A review of probability & statistics
Based of earlier versions by Andrea Kraus, Erwan Koch, Victor
Panaretos & Shahin Tavakoli
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Probability space

> Aset Q#1()

V' w € Q: elementary events
V' subsets A C Q: events

» o-algebra (also called o-field) A of events
V' (Q,.A): measurable space
v' A € A measurable sets
» Probability measure P on (9, .A)
v (2, A,P) probability space
v P(A) probability of event A

v union bound: P(UjenAi) < > icnP(AI) ...

v ... with equality for disjoint sets
» Why a o-algebra?
v if P(A) and P(B) are defined, so are

P(A°), P(AN B), P(AU B), P(A\ B), ...

Random vectors
000000000000000000000000
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Conditional probability, independence

» Let A, B € A such that P(B) >0

v conditional probability P(A|B) = 57

> Let A, B1,Bs,... € A, By, By, ... disjoint, U;B; = €,
v law of total probability: P(A) = Y2, P(A|B;) P(B;)

if

v Bayes theorem: P(B;|A) = P(]P?(JQ)A) = Zg’qﬂja‘)gg%g
P(A) >0

B)
» The events A1, Ay, --- € A are independent iff

for any finite sub-collection A; ,..., A;:

IED(A,'1 n---N A,'k) = IP)(A;I) X P(A,’2) X ... X P(A,‘k)



Random variables
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Random variables with values in R

» probability space (€2, A, P), sample space (R, B(R))
V" (real-valued-) random variable is a measurable mapping
X :(Q,A) = (R, B(R)) elementary event w € Q ~» a
numerical value X(w) € R
» measurability

v preimages of Borel sets are measurable,
i.e. forevery Be B(R), [X e B]={weQ: X(w)eB}ecA
= the probabilities P(X € B) are well defined
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Distribution of a random variable

» Distribution function
v Definition: Fx(x) =P(X <x),x € R
v Properties:
@ nondecreasing, right-continuous, left-limits (cadlag)
0 limysoo Fx(x) =1, limyss—oo Fx(x) =0
o P(X >x)=1—-Fx(x), P(X = x) = Fx(x) — Fx(x—)
» Pushforward measure
V' Definition: Px(B)=P(X € B),Be B
v Px is a probability measure on the sample space (R, B(R))
V' Px is the pushforward of P by the function X
» Computing probabilities:
v for B € B:
P(X € B) = f[XeB] dP(w) = [ dPx(x) = [ dFx(x)
v for B = (a,b]: P(X € B) = Fx(b) — Fx(a)
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Density

» Radon—-Nikodym theorem

If v < p then there is a measurable function ¢ such that
v(A) = [, (u)dp(u)

¢ is denoted g—z

» ¢ is called the Radon—Nikodym derivative

> ¢ is nonnegative, unique p-a.e.

v

» Relevance for random variables:

» if Px < p, then
v ofx = % is called the density of the distribution Px
v P(X € B)=Px(B) = [5 fx(x)du(x)
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Special Cases: continuous vs. discrete random variables

» continuous r. v.: u = the Lebesgue measure

Px(B) = P(X € B) = [ fx(x)dx

Fx(x) = [~ fx(u)du

Fx(x) continuous

fx(X) = %Fx(X)

Intuition: “fx(x)dx =~ P(x < X < x+ dx)”

But: fx(x) ZP(X =x)=0

Can be fx(x) > 1 for some x

> discrete r. v.. u = the counting measure on S = {x1,x2,...}
Px(B) = P(X € B) = X, .5 ()

X(X) Z_/xj<x fX(XJ)

Fx(x) piecewise constant with possible jumps at x, xo, . . .

P(X = x) for every x € S

fx(x) <1 for every x € S

P(X = x) can be nonzero only for x € S

SN NN
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Transformations of random variables

» X ~ Fx continuous, Y = h(X) ~ Fy = Fy =7
» h strictly monotonic:

Fy(y) = P(h(X) <)

:{ (X < h7H(y)) = Fx(h™'(v)) if h increasing,
P(X “1(y)) =1— Fx(h~(y)) if h decreasing

» h strictly monotonic and differentiable:

differentiate to obtain fy(y) = %

» Special case:
If U ~ Unif(0,1) and F is a distribution function then
X = FY(U) ~ F (where F71(u) = inf{x € R: F(x) > u})
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Expectation

» Definition:
EX = fQ ) dP(w fod]P’X fode x)

