

Exercise sheet 8

The support of a distribution P on \mathbb{R}^d (or any Polish space) is the set of points x such that $P(B_\epsilon(x)) > 0$ for all $\epsilon > 0$, where $B_\epsilon(x) = \{y : \|y - x\| < \epsilon\}$. You may use without proof that $\mathbb{P}(X \in \text{supp } P_X) = 1$, where $\text{supp } P_X$ is the support of the distribution of X . The proof of this is given below, but is **not** examinable.

For each $x \in \mathbb{R}^d$ let $r(x) := \sup\{r \geq 0 : P_X(B_r(x)) = 0\}$, with $r(x) = 0$ for $x \in \text{supp}(P_X)$ and $r(x) > 0$ otherwise. For each $x \notin \text{supp}(P_X)$ there exists $x' \in \mathbb{Q}^d$ with $\|x - x'\| \leq r(x)/4$. This satisfies $P_X(B_{r(x)/2}(x')) \leq P_X(B_{3r(x)/4}(x)) = 0$ and so $r(x') \geq r(x)/2$ and $\|x - x'\| \leq r(x')/2$. Hence

$$\mathbb{P}(X_0 \notin \text{supp}(P_X)) \leq P_X\left(\bigcup_{x' \in \mathbb{Q}^d \setminus \text{supp}(P_X)} B_{r(x')/2}(x')\right) \leq \sum_{x' \in \mathbb{Q}^d \setminus \text{supp}(P_X)} P_X(B_{r(x')/2}(x')) = 0$$

as required.

Exercise 1 Here we give an alternative proof that \bar{X}_n is admissible in a Gaussian model with squared loss. Let δ have $R(\theta, \delta) \leq 1/n$ for all θ , with strict inequality for some θ_0 . We wish to obtain a contradiction. By continuity of $\theta \mapsto R(\theta, \delta)$ we can find $\epsilon > 0$ and $\theta_1 > \theta_0$ such that $R(\theta, \delta) < 1/n - \epsilon$ for all $\theta \in (\theta_0, \theta_1)$.

For $\tau > 0$ consider the prior $\pi_\tau = N(0, \tau^2)$.

1. Show that for the π_τ -Bayes estimator δ_τ ,

$$\frac{\frac{1}{n} - r(\pi_\tau, \delta)}{\frac{1}{n} - r(\pi_\tau, \delta_\tau)} = \frac{\int (\frac{1}{n} - R(\theta, \delta)) \frac{1}{\sqrt{2\pi\tau}} \exp(-\theta^2/2\tau^2) d\theta}{\frac{1}{n} - \frac{1}{n + \tau^2}}$$

2. Show that as $\tau \rightarrow \infty$, this fraction converges to ∞ and deduce a contraction.

Exercise 2 This problem considers minimaxity in nonparametric classes of distributions with squared loss.

1. Let \mathcal{F} be the class of distributions with variance bounded by 1. Suppose we are interested in the mean $\mu = \mu(\mathcal{F})$. Show that \bar{X}_n is minimax for the estimation of μ .
2. Let \mathcal{F} be the class of all distributions on $[0, 1]$. Find a minimax estimator for the mean $\mu = \mu(\mathcal{F})$. *Hint: we have a candidate from the previous exercise set. Show that it is indeed minimax. Write .*

Exercise 3 Let $g^* : \mathbb{R}^d \rightarrow \{0, 1\}$ be the Bayes classifier.

1. Prove that

$$\mathbb{P}(g^*(X) \neq Y) = \mathbb{E} \{ \min(\eta(X), 1 - \eta(X)) \}.$$

2. Show that for any classifier $g : \mathbb{R}^d \rightarrow \{0, 1\}$,

$$\mathbb{P}(g^*(X) \neq Y) \leq \mathbb{P}(g(X) \neq Y).$$

3. For $\tilde{\eta}(x)$ and $\tilde{g}(x) = 1$ if $\tilde{\eta}(x) \geq 1/2$, prove that

$$\mathbb{P}(\tilde{g}(X) \neq Y) - \mathbb{P}(g^*(X) \neq Y) \leq 2\mathbb{E}|\eta(X) - \tilde{\eta}(X)|.$$

Exercise 4 Denote the probability measure for X by P_X . Fix $x \in \text{supp}(P_X) \in \mathbb{R}^d$ and reorder the data $(X_1, Y_1), \dots, (X_n, Y_n)$ according to increasing values of $\|X_i - x\|$. The reordered data sequence is denoted by

$$(X_{(1)}(x), Y_{(1)}(x)), \dots, (X_{(n)}(x), Y_{(n)}(x)).$$

If $\lim_{n \rightarrow \infty} k/n = 0$, then prove that $\|X_{(k)}(x) - x\| \rightarrow 0$ with probability one.

Show that if X_0 is independent of the data and has probability measure P_X , then $\|X_{(k)}(X_0) - X_0\| \rightarrow 0$ with probability one whenever $k/n \rightarrow 0$.

Exercise 5 Here we give an alternative argument that $\mathbb{P}(\|X_{(k)}(X) - X\| > \delta) \rightarrow 0$ for all $\delta > 0$ for the k -nearest neighbour classifier when $k/n \rightarrow 0$ and $k \rightarrow \infty$. Let $U_{(k)}$ be the k -th order statistic of independent $U_1, \dots, U_n \sim [0, 1]$. Using that $U_{(k)}$ has mean $k/(n+1)$ and variance $k(n-k+1)/[(n+1)^2(n+2)]$, show that

$$\mathbb{P}\left(U_{(k)} > \frac{2k}{n}\right) \rightarrow 0.$$

For $x \in \text{supp}(P_X)$ define $F_x(t) = \mathbb{P}(\|X_1 - x\| \leq t)$. Let F_x^{-1} denote the corresponding quantile function. Show that $\lim_{s \searrow 0} F_x^{-1}(s) = 0$. Deduce that $\mathbb{P}(\|X_{(k)}(x) - x\| > \delta) \rightarrow 0$ for all $\delta > 0$. Deduce further that $\mathbb{P}(\|X_{(k)}(X) - X\| > \delta) \rightarrow 0$, where X is independent of the sequence X_1, \dots and has the same distribution as X_1 .