
What if we already have a given form of test statistic in mind (e.g., LRT)?
↪→ A different perspective on testing (used more in practice) says:

Rather than considering a family of test functions respecting level α...

... consider a family of test functions indexed by α

1 Fix a family {δα}α∈(0,1) of decision rules, with δα having level α

↪→ for a given x some of these rules reject the null while others do not

2 Which is the smallest α for which H0 is rejected given x?
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Observed Significance Level

Definition (p–Value)

Let {δα}α∈(0,1) be a family of test functions satisfying

α1 < α2 =⇒ {x ∈ X : δα1(x) = 1} ⊆ {x ∈ X : δα2(x) = 1}.

The p–value (or observed significance level) of the family {δα} is

p(x) = inf{α : δα(x) = 1}.

↪→ The p–value is the smallest value of α for which the null would be
rejected at level α, given X = x .

Most usual setup:

We have δα(x) = 1{T (x) > kα}, where T is a single test statistic

Then
p(x) = PH0 [T (X ) ≥ T (x)] = 1− G (T (x)),

where G is the df of T under H0
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Observed Significance Level

Notice: contrary to NP-framework we did not make explicit decision!

We simply reported a p–value

The p–value is used as a measure of evidence against H0

↪→ Small p–value provides evidence against H0

↪→ Large p–value provides no evidence against H0

How small does “small” mean?

↪→ Depends on the specific problem...

Intuition:

Recall that extreme values of test statistics are those that are
“inconsistent” with the null (NP-framework)

p–value = probability under the null of observing a value of the test
statistic as extreme as or more extreme than the one we observed

If this probability is small, then we have witnessed something quite
unusual under the null
=⇒ Gives evidence against the null hypothesis
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Example (Normal Mean)

Let X1, ...,Xn
iid∼ N (µ, σ2) where both µ and σ2 are unknown. Consider

H0 : µ = 0 vs H1 : µ 6= 0.

Likelihood ratio test: reject when T 2 large, where T =
√
nX̄/S

H0∼ tn−1.

Since T 2 H0∼ F1,n−1, p–value is

p(x) = PH0 [T 2(X ) ≥ T 2(x)] = 1− GF1,n−1(T 2(x)).

With the samples (datasets)

x = (0.66, 0.28,−0.99, 0.007,−0.29,−1.88,−1.24, 0.94, 0.53,−1.2)

y = (1.4, 0.48, 2.86, 1.02,−1.38, 1.42, 2.11, 2.77, 1.02, 1.87),

we obtain p(x) = 0.32 while p(y) = 0.006.
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Significance VS Decision

Reporting a p–value does not necessarily mean making a decision

A small p–value can simply reflect our “confidence” in rejecting a null

↪→ reflects how statistically significant the alternative statement is

Example

Statisticians working for Obama gather an iid sample X = (X1, . . . ,Xn)>

from Ohio with Xi = 1{vote Obama}. Obama’s team wants to test{
H0 : Romney wins Ohio

H1 : Obama wins Ohio

Should statisticians decide for Obama? Perhaps better to report p–value
to him and let him decide...

What if statisticians work for newspapers and not Obama?
↪→ Something easier to interpret than test/p–value?
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Confidence Intervals
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A Glance Back at Point Estimation

Let X1, ...,Xn be iid random variables with density (frequency) f (·; θ).

Problem with point estimation: Pθ[θ̂ = θ] typically small (if not zero)

↪→ We always attach an estimator of variability, e.g., its standard error.
Interpretation?

Hypothesis tests may provide way to interpret estimator’s variability
within the setup of a particular problem

↪→ e.g., if we observe P̂[obama wins] = 0.52, we can see what p–value we
get when testing H0 : P[obama wins] ≥ 1/2 or
H0 : P[Obama wins] < 1/2.

Something more directly interpretable?

Back to our example: What do pollsters do in newspapers?
↪→ They announce their point estimate (e.g., 0.52)
↪→ They give upper and lower confidence limits

What are these and how are they interpreted?
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Interval Estimation

Simple underlying idea:

Instead of estimating θ by a single value

Present a whole range of values for θ that are consistent with the data
↪→ In the sense that they could have produced the data

Definition (Confidence Interval)

Let X = (X1, ...,Xn)> be a random vector with distribution depending on
θ ∈ R, L(X ) and U(X ) be two statistics with L(X ) < U(X ) a.s., and
α ∈ (0, 1). Then, the random interval [L(X ),U(X )] is called a
100(1− α)% confidence interval (CI) for θ if

Pθ[L(X ) ≤ θ ≤ U(X )] ≥ 1− α

for all θ ∈ Θ, with equality for at least one value of θ.

1− α is called the coverage probability or confidence level

Beware of interpretation!
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Interval Estimation: Interpretation

Probability statement is NOT
made about θ, which is
constant.

Statement is about the random
interval: probability that the
random interval contains the
true value is at least 1− α.

Given any realization X = x ,
the interval [L(x),U(x)] will
either contain or not contain θ.

Interpretation: we expect that
100(1− α)% of the time our
intervals will contain the true
value.
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Example

Let X1, ...,Xn
iid∼ N (µ, 1). Then

√
n(X̄ − µ) ∼ N (0, 1), so that

Pµ[−1.96 ≤
√
n(X̄ − µ) ≤ 1.96] = 0.95.

Since

−1.96 ≤
√
n(X̄ − µ) ≤ 1.96 ⇐⇒ X̄ − 1.96/

√
n ≤ µ ≤ X̄ + 1.96/

√
n

we obviously have

Pµ
[
X̄ − 1.96√

n
≤ µ ≤ X̄ +

1.96√
n

]
= 0.95.

So the random interval [L(X ),U(X )] =
[
X̄ − 1.96√

n
, X̄ + 1.96√

n

]
is a 95% confidence

interval for µ.

Using the CLT, the same argument yields approximate 95% CIs when X1, ...,Xn

are iid with E[Xi ] = µ and Var(Xi ) = 1, regardless of their distribution.
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The Pivotal Method
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Pivotal Quantities

What can we learn from previous example?

Definition (Pivot)

A random function g(X , θ) is said to be a pivotal quantity (or simply a
pivot) if it is a function of both X and θ, but whose distribution does not
depend on θ.

↪→
√
n(X̄ − µ) ∼ N (0, 1) is a pivot in previous example

Why is a pivot useful?

