

A review of probability & statistics

Based of earlier versions by Andrea Kraus, Erwan Koch, Victor
Panaretos & Shahin Tavakoli

Probability space

- ▶ A set $\Omega \neq \emptyset$
 - ✓ $\omega \in \Omega$: elementary events
 - ✓ subsets $A \subseteq \Omega$: events
 - ▶ σ -algebra (also called σ -field) \mathcal{A} of events
 - ✓ (Ω, \mathcal{A}) : measurable space
 - ✓ $A \in \mathcal{A}$ measurable sets
 - ▶ Probability measure \mathbb{P} on (Ω, \mathcal{A})
 - ✓ $(\Omega, \mathcal{A}, \mathbb{P})$ probability space
 - ✓ $\mathbb{P}(A)$ probability of event A
 - ✓ union bound: $\mathbb{P}(\bigcup_{i \in \mathbb{N}} A_i) \leq \sum_{i \in \mathbb{N}} \mathbb{P}(A_i) \dots$
 - ✓ ... with equality for disjoint sets
 - ▶ Why a σ -algebra?
 - ✓ if $\mathbb{P}(A)$ and $\mathbb{P}(B)$ are defined, so are $\mathbb{P}(A^c)$, $\mathbb{P}(A \cap B)$, $\mathbb{P}(A \cup B)$, $\mathbb{P}(A \setminus B)$, ...

Conditional probability, independence

- ▶ Let $A, B \in \mathcal{A}$ such that $\mathbb{P}(B) > 0$
 - ✓ conditional probability $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- ▶ Let $A, B_1, B_2, \dots \in \mathcal{A}$, B_1, B_2, \dots disjoint, $\cup_i B_i = \Omega$,
 - ✓ law of total probability: $\mathbb{P}(A) = \sum_{i=1}^{\infty} \mathbb{P}(A|B_i) \mathbb{P}(B_i)$
 - ✓ Bayes theorem: $\mathbb{P}(B_j|A) = \frac{\mathbb{P}(B_j \cap A)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A|B_j) \mathbb{P}(B_j)}{\sum_{i=1}^{\infty} \mathbb{P}(A|B_i) \mathbb{P}(B_i)}$ if $\mathbb{P}(A) > 0$
- ▶ The events $A_1, A_2, \dots \in \mathcal{A}$ are independent iff
 - for any finite sub-collection A_{i_1}, \dots, A_{i_k} :
$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \mathbb{P}(A_{i_1}) \times \mathbb{P}(A_{i_2}) \times \dots \times \mathbb{P}(A_{i_k})$$

Random variables

Random variables with values in \mathbb{R}

- ▶ probability space $(\Omega, \mathcal{A}, \mathbb{P})$, sample space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$
 - ✓ (real-valued-) random variable is a measurable mapping $X : (\Omega, \mathcal{A}) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ elementary event $\omega \in \Omega \rightsquigarrow$ a numerical value $X(\omega) \in \mathbb{R}$
 - ▶ measurability
 - ✓ preimages of Borel sets are measurable,
i.e. for every $B \in \mathcal{B}(\mathbb{R})$, $[X \in B] = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}$
 - \Rightarrow the probabilities $\mathbb{P}(X \in B)$ are well defined

Distribution of a random variable

► Distribution function

- ✓ Definition: $F_X(x) = \mathbb{P}(X \leq x), x \in \mathbb{R}$
- ✓ Properties:
 - nondecreasing, right-continuous, left-limits (**cadlag**)
 - $\lim_{x \rightarrow \infty} F_X(x) = 1, \lim_{x \rightarrow -\infty} F_X(x) = 0$
 - $P(X > x) = 1 - F_X(x), P(X = x) = F_X(x) - F_X(x-)$

► Pushforward measure

- ✓ Definition: $\mathbb{P}_X(B) = \mathbb{P}(X \in B), B \in \mathcal{B}$
- ✓ \mathbb{P}_X is a probability measure on the sample space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$
- ✓ \mathbb{P}_X is the pushforward of \mathbb{P} by the function X