» Expectation is Imear. (X1 + aXz) = E(X1) + aXe
» If X >0a.s., we have EX = [°(1 — Fx(x)) dx (exercise)
> If Px < p with 2% = fy then EX = [ x fx(x) du(x)

v For continuous variables: EX = [, x fx(x) dx

v For discrete variables: EX = 3. x; fx(x) = >_;  P(X = x;)
» If his nice

E h(X) = /Q h(X(w))d P(w) = /R h(x)d Px(x) = /R h(x)dFx(x)

- /R hR()du(x);  or =3 h(x)B(X = x)
J
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Moments

» Definition: the k" moment: E Xk

» Central moments
v = E[(X —EX)]
» Variance
v VarX =E[(X — EX)?]
v Var(aX + b) = a®Var X
v" (Variance is like a squared norm...)
» Moment generating function
v Mx(t) = Eexp{tX}
v if Mx(t) is finite for |t| < b for some b > 0 then
E X% = M{(0)
V' Mx(t) = My(t) < oo around a neighbourhood of 0 — X
and Y have the same distribution



Random vectors; collections of random variables
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Random Vectors

Equivalent Definitions

» random vector X = (Xq,..., Xg)"

v’ a vector of random variables defined on the same probability
space (22, A,P)
v a random variable with values in (R?, B%)
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Distribution

» Px is a probability measure on (R9, B9):

Px(B) =P(X € B) = P((X1,...,X4)" € B), where Be B?

» distribution function
F)((X;[7 . 7Xd) = P(Xl § X1y ,Xd S Xd)

» limy oo Fx(x1,...,xq) = 0 forany j € {1,...,d}

> |imx1—>+oo,...,xd—>+oo Fx(Xl, . ,Xd) =1
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Density

» if Px is absolutely continuous w.r.t. a measure p on (R9, B9),
then the joint density fx(xi,...,xq) is the Radon—-Nikodym
derivative of Px w.r.t. u

» continuous case (= A X -+ X A)
v Fx(Xl,...,Xd)I fXI ~~~fjd fx(ul,...,ud) dul... dud

J—00 o0

5d
v fx(Xl,...,Xd) = axﬁaxdFX(Xl’-“de)

» discrete case (1 =s, X -+ X 7s,)
v fx(ul,...,ud) = P(X1 = Ul,...,Xd = Ud).
v In this case the density is sometimes called probability mass
function

» there could be more complicated cases. ..
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Marginal distributions

> X =(X,.... Xg) = (YT, Z")T
where Y = (X1,...,X,)" and Z = (Xp41,...,Xg)"
» marginal distribution function of Y:

Fy(y) = lim Fx(x), y e R"

Xr41—>00,..., X4 —>00

v

if X has a density fx(x) w.r.t. py X uz
=- then the marginal density of Y w.r.t. uy is

fr(y) = /Rdr x(y,z) duz(z), y e R’

» marginals DO NOT determine the joint distribution
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Quantile function

Given a random variable X (taking values in R) and a probability
a € (0,1), the a-quantile function is supposed to be the number
X such that Fx(x) =P(X < x) = a.
Since such x might not exist or might fail to be unique, we define
the quantiles by the quantile function

Fx(a) =inf{t € R: Fx(t) = a}.

Fx is left-continuous and Fx(Fy (a)) > a for all o € (0.1).

If Fx is continuous (e.g., X is conitnuous) then Fx(Fy (a)) = a.
if Fx is continuous and strictly increasing on the set

{t:0 < Fx(t) <1} (e.g., X has strictly positive density on a
(possibly unbounded) interval /), then Fx is invertible and

Fy = F;l is continuous.
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Independence

» general definition:
X1, Xa,... (on the same probability space) independent
v iff Yk =1,2,..., the events
Xy € Bi],[X,, € By, ..., [Xi € B,] are independent for any
finite sub-collection of Borel sets B;, Bj,, ..., Bj,
v iff the o-algebras o(X1),0(Xz),... are independent

» Xi,...,Xy are independent iff
Fixy,.xa) (X1, -+ xa) = Fxq(x1) x ... X Fx,(xd)
(for all x1,...,xq € R)
» if densities exist: Xi,..., Xy are independent iff
f(Xl,...,Xd)(Xla s Xg) = Fx (x1) X .. x fx(Xq)

(lua x -+ x pgl-ae.)
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Expectation, Covariance

» Cov(X,Y)=E[(X-EX)(Y-EY)
v Cov(aX + b, cY + d) = ac Cov(X, Y)
v Bilinear: similar to a scalar product. ..