∀ α ∈ (0, 1) we can find constants a < b independent of θ, such that

Pθ[a ≤ g(X , θ) ≤ b] = 1− α ∀ θ ∈ Θ

If g(X , θ) can be manipulated then the above yields a CI
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Example

Let X1, ...,Xn
iid∼ Unif(0, θ). Recall that MLE of θ is θ̂ = X(n), with distribution

Pθ
[
X(n) ≤ x

]
= FX(n)

(x) =
(x
θ

)n
, x ∈ [0, θ],

i.e.,

Pθ
[
X(n)

θ
≤ y

]
= yn, y ∈ [0, 1].

Thus X(n)/θ is a pivot for θ and we can choose a < b such that

Pθ
[
a ≤

X(n)

θ
≤ b

]
= 1− α.

→ But there are ∞-many such choices!
↪→ Idea: choose a pair (a, b) that minimizes interval’s length! Solution can be
seen to be a = α1/n and b = 1, yielding[

X(n),
X(n)

α1/n

]
.
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Comments on Pivotal Quantities

Pivotal method extends to construction of CI for θk , when

θ = (θ1, ..., θk , ..., θp) ∈ Rp

and the remaining coordinates are also unknown. → Pivotal quantity
should now be function g(X ; θk) which

1 Depends on X , θk , but no other parameters

2 Has a distribution independent of any of the parameters

↪→ e.g.: CI for normal mean, when variance unknown

→ Main difficulties with pivotal method:

Hard to find exact pivots in general problems

Exact distributions may be unknown or intractable

=⇒ We often resort to asymptotic approximations...

↪→ Most classic example: an(θ̂n − θ)
d→ N (0, σ2(θ)).
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Extension to Confidence Regions
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Confidence Regions

What about higher dimensional parameters?

Definition (Confidence Region)

Let X = (X1, ...,Xn)> be a random vector with distribution depending on
θ ∈ Θ ⊆ Rp. A random subset R(X ) of Θ depending on X is called a
100(1− α)% confidence region for θ if

Pθ[R(X ) 3 θ] ≥ 1− α

for all θ ∈ Θ, with equality for at least one value of θ.

No restriction requiring R(X ) to be convex or even contiguous

↪→ So when p = 1 we get more general notion than CI

Nevertheless, many notions extend immediately to CR case

↪→ e.g. notion of a pivotal quantity
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Pivots for Confidence Regions

Let g : X ×Θ→ R be a function such that dist[g(X ,θ)] independent of θ
↪→ Since image space is the real line, we can find a < b s.t.

Pθ[a ≤ g(X ,θ) ≤ b] = 1− α,

i.e.,
Pθ[R(X ) 3 θ] = 1− α

where R(x) = {θ ∈ Θ : g(x ,θ) ∈ [a, b])}.
Notice that region can be “wild” since it is a random fibre of g

Example

Let X1, ...,Xn
iid∼ Nk(µ,Σ). Two unbiased estimators of µ and Σ are

µ̂ =
1

n

n∑
i=1

Xi

Σ̂ =
1

n − 1

n∑
i=1

(Xi − µ̂)(Xi − µ̂)T
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Example (cont’d)

Consider the random variable

g({Xi}ni=1,µ) :=
n(n − k)

k(n − 1)
(µ̂− µ)T Σ̂−1(µ̂− µ),

which is known to follow Fk,n−k . A pivot!
↪→ If fq is q-quantile of this distribution, then we get as 100(1− α)% CR
for µ

R({Xi}ni=1) =

{
µ ∈ Rk :

n(n − k)

k(n − 1)
(µ̂− µ)T Σ̂−1(µ̂− µ) ≤ f1−α

}
An ellipsoid in Rk

Ellipsoid centred at µ̂

Principle axis lengths given by eigenvalues of Σ̂−1

Orientation given by eigenvectors of Σ̂−1
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Getting Confidence Regions from Confidence Intervals

Visualisation of high-dimensional CR’s can be hard

When these are ellipsoids, spectral decomposition helps

But more generally?

Things especially easy when dealing with rectangles - but they rarely occur!
↪→ What if we construct a CR as Cartesian product of CI’s?

Let [Li (X ),Ui (X )] be 100qi% CI’s for θi , i = 1, ..., p, and define

R(X ) = [L1(X ),U1(X )]× . . .× [Lp(X ),Up(X )]

Bonferroni’s inequality implies that

Pθ[R(X ) 3 θ] ≥ 1−
p∑

i=1

P[θi /∈ [Li (X ),Ui (X )]] = 1−
p∑

i=1

(1− qi )

→ So pick qi such that
∑p

i=1(1− qi ) = α (can be conservative...)

Erwan Koch (EPFL) Statistical Theory (Week 12) 22 / 33



Inverting Hypothesis Tests
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Confidence Intervals and Hypothesis Tests

Discussion on CIs/CRs → no guidance to choose “good” regions

But: ∃ close relationship between CR’s and HT’s! ↪→ can be exploited
to transform good testing properties into good CR properties

From CR to HP

Suppose R(X ) is an exact 100(1− α)% CR for θ. Consider

H0 : θ = θ0 vs H1 : θ 6= θ0.

Define test function:

δ(X ) =

{
1 if θ0 /∈ R(X ),

0 if θ0 ∈ R(X ).

Then, Eθ0 [δ(X )] = 1− Pθ0 [θ0 ∈ R(X )] ≤ α.

=⇒ We can use a CR to construct test with significance level α!
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Confidence Intervals and Hypothesis Tests

From HT to CR

Going the other way around, we can invert tests to get CRs. Suppose we
have tests at level α for any θ0 ∈ Θ. Let δ(X ;θ0) denote the appropriate
test function for a given θ0.
Define

R∗(X ) = {θ0 : δ(X ;θ0) = 0}.

Coverage probability of R∗(X ) is

Pθ[R∗(X ) 3 θ] = Pθ[δ(X ;θ) = 0] ≥ 1− α.

=⇒ We obtain a 100(1− α)% confidence region by choosing all the θ
for which the null would not be rejected given our data X .

↪→ If test inverted is powerful, then we get a “small” region for given
1− α.
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Summary

p-values provide an alternative framework for hypothesis testing:

Strong point: more nuanced judgement on H0.
Weakness: users usually forget about power.
Key point: in the right hands, p-values are innocuous.
In the wrong hands though ...

Confidence intervals provide a richer notion of estimation by returning
an interval of values of θ compatible with the data.

They are often constructed based on pivotal quantities.

They have a dual relationship with hypothesis testing: an (1− α)-CR

can be turned into a family of α-tests for θ
?
= θ0 and vice-versa.

