
Exercise sheet 9

Exercise 1 Show that if $X_0, X_1, \dots, X_n \in \mathbb{R}^d$ are independent and identically distributed with a continuous density function f , then for all $u > 0$,

$$\lim_{n \rightarrow \infty} \mathbb{P} \left(n^{1/d} \|X_{(1)}(X_0) - X_0\| > u | X_0 \right) = e^{-V_d f(X_0) u^d} \text{ a.s.}$$

where $V_d > 0$ is the volume of the unit ball in \mathbb{R}^d ($V_1 = 2$).

Exercise 2 This question shows how to obtain rates of convergence for the k -nearest neighbours classifier under smoothness conditions.

Let $(X_1, Y_1), \dots, (X_n, Y_n) \in \mathbb{R}^d \times \{0, 1\}$ be independent and identically distributed and let $\eta(x) = \mathbb{P}(Y_1 = 1 | X_1 = x)$. Let (X, Y) be independent of $\{(X_i, Y_i)\}_{i=1}^n$ and have the same distribution as (X_1, Y_1) . As in the lectures define $\tilde{\eta}_n(x) = \mathbb{E}[\hat{\eta}_n(x) | X_1, \dots, X_n]$ for $x \in \mathbb{R}^d$. Suppose that $|\eta(x) - \eta(y)| \leq M \|x - y\|$ for all $x, y \in \mathbb{R}^d$. Show that for all $\delta > 0$,

$$\mathbb{E}[(\tilde{\eta}_n(X) - \eta(X))^2] \leq 4dM^2 \mathbb{P}(\|X_{(k)}(X) - X\| > \delta) + M^2 \delta^2,$$

where the expectation and the probability are taken with respect to all the random variables $(X, Y), (X_1, Y_1), \dots, (X_n, Y_n)$.

Now suppose that $\mathbb{P}(X_1 \in [-1, 1]^d) = 1$ and that X_1 has a density f that is bounded below on $[-1, 1]^d$. For $x \in [-1, 1]^d$ and $t \geq 0$ define the function $F_x(t) = \mathbb{P}(\|X_1 - x\| \leq t)$. You may use without proof that under these conditions, there exists $c \in (0, 1]$, independent of x , such that $F_x^{-1}(s) \leq (s/c)^{1/d}$ for all $s \in [0, c]$.

Show that if $\delta = (2k/[nc])^{1/d} \leq 1$ then for all $x \in [-1, 1]^d$,

$$\mathbb{P}(\|X_{(k)}(x) - x\| > \delta) \leq \frac{1}{k}.$$

Hint: use exercise 5 from week 8.

Show that there exist finite positive C_1, C_2, ϵ , independent of k and n , such that if $k/n \leq \epsilon$ then

$$\mathbb{E}[(\tilde{\eta}_n(X) - \eta(X))^2] \leq \frac{C_1}{k} + C_2 \left(\frac{k}{n} \right)^{2/d}.$$

Deduce that for an appropriate choice of k ,

$$\mathbb{E}\hat{g}_n(X) - R(g^*) \leq Cn^{-1/(d+2)}$$

for some finite constant C that does not depend on n .

Bonus. Assuming that X takes values in $[-1, 1]^d$ and has density bounded below there, show that there exists $c \in (0, 1]$ such that for all $x \in [-1, 1]^d$, the function $F_x(t) = \mathbb{P}(\|X_1 - x\| \leq t)$ satisfies

$$F_x(t) \geq ct^d$$

for all $t \leq 1$. Deduce an upper bound on its inverse $F_x^{-1}(s)$ for $s \leq c$ and all $x \in [-1, 1]^d$.

Exercise 3 Let Y be a nonnegative random variable and $y > 0$. Show that

$$\inf_{t \geq 0} e^{-ty} \mathbb{E}e^{tY} \geq \inf_{k \in \mathbb{N} \cup \{0\}} y^{-k} \mathbb{E}Y^k.$$

In other words, the Chernoff bound can be improved if instead of e^{tY} we consider the moments Y^k . When does the inequality hold as equality?

Exercise 4 Let Y be a random variable with mean zero and $a \leq Y \leq b$. Use convexity to show that for every $t \in \mathbb{R}$, we have

$$\log \mathbb{E}(e^{tY}) \leq -\alpha u + \log(\beta + \alpha e^u),$$

where $u = t(b - a)$ and $\alpha = 1 - \beta = -a/(b - a)$. Using a second-order Taylor expansion about the origin, deduce that $\log \mathbb{E}(e^{tY}) \leq t^2(b - a)^2/8$.

Exercise 5 Suppose that \bar{X}_n satisfies

$$\mathbb{P}(\bar{X}_n > x) \leq \inf_{t \in [0, 1/M)} \exp\left(n \frac{t^2 \sigma^2}{2(1-tM)}\right) \exp(-tnx)$$

for all $x > 0$.

$$\mathbb{P}\left(\bar{X}_n \geq \frac{\sigma\sqrt{2}}{\sqrt{n}} \sqrt{\log \frac{1}{\delta}} + \frac{M}{n} \log \frac{1}{\delta}\right) \leq \delta, \quad \delta \in (0, 1].$$

Hint: optimise the bound over $s = 1 - Mt \in (0, 1]$