» Corr(X,Y) = Cov(X, Y)//Var(X) Var(Y)
v Corr(aX + b,cY + d) = sgn (ac) Corr(X,Y)
v Corr(X,Y)==41 = P(X=axbY)=1

> Var(Z?:1 Xi) =2 Var Xi + 3_,; Cov(X;, X;)

» if X, Y are independent, then
v EXY=EXEY
v Cov(X,Y) =0 (converse is false!)
v Var(X £ Y) = Var(X) + Var(Y)
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Convolution

» X1, Xa continuous random variables with joint density fx, x,)

> Z=X1+X
V' Z has density fz(z) = [, 1‘(X1 x)(U,z — u)du
voif X1, Xo mdependent fz(z) = [i fx,(u)fx,(z — u)du
ie., fz = fx, * fx, (convolutlon)
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Transformations of random vectors

» continuous X = (X1,...,Xy)" with density fx
» h:RY - R

» Y = h(X)=h(Xi,...,Xq)

» P(X € A) = 1 for some open set A C RY

>

h: A — h(A) is one-to-one, has continuous partial derivatives
and Ju(x) #0 forallx € A

» then the density of Y = h(X1,..., Xy) is

(A1 (y)) [ Ia(h~ (y)) !
f(y) =9 =&HT Y)Y,y e h(A),
0 otherwise
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Conditional distribution

>

>
| 2
>

X=(Xg,...,.Xg)" =(Y",Zz")T

where Y = (X1,..., X)), Z = (Xoq1,..., Xg) "

joint density fx(y,z) w.r.t. py X uz

marginal density fz(z) w.r.t. uz

the conditional density of Y given Z is a measurable function

fy|z(y|z) satisfying

p(v e 8.2 0) = [ | [ avia)div(y)| @)z
computational formula:

£ f- if 5 0

More general cases require disintegration (nontriviall)
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Conditional expectation and variance

>
| 2

vvyyVvyyvyy

X = (YT, ZT)T
conditional expectation of S = 5(X) = S(Y, Z)
given Z =z

BISIZ=2 = | S(s.2)Azlyiz)diy(y)

E[S|Z] is a random variable (a function of Z)
E(E[S|Z]) =ES

conditional variance Var[S|Z] = E[(S — E[S|Z])?|Z]
Var S = Var(E[S|Z]) + E(Var[S|Z])

general definition (conditioning on a o-algebra):

E[X]|G] is a G-measurable r.v. satisfying
E{1AE[X|G]} = E{1aX} forall Ac G
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Inequalities

Markov. Let Y be a non-negative random variable. Then
EY
IF’(th)ST, vt > 0.

Chebishev. Let X be any random variable with finite first
moment. Then

Var X
t2

P(IX —E[X]| > t) < Yt > 0.

Jensen. Let ¢ : R — R be convex with E [¢(X)| + E |X]| < oc.
Then ¢(E X) < E ¢(X).

Monotonicity and covariance. If E[X?] < coand g : R — R is
nondecreasing with E[g?(X)] < oo, then Cov[X, g(X)] > 0.
Proof. E(X —E X)(g(X) — g(EX) + g(EX) —Eg(X)) =

[E(X - EX)][g(EX) - Eg(X)] + E(X - EX)(g(X) — g(EX)),
where the first term is zero and the second nonnegative since g 1.



Some distributions
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Bernoulli distribution

A random variable X follows a Bernoulli distribution with
parameter p € [0, 1], denoted X ~ Bern(p), if

Q it takes values in {0,1} (almost surely)
@ it has probability mass function
f(x;p) = pPl{x =1} + (1 — p)1{x = 0}.

The mean, variance and moment generating functions of
X ~ Bern(p) are

EX]=p,  Var[X]=p(1-p), M(t)=1-p+pe".
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Binomial distribution

A random variable X follows a Binomial distribution with
parameters p € [0,1] and n € N, denoted X ~ B(n, p), if

Q it takes values in {0,1,2,...,n},
@ it has probability mass function
n X —X
f(x;p.n) = <X>p (I—p)"

The mean, variance and moment generating functions of
X ~ Binom(n, p) are

E[X]=np,  VarX]=np(l—p),  M(t)=(1—p+pe’)"

If X =537, Y with Y; e Bern(p), then X ~ B(n, p).
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Geometric distribution

A random variable X follows a geometric distribution with
parameter p € (0, 1], denoted X ~ Geom(p), if

Q it takes values in {0} UN,

@ it has probability mass function f(x; p) = (1 — p)*p.
The mean, variance and moment generating functions of
X ~ Geom(p) are

1-p 1-p p
E[X]= —%. Var[X] = M(t)= ——— t<|
[X] P ar[X] 2 (t) 1= (1= p)et’ < log

If {Y;}i>1 are such that Y; iid Bern(p) and
X =min{k € N: Yy, =1} — 1, then X ~ Geom(p).