In the rare cases in which we have UMP tests, we thus have
associated Uniformly Most Accurate CIs.
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Multiple testing (NOT FOR EXAM)
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Multiple Testing

Modern example: looking for signals in noise

Interested in detecting presence of a signal µ(xt), t = 1, . . . ,T over a
discretized domain, {x1, . . . , xt}, on the basis of noisy measurements

This is to be detected against some known background, say 0.

May be interested in detecting whether there is any signal over the
domain or more specifically at which location xt there is a signal

Formally:

Does there exist a t ∈ {1, . . . ,T} such that µ(xt) 6= 0?

or

for which t’s is µ(xt) 6= 0?
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Multiple Testing

More generally:

Observe
Yt = µ(xt) + εt , t = 1, . . . ,T .

Wish to test, at some significance level α:{
H0 : µ(xt) = 0 for all t ∈ {1, . . . ,T},
HA : µ(xt) 6= 0 for some t ∈ {1, . . . ,T}.

May also be interested in which specific locations signal deviates from
zero

More generally: May have T hypotheses to test simultaneously at
level α (they may be related or totally unrelated)

Suppose we have a test statistic for each individual hypothesis H0,t

yielding a p-value pt .
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Bonferroni Method

If we test each hypothesis individually, we will not maintain the level!

Can we maintain the level α?

Idea: use Bonferroni’s inequality.

Bonferroni
1 Test individual hypotheses separately at level αt = α/T

2 Reject H0 if at least one of the {H0,t}Tt=1 is rejected

Global level is bounded as follows:

P[ZZH0|H0] = P

[
T⋃
t=1

{HHHH0,t}

∣∣∣∣∣H0

]
≤

T∑
t=1

P[HHHH0,t |H0] = T
α

T
= α
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Holm-Bonferroni Method

Advantage: Works for any (discrete domain) setup!

Disadvantage: Too conservative when T large

Holm’s modification increases average # of hypotheses rejected at level α (but
does not increase power for overall rejection of H0 = ∩t∈TH0,t)

Holm–Bonferroni’s Procedure

1 We reject H0,t for small values of a corresponding p-value, pt

2 Order p-values from most to least significant: p(1) ≤ . . . ≤ p(T )

3 Starting from t = 1 and going up, reject all H0,(t) such that p(t) significant
at level α/(T − t + 1). Stop rejecting at first insignificant p(t).

Genuine improvement over Bonferroni if want to detect as many signals as
possible, not just existence of some signal.
Both Bonferroni and Holm–Bonferroni reject the global H0 if and only if inft pt
significant at level α/T .
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Taking Advantage of Structure: Independence

In the (special) case where individual test statistics are independent, one may use
Sime’s (in)equality,

P
[
p(j) ≥

jα

T
, for all j = 1, ...,T

∣∣∣∣H0

]
≥ 1− α

(strict equality requires continuous test statistics, otherwise ≤ α)

Sime’s procedure (assuming independence)

1 Suppose we reject H0,j for small values of pj

2 Order p-values from most to least significant: p(1) ≤ . . . ≤ p(T )

3 If, for some j = 1, . . . ,T the p-value p(j) is significant at level jα
T , then

reject the global H0.

Provides a test for the global hypothesis H0, but does not “localize” the signal at
a particular xt
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Taking Advantage of Structure: Independence

Bonferroni, Hochberg, Simes
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Statistical Theory (Week 13): Further considerations
about likelihood methods

Erwan Koch
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1 Confidence intervals based on MLE asymptotics

2 Confidence intervals based on the profile log-likelihood

3 Likelihood methods in practice
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Confidence intervals based on MLE
asymptotics
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Reminder about Asymptotic normality of the MLE

Theorem (Asymptotic Normality of the MLE)

Let X1, . . . ,Xn be iid random variables with density (frequency) f (x ;θ),
θ ∈ Rd , satisfying conditions (B1)-(B6). If θ̂n = θ̂(X1, . . . ,Xn) is a
consistent sequence of MLEs, then

√
n(θ̂n − θ)

d→ Nd(0, J−1(θ)I (θ)J−1(θ)).

Generally, I (θ) = J(θ), so that
√
n(θ̂n − θ)

d→ Nd(0, I−1(θ)),

where I (θ) = −E[∇2`(X1;θ)] and thus has for element (i , j)

ei ,j = E
[
− ∂2

∂θi∂θj
`(X1;θ)

]
.

Denoting by ψi ,j the element (i , j) of I−1(θ),

θ̂i ∼ N(θi , ψi ,i/n), i = 1, . . . , d .
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CIs for individual components

Since the ψi,i are usually unknown, we generally adopt one of the following solutions:

If I (·) has a closed form, we can approximate I (θ) by I (θ̂n), the so-called expected
information matrix.

We can estimate I (θ) using the so-called observed information matrix

IO(θ) = −1

n

n∑
i=1

∇2`(Xi ;θ),

and evaluate it at θ̂n. =⇒ I (θ) ≈ IO(θ̂n).

Denoting by ψ̃i,j the element (i , j) of the inverse of the obtained estimated information
matrix, we have

θ̂i ∼ N(θi , ψ̃i,i/n).

Thus, for α ∈ (0, 1), an approximate 100(1− α)% confidence interval for θi is given byθ̂i − z1−α
2

√
ψ̃i,i

n
, θ̂i + z1−α

2

√
ψ̃i,i

n

 ,
where zα is the α-quantile of the standard Gaussian distribution.
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Use of the delta-method

Let θ̂n be the MLE of θ. Assume that we are interested in a real-valued
parameter φ = g(θ). If

θ̂n ∼ Nd(θ,Vθ),

the delta method yields
φ̂n ∼ N(φ,Vφ),

where
Vφ = ∇φ>Vθ∇φ,

with

∇φ =

(
∂φ

∂θ1
, . . . ,

∂φ

∂θn

)>
evaluated at θ̂n. Then we can easily derive from the asymptotic normality
of φ associated CIs.
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Confidence intervals based on the
profile log-likelihood
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Profile log-likelihood

Alternative and usually more accurate method for making inferences on a
particular component is based on profile likelihood.

Let X1, . . . ,Xn
iid∼ f (x ,θ0), where θ0 ∈ Rd . We denote by L the

log-likelihood associated with X1, . . . ,Xn. For any θ ∈ Rd and
i = 1, . . . , d , we can write (up to a reordering of the components) the
vector θ as (θi ,θ

>
−i )
>, where θi denotes the i-th component of θ and θ−i

denotes all components of θ excluding θi .