► Computing probabilities:

- ✓ for $B \in \mathcal{B}$:
$$\mathbb{P}(X \in B) = \int_{[X \in B]} d\mathbb{P}(\omega) = \int_B d\mathbb{P}_X(x) = \int_B dF_X(x)$$
- ✓ for $B = (a, b]$: $\mathbb{P}(X \in B) = F_X(b) - F_X(a)$

Density

► Radon–Nikodym theorem

If $\nu \ll \mu$ then there is a measurable function ϕ such that

$$\nu(A) = \int_A \phi(u) d\mu(u)$$

- ϕ is denoted $\frac{d\nu}{d\mu}$
- ϕ is called the Radon–Nikodym derivative
- ϕ is nonnegative, unique μ -a.e.

► Relevance for random variables:

- if $P_X \ll \mu$, then

✓ $f_X = \frac{dP_X}{d\mu}$ is called the **density** of the distribution P_X

$$\checkmark P(X \in B) = P_X(B) = \int_B f_X(x) d\mu(x)$$

Special Cases: continuous vs. discrete random variables

- ▶ **continuous r. v.:** $\mu =$ the Lebesgue measure
 - ✓ $P_X(B) = P(X \in B) = \int_B f_X(x) dx$
 - ✓ $F_X(x) = \int_{-\infty}^x f_X(u) du$
 - ✓ $F_X(x)$ continuous
 - ✓ $f_X(x) = \frac{d}{dx} F_X(x)$
 - ✓ Intuition: " $f_X(x) dx \approx \mathbb{P}(x \leq X \leq x + dx)$ "
 - ✓ But: $f_X(x) \neq \mathbb{P}(X = x) = 0$
 - ✓ Can be $f_X(x) > 1$ for some x
- ▶ **discrete r. v.:** $\mu =$ the counting measure on $S = \{x_1, x_2, \dots\}$
 - ✓ $\mathbb{P}_X(B) = \mathbb{P}(X \in B) = \sum_{j: x_j \in B} f_X(x_j)$
 - ✓ $F_X(x) = \sum_{j: x_j \leq x} f_X(x_j)$
 - ✓ $F_X(x)$ piecewise constant with possible jumps at x_1, x_2, \dots
 - ✓ $f_X(x) = \mathbb{P}(X = x)$ for every $x \in S$
 - ✓ $f_X(x) \leq 1$ for every $x \in S$
 - ✓ $\mathbb{P}(X = x)$ can be nonzero only for $x \in S$

Transformations of random variables

- ▶ $X \sim F_X$ continuous, $Y = h(X) \sim F_Y \Rightarrow F_Y = ?$
- ▶ h strictly monotonic:

$$F_Y(y) = P(h(X) \leq y)$$

$$= \begin{cases} P(X \leq h^{-1}(y)) = F_X(h^{-1}(y)) & \text{if } h \text{ increasing,} \\ P(X \geq h^{-1}(y)) = 1 - F_X(h^{-1}(y)) & \text{if } h \text{ decreasing} \end{cases}$$

- ▶ h strictly monotonic and differentiable:
differentiate to obtain $f_Y(y) = \frac{f_X(h^{-1}(y))}{|h'(h^{-1}(y))|}$
- ▶ Special case:
If $U \sim \text{Unif}(0, 1)$ and F is a distribution function then
 $X = F^{-1}(U) \sim F$ (where $F^{-1}(u) = \inf\{x \in \mathbb{R} : F(x) \geq u\}$)

Expectation

► Definition:

$$\mathbb{E} X = \int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \int_{\mathbb{R}} x d\mathbb{P}_X(x) = \int_{\mathbb{R}} x dF_X(x)$$

► Expectation is linear: $\mathbb{E}(X_1 + \alpha X_2) = \mathbb{E}(X_1) + \alpha X_2$

