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Exercise sheet 8

The support of a distribution P on Rd (or any Polish space) is the set of points x such that
P (Bϵ(x)) > 0 for all ϵ > 0, where Bϵ(x) = {y : ∥y − x∥ < ϵ}. You may use without proof that
P(X ∈ suppPX) = 1, where suppPX is the support of the distribution of X. The proof of this is
given below, but is not examinable.

For each x ∈ Rd let r(x) := sup{r ≥ 0 : PX(Br(x)) = 0}, with r(x) = 0 for x ∈ supp(PX) and
r(x) > 0 otherwise. For each x /∈ supp(PX) there exists x′ ∈ Qd with ∥x − x′∥ ≤ r(x)/4. This
satisfies PX(Br(x)/2(x′)) ≤ PX(B3r(x)/4(x)) = 0 and so r(x′) ≥ r(x)/2 and ∥x − x′∥ ≤ r(x′)/2.
Hence

P(X0 /∈ supp(PX)) ≤ PX

( ⋃
x′∈Qd\supp(PX)

Br(x′)/2(x′)
)

≤
∑

x′∈Qd\supp(PX)
PX(Br(x′)/2(x′)) = 0

as required.

Exercise 1 Here we give an alternative proof that Xn is admissible in a Gaussian model with
squared loss. Let δ have R(θ, δ) ≤ 1/n for all θ, with strict inequality for some θ0. We wish to
obtain a contradiction. By continuity of θ 7→ R(θ, δ) we can find ϵ > 0 and θ1 > θ0 such that
R(θ, δ) < 1/n − ϵ for all θ ∈ (θ0, θ1).

For τ > 0 consider the prior πτ = N(0, τ 2).

1. Show that for the πτ -Bayes estimator δτ ,

1
n

−r(πτ ,δ)
1
n

−r(πτ ,δτ )
=
∫

( 1
n

−R(θ,δ)) 1√
2πτ

exp(−θ2/2τ2)dθ

1
n

− 1
n+τ−2

2. Show that as τ → ∞, this fraction converges to ∞ and deduce a contraction.

Exercise 2 This problem considers minimaxity in nonparametric classes of distributions with
squared loss.

1. Let F be the class of distributions with variance bounded by 1. Suppose we are interested in
the mean µ = µ(F ). Show that Xn is minimax for the estimation of µ.

2. Let F be the class of all distributions on [0, 1]. Find a minimax estimator for the mean
µ = µ(F ). Hint: we have a candidate from the previous exercise set. Show that it is indeed
minimax. Write .

Exercise 3 Let g∗ : Rd → {0, 1} be the Bayes classifier.

1. Prove that
P(g∗(X) ̸= Y ) = E {min(η(X), 1 − η(X))} .

2. Show that for any classifier g : Rd → {0, 1},

P(g∗(X) ̸= Y ) ≤ P(g(X) ̸= Y ).
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3. For η̃(x) and g̃(x) = 1 if η̃(x) ≥ 1/2, prove that

P(g̃(X) ̸= Y ) − P(g∗(X) ̸= Y ) ≤ 2E|η(X) − η̃(X)|.

Exercise 4 Denote the probability measure for X by PX . Fix x ∈ supp(PX) ∈ Rd and reorder
the data (X1, Y1), . . . , (Xn, Yn) according to increasing values of ||Xi − x||. The reordered data
sequence is denoted by

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x)).

If limn→∞ k/n = 0, then prove that ||X(k)(x) − x|| → 0 with probability one.
Show that if X0 is independent of the data and has probability measure PX , then ||X(k)(X0) −

X0|| → 0 with probability one whenever k/n → 0.

Exercise 5 Here we give an alternative argument that P(∥X(k)(X) − X∥ > δ) → 0 for all δ > 0
for the k-nearest neighbour classifier when k/n → 0 and k → ∞. Let U(k) be the k-th order
statistic of independent U1, . . . , Un ∼ [0, 1]. Using that U(k) has mean k/(n + 1) and variance
k(n − k + 1)/[(n + 1)2(n + 2)], show that

P
(
U(k) > 2k

n

)
→ 0.

For x ∈ supp(PX) define Fx(t) = P(∥X1 − x∥ ≤ t). Let F −1
x denote the corresponding quantile

function. Show that lims↘0 F −1
x (s) = 0. Deduce that P(∥X(k)(x) − x∥ > δ) → 0 for all δ > 0.

Deduce further that P(∥X(k)(X) − X∥ > δ) → 0, where X is independent of the sequence X1, . . .
and has the same distribution as X1.
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