Definition

Let i = 1, . . . , d . The profile log-likelihood for θi is defined as

Lp(θi ) = max
θ−i

L(θi ,θ−i ).

=⇒ Lp(θi ) is the profile of the log-likelihood surface viewed from the
θi -axis.
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Profile log-likelihood

Previous definition generalizes to the situation where θ can be
partitioned into two components, θ(1) and θ(2), where θ(1) is the
r -dimensional vector of interest and θ(2) corresponds to the remaining
(d − r) components.

The profile log-likelihood for θ(1) is now defined as

Lp(θ(1)) = max
θ(2)
L(θ(1),θ(2)).
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Reminder about Wilk’s theorem

Let X1, . . . ,Xn be iid random variables with density (frequency) depending
on θ ∈ Rd and satisfying conditions (B1)-(B6), with I (θ) = J(θ).
Consider the likelihood ratio statistic

Λn(X ) =

∏n
i=1 f (Xi ; θ̂n)

maxθ(2)

∏n
i=1 f (Xi ;θ)

where θ̂n is the MLE of θ and θ =
(
θ(1)>,θ(2)>

)>
.

Recall Wilk’s theorem.

Theorem (Wilk’s theorem, general d , general r ≤ d)

If the MLE sequence θ̂n is consistent for θ, then the likelihood ratio

statistic Λn for H0 : θ(1) = θ
(1)
0 satisfies 2 log Λn

d→ V ∼ χ2
r when H0 is

true.
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Link with profile log-likelihood and CIs

Assume that the true parameter is θ0 = (θ
(1)
0

>
,θ

(2)
0

>
)>. Observe that

log Λn = L(θ̂n)− Lp(θ
(1)
0 ), so that Wilk’s theorem yields

2
[
L(θ̂n)− Lp(θ

(1)
0 )
]

d→ V ∼ χ2
r .

On top of being useful for model selection between nested models (see Week 11),
valuable for making inferences about a single component. In the case where
θ0 = (θ0,i ,θ

>
0,−i )

>, we have

2
[
L(θ̂n)− Lp(θ0,i )

]
d→ V ∼ χ2

1.

Profile log-likelihood based CI

Let α ∈ (0, 1) and χ2
1,1−α be the (1− α)-quantile of the χ2

1 distribution. The set

C1−α =
{
θi : 2

[
L(θ̂n)− Lp(θi )

]
≤ χ2

1,1−α

}
is a 100(1− α)% confidence interval for θ0,i .
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Likelihood methods in practice
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Likelihood methods

In this course, we have seen several methods which make heavy use of the
likelihood.

1 Point Estimation: the likelihood function L(θ) represents the
compatibility of each possible value of the parameter with the data.
An intuitively satisfying estimator for θ is the MLE:

θMLE = arg max L(θ).

2 Hypothesis testing (including model selection)/Interval estimation:
the likelihood ratio statistic

supθ∈Θ1
L(θ)

supθ∈Θ0
L(θ)

measures the relative compatibility with the data between the null
and the alternative.
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Likelihood methods

Likelihood methods follow the likelihood principle:

Likelihood principle

1 The likelihood function contains all the relevant information present
in a dataset.

2 Statistical analyses should only take into account the likelihood and
no other aspect of the data.

The likelihood principle is probably too extreme, but good to have
principles.
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Likelihood methods are superior

Throughout the course, we have seen many arguments in favour of the
likelihood principle:

1 The normalized likelihood is a minimally sufficient statistic: It holds
as much information as the data with as little ancillary information as
possible. As such, any statistic computed from the likelihood is
already Rao-Blackwellized = can’t be improved further in this way.

2 Furthermore, asymptotically, the MLE is unbiased, Gaussian, and
saturates the Cramér-Rao bound: It is maximally efficient (among
regular estimators).

3 When there exist optimal tests of a null hypothesis H0 vs H1, they are

the likelihood ratio test (simple vs simple).
directly deduced from the likelihood (MLR property).
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Limits of optimality

It is prominent to remember the restrictions which we had to impose in
order to reach these optimality results:

1 Optimality in point estimation:

Only among unbiased estimators or asymptotically.
The MLE might very-well be dominated.

2 Optimality in testing (including model selection)/interval estimation:

Optimal tests only rarely exist.
The LRT is intuitively satisfying and respects the likelihood principle.
This is all we can say given the content of this course; generally it is
not UMP.
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Asymptotics

In the course, we have seen two main asymptotic results:

1 Asymptotically, the MLE is generally a Gaussian unbiased estimator of
the true parameter value. But beware that it can be biased for finite
n! Consistency issues are also possible.

2 Asymptotically, the Likelihood Ratio Statistic follows a χ2 distribution
under the null hypothesis for nested models.

These two results are crucial for inference. Especially, enable the
construction of CIs from the MLE or the LR Statistic (in link with profile
likelihood) and the choice of an appropriate threshold for the LRT.
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Misspecification

A key limit of likelihood methods is misspecification.

Misspecification almost always occurs.

You might be the greatest statistician on earth, but you will never be
able to guess correctly the true model that generated the data.
A statistical model is always a simplification of reality.

Misspecification implies that some good properties of likelihood
methods are modified or vanish. E.g, pertaining to asymptotics,
misspecification changes the covariance of the MLE and kills the LR
Statistic result.

Importantly, misspecification doesn’t make likelihood methods
meaningless! For example, for point estimation, we have seen that
the MLE tries to estimate the best approximation to the truth within
the assumed parametric class.
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Statistics in practice

My personal opinion is that likelihood methods constitute the best way to
do statistics. Two steps:

1 You choose a good model. It is very hard but mild misspecification is
completely fine. E.g., using a Gaussian model instead of a Student t
with 50 degrees of freedom is no problem at all!

2 You figure out how to compute the MLE or the LRT.

Two crucial advantages:

No step in which you have to guess a good estimator that you then
have to analyze. =⇒ Being a “likelihoodist” entails never having to
deal with this annoying side of statistics.

Method is guaranteed to be (almost) optimal as long as your model is
almost correctly specified.
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Computational aspects and optimization

Statistics is, at its heart, a computational discipline. If your method
has great theoretical properties but can’t be performed by a
computer, it is useless.

Finding the MLE or the LRT are intrinsically optimization
problems.

Essential to understand optimization to be a good independent
statistician.

Some optimization methods: gradient descent and its variants, BFGS,
Nelder–Mead . . .
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Summary

In this course we focused inter alia on three important topics:

Providing a general framework for statistical inference: likelihood
methods.

Analyzing the behaviour of statistical methods when the number of
data points tends to ∞: asymptotic results.