1
1-p
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Negative binomial distribution

A random variable X follows a negative binomial distribution with
parameters p € (0,1] and r > 0, denoted X ~ NegBin(r, p), if

Q it takes values in X = {0} UN,
@ it has probability mass function

ﬂmpw)z(x+;_1>UpYﬂ-

The mean, variance and moment generating functions of
X ~ NegBin(r, p) are

1-p 1-p p
E[X]=r——, Var[X]=r , M(t)= )
M= el = MO = g ey
If re Nand X =57, Y; with Y; X Geom(p) then
X ~ NegBin(r, p).

r

t< —lo
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Poisson distribution

A random variable X follows a negative binomial distribution with
parameter A > 0, denoted X ~ Poisson(}\), if

Q it takes values in X = {0} UN,

X

@ it has probability mass function f(x; \) = e o

The mean, variance and moment generating functions of
X ~ Poisson(\) are

E[X] = A, Var[X] = A, M(t) = exp{\(e' — 1)}.

One can show that Binom(n, \/n) — Poisson(\) as n — oo
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Uniform distribution

A random variable X follows a uniform distribution with
parameters —oo < 01 < 6 < 0o, denoted X ~ Unif(61,62), if it
has the density function

(92 — 91)_1 if x € (91, 92),

0 otherwise.

fx(x;0) = {

The mean, variance and moment generating functions of
X ~ Unif(91,02) are

E[X] = (01+62)/2, Var[X] = (62—61)?/12, M(t) =

with M(0) = 1.
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Exponential distribution

A random variable X follows an exponential distribution with
parameter A > 0, denoted X ~ Exp(), if it has the density
function

e ™ ifx>0
0 if x < 0.

fx(x;A) = {

The mean, variance and moment generating functions of
X ~ Exp(\) are

E[X]=A"1,  Var[X]=\"2 M(t)= ——, t<A
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Gamma and x? distributions

A random variable X follows a gamma distribution with
parameters r > 0 et A > 0, denoted X ~ Gamma(r, A), if it has
the density function

AT r—1,—Xx ; >0
fe(x: 1) = Fnx e, sixz
xban ) {0 if x < 0,

The mean, variance and moment generating functions are
)\ r
E[X] =r/X\,  Var[X]=r/)  M(t)= <M> . t< A
The x?2 distribution is the particlar case A = 1/2 and r = v/2.
If r > 1is an integer, then ['(r) = (r — 1)L

If re Nand X = 30_, Y; with Y; % Exp()) then
X ~ Gamma(r, \).
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Normal (or Gaussian) distribution

A random variable X follows a normal distribution with parameters
1 € R et 02 >0, denoted X ~ N(u, 02), if it has the density
function

1 1 /x—p 2
fx (x; 1, 0%) = ——exp{ —= < > , x€R.
oV2r 2 o

The mean, variance and moment generating function of
X ~ N(pu,0?) are

E[X] = u, Var[X] = o2, M(t) = exp{tu + t?0?/2}.

If Z ~ N(0,1), we use the notation ¢(z) = fz(z) and

®(z) = Fz(z) for the corresponding density and distribution
functions, which are called standard normal/Gaussian
density/distribution functions.
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Student t and Fisher—Snedecor distributions

A random variable X is said to follow the Student t distribution
with parameter k € N (called the number of degrees of freedom),
denoted X ~ t, if it can be written as

Y,—pu
S

X =+/n

where n=k+1, Y1,..., Y, I/\? (w,02), Yn=>"1Y:/n, and
2= Y0, (Vi — Y)/(n—1).

If k >1then EX =0 and if kK > 2 then Var X = k/(k — 2).
A random variable X is said to follow the Fisher-Snedecor F
distribution with parameters di, d> > 0 if it can be written as

X = 2;2, where X; ~ X?h and Xp ~ ng are independent.
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