Analyzing the efficiency of various approaches to statistics: is there an
optimal way to do statistics (estimation, hypothesis testing, . . . )?

Important aspects we did not really have time to tackle:

Computational issues.

How to choose a good model?
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1 Motivation: Is Likelihood Always Sensible?

2 Gaussian Estimation Under Quadratic Loss

3 The James-Stein Estimator

4 Asymptotic Optimality and Superefficiency

5 Asymptotically Gaussian Estimators

6 Asymptotic Efficiency

7 Hodges’ Superefficient Estimator

8 Regular Sequences of Estimators

9 Hájek Regularity
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Motivation: Is Likelihood Always
Sensible?
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Likelihood Reminder

We’ve seen that the likelihood possesses several appealing properties:

When there exists a complete sufficient statistic, the MLE is a
function of this statistic

↪→ Hence an unbiased MLE in an exponential family is UMVUE

Asymptotically, the MLE is unbiased and has variance that
approximates the Cramér-Rao bound.

Though the likelihood is not always unbiased, it generally produces
estimators with sensible mean squared error.

For example, it was long believed that, except for pathological
situations, the MLE would always be admissible.

Fisher’s position was that likelihood was always the way to go.

(arguing that the cases where it was shown to not perform well were
artificial and monstrous constructions).
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Enter Charles Stein

In the late 50’s, Charles Stein presented a paper in the Berkeley
Probability/Statistics Symposium that shocked the statistical community:

He produced a non-artificial example of another estimator that
dominates the MLE.

As a matter of fact, the likelihood was inadmissible in his example.

Most shockingly, the example was about estimating the mean of a
Gaussian!

Perhaps the most natural of estimation problems!

Let’s see the precise setting.
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Gaussian Estimation Under
Quadratic Loss
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Stein’s Setup

Gaussian Estimation Under Quadratic Loss
1 Let X1, ...,Xn be independent random variables.

2 Assume that Xi ∼ N (µi , σ
2).

Notice that each Xi has a different mean but same variance.

3 Suppose that σ2 is known, say σ2 = 1 (wlog)

4 Unknown parameter to estimate: µ = (µ1, ..., µn)T ∈ Rn

5 Consider quadratic loss, L(δ,µ) = ‖δ − µ‖2

6 Hence risk is mean squared error, as usual.

↪→ Looks like the usual setup, but notice the subtlety: the dimension of the
parameter dim(µ)=n grows along with the dimension of the sample size.

Is this an artificiality? No: Modern problems have # parameters
comparable to # observations (high dimensional statistics).

Erwan Koch (EPFL) Statistical Theory (Week 14) 7 / 45



The MLE in Stein’s Setup

By independence, the loglikelihood is

`(µ) = −n

2
log(2π)− 1

2

n∑
i=1

(Xi − µi )2

and by differentiation and convexity,

µ̂ = (X1, ...,Xn)> = X

is the unique MLE of µ.

Intuition: we essentially have n Gaussian mean separate problems,
each of sample size 1.

Hence separately estimate each of these means by corresponding
sample mean
(which is Xi since there is only 1 observation in each sample)
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MLE Risk

MLE Risk in Stein’s Setup

Let µ̂ be the MLE in Stein’s setup. Then

R(µ̂,µ) = n, ∀µ ∈ Rn.

Proof.

R(µ̂,µ) = E‖µ̂− µ‖2 = E
[∑n

i=1(Xi − µi )2
]

= nσ2 = n.

Contrary to the usual setup, the risk increases with n (since the number of
parameters increases in n).

Now let’s see what estimator Stein defined...
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The James-Stein Estimator
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The James-Stein Estimator

Theorem (James-Stein)

Let X = (X1, ...,Xn)> be such that X ∼ Nn(µ, I ), µ ∈ Rn (Stein’s
setup). Let δa be an estimator defined as

δa(X ) =

(
1− a

‖X‖2

)
X .

Then, under a quadratic loss function, and if n ≥ 3,

1 For all a ∈ (0, 2n − 4), R(δa,µ) ≤ R(µ̂,µ).

2 For a = n − 2, 2 = R(δn−2, 0) < R(µ̂, 0) = n.

3 R(δn−2,µ) ≤ R(δa,µ), for all µ ∈ Rn and all a ∈ (0, 2n − 4).

Corollary

The MLE is inadmissible in Stein’s setup for n ≥ 3
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The James-Stein Estimator

The result is surprising, not just because the MLE is inadmissible

The JS estimator takes the MLE and shrinks it towards zero.

The amount of shrinkage depends on ‖X‖

That is, we take into account the estimate of µi in order to estimate
µj (i 6= j), even though in principle these are unrelated!

(for example, we are violating the sufficiency principle)

Notice also that the performance of the MLE as compared to the JS
estimator becomes worse and worse as n grows.

The proof is surprisingly elementary
(once one knows what to look for!)
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The James-Stein Estimator

Lemma

Let Y ∼ N (θ, σ2) and h : R→ R be differentiable. If

1 E|h(Y )| <∞,

2 lim
y→±∞

{
h(y) exp

[
− 1

2σ2
(y − θ)2

]}
= 0,

then
E[h(Y )(Y − θ)] = σ2E

[
h′(Y )

]
.

Proof.

By definition, E[h(Y )(Y − θ)] = 1
σ
√

2π

∫∞
−∞ h(y)(y − θ)e−

1
2σ2 (y−θ)2

dy .

Integration by parts transforms the right hand side into

− σ2

σ
√

2π

(
h(y)e−

1
2σ2 (y−θ)2

)∣∣∣+∞
−∞︸ ︷︷ ︸

=0

+
σ2

σ
√

2π

∫ ∞
−∞

h′(y)e−
1

2σ2 (y−θ)2

︸ ︷︷ ︸
=σ2E[h′(Y )]

dy
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Proof of the James-Stein Theorem.

R(δa,µ) = E
∥∥∥∥(1− a

‖X‖2

)
X − µ

∥∥∥∥2

= E
∥∥∥∥X − µ− aX

‖X‖2

∥∥∥∥2

= E ‖X − µ‖2 − 2E
(
aX>(X − µ)

‖X‖2

)
+ E

[
a2‖X‖2

‖X‖4

]
= n − 2a

n∑
i=1

E

[
Xi (Xi − µi )∑n

j=1 X
2
j

]
+ a2E

[
1

‖X‖2

]
.

Now define n differentiable functions hi : R→ R by

hi (x) =
x

x2 +
∑n

j 6=i X
2
j

and observe that, for all i ∈ {1, ..., n},

lim
xi→±∞

{
h(xi ) exp

[
− 1

2σ2
(xi − µi )2

]}
= 0
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(proof ct’d)

We now use the tower property and apply our lemma to obtain

E

[
Xi (Xi − µi )∑n

j=1 X
2
j

]
= E [hi (Xi )(Xi − µi )] = E

{
E [hi (Xi )(Xi − µi )| {Xj}j 6=i ]

}

= E
{
E
[
h′i (Xi )|{Xj}j 6=i

] }
= E

[
h′i (Xi )

]
= E

∑n
j=1 X

2
j − 2X 2

i(∑n
j=1 X

2
j

)2

 .
It follows that the risk can be written as

R(δa,µ) = n − 2aE
[
n‖X‖2 − 2‖X‖2

‖X‖4

]
+ a2E

[
1

‖X‖2

]
= n + [a2 − 2a(n − 2)]E

[
1

‖X‖2

]
︸ ︷︷ ︸

>0

.
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(proof ct’d).

Now, the polynomial

p(a) = a2 − 2a(n − 2) = a[a− 2(n − 2)]

is strictly negative in the range (0, 2n− 4). Therefore, we have proven part
(1).

Furthermore, on the same range, p(a) has a unique minimum at
a = n − 2, which proves part (3).

For part (2), note that if µ = 0, ‖X‖2 ∼ χ2
n, so E[1/‖X‖2] = 1/(n − 2)

(recall that n ≥ 3). Consequently, R(δn−2, 0) = 2.
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Summary on JSE vs MLE

The MLE has constant risk RMLE = n.

Around µ = 0, the JSE dominates the MLE by a mile! RJSE = 2� n.

For every other value of µ, the JSE dominates the MLE (possibly by
a hair).

The Stein setup can be extended to the case where we have
X1, . . . ,Xn are independent p-dimensional random vectors. The same
phenomenon appears wrt p for p ≥ 3. In this setting, we see that the
domination region shrinks when the sample size n grows.

The Stein setup is written for the Gaussian model, but the same
phenomenon occurs asymptotically for any MLE: θ̂

.∼ N(θ0,Σ/n).

We could construct a JSE biased towards any point of space instead
of µ = 0: this just shifts the domination zone. We can also have
multiple shrinkages.
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Summary on JSE vs MLE

Critically, the domination only occurs in a small region around µ = 0.
As soon as ‖µ‖2 � p/n, their risks are approximately equal.
Furthermore, if you have been able to choose the shrinkage region
correctly, you have been able to locate a priori the true parameter
value at the same precision as the data. That’s a miracle: go play
the lottery instead of doing stats.
=⇒ the domination of the JSE is mostly theoretical: I don’t think I

have ever seen it used in practice.

However, Stein’s example demonstrates the huge benefits of bias in
high-dimensions: a small bias can result in a huge reduction in
variance.
Canonically, we induce bias through the addition of an L2 loss on top
of the log-likelihood. The L1 loss can also be used to induce sparsity
in the estimator. The relative size of the additional loss is chosen
through a validation set or cross-validation.
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Asymptotic Optimality and
Superefficiency
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What about asymptotic optimality?

An optimal decision rule would is one that uniformly minimizes risk:

R(θ, δOPTIMAL) ≤ R(θ, δ), ∀θ ∈ Θ & ∀δ ∈ D.

Such rules can very rarely be determined.

Some avenues to studying optimal decision rules include:

Restricting attention to global risk criteria rather than local
↪→ Bayes and minimax risk.

Focusing on restricted classes of rules D
↪→ e.g. Minimum Variance Unbiased Estimation.

Studying risk behaviour asymptotically (n→∞)

↪→ e.g. Asymptotic Relative Efficiency.
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Asymptotically Gaussian Estimators
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Comparing Asymptotically Gaussian Estimators

Have two possible estimators θ̂ and θ̃ of θ based on X1, ..,Xn.
Risk comparisons may be intractable (including minimax/Bayes)
Idea: Compare as n→∞

Definition

Let {Xi}ni=1 be a sequence of random variables and suppose that θ̂n and
θ̃n are estimators of θ based on X1, ...,Xn satisfying

θ̂ − θ
σ1n(θ)

d→ N (0, 1) &
θ̃ − θ
σ2n(θ)

d→ N (0, 1)

for some sequences {σ2n} and {σ1n}. We define the asymptotic relative
efficiency of θ̂ to θ̃ to be

AREθ(θ̂, θ̃) = lim
n→∞

(
σ2

2n/σ
2
1n

)
provided that the limit exists.

Erwan Koch (EPFL) Statistical Theory (Week 14) 22 / 45



Comparing Asymptotically Gaussian Estimators

Interpretation of asymptotic relative efficiency?

In many examples (e.g. if X1, ...,Xn are iid) we have

σ1n =
σ1(θ)√

n
& σ2n =

σ2(θ)√
n

so that AREθ(θ̂, θ̃) =
σ2

2(θ)

σ2
1(θ)

.

Suppose that we have a choice between θ̂n and θ̃m as estimators of θ
↪→ Notice that we allow for different sample sizes n and m
Suppose we choose n and m so that

Pθ[|θ̂n − θ| < ∆] ≈ Pθ[|θ̃m − θ| < ∆].

If n,m are sufficiently large, this is equivalent to

P[|Z | < ∆
√
n/σ1(θ)] ≈ P[|Z | < ∆

√
m/σ2(θ)]

for Z ∼ N (0, 1).
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Comparing Asymptotically Gaussian Estimators

We conclude that

√
n

σ1(θ)
≈
√
m

σ2(θ)
or, equivalently,

σ2
2(θ)

σ2
1(θ)

≈ m

n

The ratio of sample sizes needed to achieve the same accuracy is
approximately equal to ARE
e.g. if AREθ(θ̂, θ̃) = 2 we need double the amount of data to achieve
θ̂’s precision when using θ̃
Warning: interpretation valid for large sample sizes and ARE may
change for different values θ of the true parameter.

Example

Let X1, ...,Xn
iid∼ N (µ, σ2). We have

√
n(X̄n − µ)

d→ N (0, σ2) &
√
n(med(X1, ...,Xn)− µ)

d→ N (0, πσ2/2)

Hence ARE (X̄ ,med(X1, ...,Xn)) = π/2 ≈ 1.571.
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Example

Let X1, ...,Xn
iid∼ Poisson(λ). Suppose we want to estimate

exp(−λ) = Pλ(Xi = 0). Consider the estimators

θ̂n = exp(−X̄n) & θ̃n =
1

n

n∑
i=1

1{Xi = 0}.

Using the CLT and the Delta method we have

√
n(θ̂n − θ)

d
= N (0, λ exp(−2λ))

√
n(θ̃n − θ)

d
= N (0, exp(−λ)− exp(−2λ))

yielding

AREλ(θ̂, θ̃) =
exp(λ)− 1

λ

Using a McLaurin expansion, it is easy to see that this expression is
greater than 1 for all λ, but close to 1 for small values of λ.
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Example

Let X1, ...,Xn
iid∼ Exp(λ). When discussing MoM estimators, we derived a

family of estimators of λ through the equation Eλ[X r
i ] = Γ(r+1)

λr ,

λ̂
(r)
n :=

(
1

nΓ(r + 1)

n∑
i=1

X r
i

)− 1
r

.

Since Varλ(X r
i ) = (Γ(2r + 1)− Γ2(r + 1))/λ2r ), we may apply the CLT

followed by the Delta Method and obtain

√
n(λ̂

(r)
n − λ)

d→ N
(

0,
λ2

r2

[
Γ(2r + 1)

Γ2(r + 1)
− 1

])
.

The variance term turns out to be minimized for r = 1, so that 1/X̄ is
(asymptotically) the most efficient estimator within this family.
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Asymptotic Efficiency

Erwan Koch (EPFL) Statistical Theory (Week 14) 27 / 45



Asymptotic Normality and the Cramér-Rao Bound

We have seen that, under regularity conditions, the MLE θ̂ of θ satisfies

√
n(θ̂n − θ)

d→ N (0, I−1(θ))

where I (θ) = Varθ
[
∂
∂θ log f (X1; θ)

]
. In other words, for sufficiently large n,

Eθ[θ̂n] ≈ θ & Varθ(θ̂n) ≈ 1

nI (θ)
.

On the other hand, the Cramér-Rao bound informs us that for any
unbiased estimator T , based on X1, ...,Xn it must be that

Varθ[T ] ≥ n−1I−1(θ)

Raises question:

If θ̃n is such that
√
n(θ̃n − θ)

d→ N (0, σ2(θ)) then is σ2(θ) ≥ I−1(θ)
∀θ ∈ Θ?

In other words, is the MLE asymptotically optimal among consistent
estimators that asymptotically have a Gaussian distribution?
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Hodges’ Superefficient Estimator
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Hodges’ Counterexample

The answer to our question is NO in general
↪→ Hodges’ example of a superefficient estimator

Let X1, ...,Xn
iid∼ N (θ, 1). Observe that, for this model,

I (θ) = E

[(
∂

∂θ
log f (Xi ; θ)

)2
]

= E

[(
∂

∂θ
− 1

2
(Xi − θ)2

)2
]

= Var(Xi ) = 1

Define an estimator

θ̃n :=

{
X̄n if |X̄n| ≥ n−1/4,

αX̄n otherwise.

where α is some fixed constant with |α| < 1.

Let’s study the asymptotics of this estimator...
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Hodges’ Counterexample

Taking note that
√
n(X̄n − θ)

d
= Z ∼ N (0, 1), for all n ≥ 1,

√
n(θ̃ − θ) =

√
n(X̄n − θ)1{|X̄n| ≥ n−

1
4 }+

√
n(αX̄n − θ)1{|X̄n| < n−

1
4 }

=
√
n(X̄n − θ)1{

√
n|X̄n−θ + θ| ≥ n

1
4 }+

+
√
n(αX̄n − αθ + αθ − θ)1{

√
n|X̄n−θ + θ| < n

1
4 }

d
= Z1{|Z +

√
nθ| ≥ n

1
4 }+

+[αZ +
√
nθ(α− 1)]1{|Z +

√
nθ| < n

1
4 }

Observe that Z +
√
nθ ∼ N (

√
nθ, 1) so that

1{|Z +
√
nθ| ≥ n

1
4 } p→

{
0 if θ = 0,

1 if θ 6= 0.

which implies that

Z1{|Z +
√
nθ| ≥ n

1
4 } p→

{
0 if θ = 0,

Z if θ 6= 0.
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Hodges’ Counterexample

Similarly, the fact that

1{|Z +
√
nθ| < n

1
4 } p→

{
1 if θ = 0,

0 if θ 6= 0.

yields

[αZ +
√
nθ(α− 1)]1{|Z +

√
nθ| < n

1
4 } p→

{
αZ if θ = 0,

0 if θ 6= 0.
.

Combining our findings, we conlcude that

√
n(θ̃ − θ)

d→

{
αZ if θ = 0,

Z if θ 6= 0.
.

It follows that
√
n(θ̃ − θ)

d→ N (0, σ2(θ)) with

I−1(θ) = 1 ≥ σ2(θ) = 1 · 1{θ 6= 0}+ α2 · 1{θ = 0}
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Hodges’s Counterexample, Superefficiency and Regularity

Observe that in the example, σ2(θ) ≤ I−1(θ) and not just

∃ θ : σ2(θ) < I−1(θ).

Such estimators are called superefficient, as they asymptotically
dominate estimators that asymptotically achieve the CR-bound.

What causes this phenomenon?. It turns out that if σ2(θ) is
continuous then σ2(θ) ≥ I−1(θ) always

↪→ In the presence of continuity the answer to our question on MLE
asymptotic optimality is YES.

Subject to weak regularity conditions,

{θ : σ2(θ) < I−1(θ)} is at most a countable set

Crucial notion behind superefficiency?
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Optimality of the MLE

One critical feature of the Hodges estimator is the fact that σ2(θ) has
a discontinuity at θ = 0 where the superefficiency is achieved.

We can define regular estimators which are such that such
discontinuities are forbidden.

It turns out that, among regular estimators, it is true that
σ2(θ) ≥ I (θ) everywhere. Thus, the MLE maximizes efficiency for
regular estimators.

This is one possible way to defend the MLE against Hodge super-efficiency
...
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Going on the offensive

However, it is much better to observe that Hodges-style super-efficient
estimators are actually terrible:

We pay for efficiency around θ = 0 in other positions.

Furthermore, the Hodges estimator is also biased.

Finally, the Hodges estimator is very non-Gaussian for θ ≈ n−1/4.

Going to the limit n→∞ hides these properties of the Hodge estimator.
Be wary of limits (Jayne Probability Theory, the logic of science).
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Summary

In a correctly specified model, the MLE is a great estimator because it is
asymptotically unbiased and saturates the Cramér-Rao bound.
Today, we saw two results that challenge this view on the MLE:

The JSE is a biased estimator that dominates the MLE everywhere.
Very general and interesting result.
However, the zone where this domination is significant is very small:
‖µ‖ � p/n.

The JSE example tells us about the strength of bias in
high-dimensional inference.
the JSE is a super-efficient estimator, but not Hodges-style.

The Hodges superefficient estimator has superior Asymptotic Efficiency
compared to the MLE.
This is a (fairly boring) case of the danger of limits
For finite n the Hodges estimator is better at θ = 0 and worse
everywhere else.
We can exclude the Hodges estimator by focusing on regular
estimators.

The MLE is a great estimator. Regularized MLEs are also great estimators.
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Regular Sequences of Estimators

Erwan Koch (EPFL) Statistical Theory (Week 14) 37 / 45



Hodge’s Counterexample, Superefficiency and Regularity

Definition (Hájek Regularity)

A sequence of estimators {θ̂n} is regular at θ if, for θn = θ + c/
√
n,

lim
n→∞

Pθn
[√

n(θ̂n − θn) ≤ x
]

= Gθ(x)

where Gθ may depend on θ but not on c.

Intuition: limit theorem is stable to n−1/2 perturbations of the true
parameter (limit theorem is continuous at θ at scale n−1/2).

Hodges’ estimator is not regular, MLE is regular

Example (Normal Distribution)

Let X1, ...,Xn
iid∼ N (θ, 1) and θ̂n = X̄n. Under the parameter

θn = θ + c/
√
n, we have θ̂n ∼ N (θn,

1
n ).

Hence
√
n(θ̂n − θn) ∼ N (0, 1) ∀n and θ̂n is regular.
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Hájek Regularity

Erwan Koch (EPFL) Statistical Theory (Week 14) 39 / 45



Regularity and Superefficincy

Example (Exponential Distribution)

Let X1, ...,Xn
iid∼ Exp(λ) and define λ̂n := 1/X̄n and λn = λ+ c/

√
n.

By the Lyapunov CLT:

Pλn
[√

n

(
X̄n −

1

λn

)
≤ x

]
→ Φ(λx)

where Φ is the standard Gaussian distribution function. A
“Delta-Method”-type argument yields

Pλn
[√

n
(
λ̂n − λn

)
≤ x

]
→ Φ(x/λ)

and so {λ̂n} is a regular sequence of estimators.

So why care about regularity?
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Regularity and Asymptotic Efficiency

Theorem

Let X1, ...,Xn be iid random variables with density (frequency) f (x ; θ) and
suppose that {θ̂n} is a regular sequence of estimators for θ. If

n∑
i=1

[
log f

(
Xi ; θ +

c√
n

)
− log f (Xi ; θ)

]
= cSn(θ)− 1

2
c2I (θ) + Rn(c , θ)

where Sn(θ)
d→ N (0, I (θ)) and Rn(c , θ)

p→ 0 for all c, then

√
n(θ̂n − θ)

d→ Z1 + Z2

where Z1 ∼ N (0, I−1(θ)) and Z2 is independent of Z1.

Gives an asymptotic representation of regular sequences.

Can be thought of as an asymptotic version of the Cramér-Rao bound.

Condition is quadratic expansion of likelihood in neighbourhood of θ
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Regularity and Asymptotic Efficiency

In most cases
√
n(θ̂n − θ)

d→ N (0, σ2(θ)) (i.e. Z2 also Gaussian)

When σ2(θ) = I−1(θ) then θ̂n is said to be asymptotically efficient.

Asymptotic Efficiency of MLEs

Under the assumptions of the theorem, the MLE θ̂n typically satisfies

√
n(θ̂n − θ)

d→ N (0, I−1(θ))

which establishes the MLE as the most efficient of all regular estimators.

↪→ However, there may exist other regular estimators with the same
asymptotic properties and superior finite sample properties

Theorem extends to vector parameter case θ ∈ Rp, in which case Z1

is distributed as Np(0, I−1(θ)).
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Regularity and Asymptotic Efficiency

Sketch of proof. (rigorous proof quite technical)

Make stronger assumptions

Eθ
[
exp

(
t1

√
n(θ̂n − θ) + t2Sn(θ)

)]
n→∞−→ m(t1, t2)

Eθn
[
exp

(
t1

√
n(θ̂n − θn)

)]
n→∞−→ m(t1, 0)

for θn = θ + c/
√
n and |t1|, |t2| ≤ b, some b > 0. We need to show that

m(t, 0) is the product of two moment generating functions, one of which
is that of a N (0, I−1(θ)). Now, note that

Eθn
[
exp

(
t1

√
n(θ̂n − θ)

)]
= exp(t1c)Eθn

[
exp

(
t1

√
n(θ̂n − θn)

)]
n→∞−→ exp(t1c)m(t1, 0)

Set

Wn(θ, c) =
n∑

i=1

[
log f (Xi , θ + c/

√
n)− log f (Xi ; θ)

]
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Regularity and Asymptotic Efficiency

Moreover, it is not too difficult to see that

Eθn
[
exp

(
t1

√
n(θ̂n − θ)

)]
= Eθ

[
exp

(
t1

√
n(θ̂n − θ) + Wn(θ, c)

)]
n→∞−→ m(t1, c) exp(−1

2
c2I (θ))

since we may substitute the approximately quadratic function for Wn(θ, c).
Equating the two limits,

m(t1, 0) = m(t1, c) exp

(
−t1c −

1

2
c2I (θ)

)
.

Now set c = −t1/I (θ) to obtain

m(t1, 0) = m

(
t1,−

t1

I (θ)

)
exp

(
t2
1

2I (θ)

)
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Regularity and Asymptotic Efficiency

It is easy to see that m(t1,−t1/I (θ)) is an mgf , and, of course,

exp
(

t2
1

2I (θ)

)
is the mgf of a N (0, I−1(θ)).

Rigorous proof very similar, but uses cf’s and takes care of may
technical issues (and of course the points we took as assumptions).

The question that naturally arises then is how to establish regularity?
↪→ Usually a tedious process.

→ Hájek regularity assumption may be replaced by Tierney regularity:

lim
n→∞

Pθ
[√

n(θ̂n − θ) ≤ x
]

= Gθ(x)

where Gθ has the property that
∫ +∞
−∞ h(x)Gθ(dx) is continuous w.r.t. θ for

all bounded h.
→ If Gθ = N (0, σ2(θ)) and σ2(θ) continuous, then Tierney regularity
satisfied.
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