► If $X \geq 0$ a.s., we have $\mathbb{E} X = \int_0^{\infty} (1 - F_X(x)) dx$ (exercise)

► If $\mathbb{P}_X \ll \mu$ with $\frac{d\mathbb{P}_X}{d\mu} = f_X$ then $\mathbb{E} X = \int_{\mathbb{R}} x f_X(x) d\mu(x)$

✓ For continuous variables: $\mathbb{E} X = \int_{\mathbb{R}} x f_X(x) dx$

✓ For discrete variables: $\mathbb{E} X = \sum_j x_j f_X(x_j) = \sum_j x_j \mathbb{P}(X = x_j)$

► If h is nice

$$\mathbb{E} h(X) = \int_{\Omega} h(X(\omega)) d\mathbb{P}(\omega) = \int_{\mathbb{R}} h(x) d\mathbb{P}_X(x) = \int_{\mathbb{R}} h(x) dF_X(x)$$

$$\left(= \int_{\mathbb{R}} h(x) f_X(x) d\mu(x); \quad \text{or} \quad = \sum_j h(x_j) \mathbb{P}(X = x_j) \right)$$

Moments

► Definition: the k^{th} moment: $\mathbb{E} X^k$

► Central moments

✓ $\mu_k = \mathbb{E}[(X - \mathbb{E} X)^k]$

► Variance

✓ $\text{Var } X = \mathbb{E}[(X - \mathbb{E} X)^2]$

✓ $\text{Var}(aX + b) = a^2 \text{Var } X$

✓ (Variance is like a squared norm...)

► Moment generating function

✓ $M_X(t) = \mathbb{E} \exp\{tX\}$

✓ if $M_X(t)$ is finite for $|t| < b$ for some $b > 0$ then

$$\mathbb{E} X^k = M_X^{(k)}(0)$$

✓ $M_X(t) = M_Y(t) < \infty$ around a neighbourhood of 0 $\implies X$ and Y have the same distribution

Density

- ▶ if $\mathbb{P}_{\mathbf{X}}$ is absolutely continuous w.r.t. a measure μ on $(\mathbb{R}^d, \mathcal{B}^d)$, then the joint density $f_{\mathbf{X}}(x_1, \dots, x_d)$ is the Radon–Nikodym derivative of $\mathbb{P}_{\mathbf{X}}$ w.r.t. μ
- ▶ continuous case ($\mu = \lambda \times \dots \times \lambda$)
 - ✓ $F_{\mathbf{X}}(x_1, \dots, x_d) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_d} f_{\mathbf{X}}(u_1, \dots, u_d) \, du_1 \dots \, du_d$
 - ✓ $f_{\mathbf{X}}(x_1, \dots, x_d) = \frac{\partial^d}{\partial x_1 \dots \partial x_d} F_{\mathbf{X}}(x_1, \dots, x_d)$
- ▶ discrete case ($\mu = \gamma_{S_1} \times \dots \times \gamma_{S_d}$)
 - ✓ $f_{\mathbf{X}}(u_1, \dots, u_d) = P(X_1 = u_1, \dots, X_d = u_d)$.
 - ✓ In this case the density is sometimes called probability mass function
- ▶ there could be more complicated cases ...

Marginal distributions

- ▶ $\mathbf{X} = (X_1, \dots, X_d)^\top = (\mathbf{Y}^\top, \mathbf{Z}^\top)^\top$
where $\mathbf{Y} = (X_1, \dots, X_r)^\top$ and $\mathbf{Z} = (X_{r+1}, \dots, X_d)^\top$
- ▶ marginal distribution function of \mathbf{Y} :

$$F_{\mathbf{Y}}(\mathbf{y}) = \lim_{x_{r+1} \rightarrow \infty, \dots, x_d \rightarrow \infty} F_{\mathbf{X}}(\mathbf{x}), \quad \mathbf{y} \in \mathbb{R}^r$$

- ▶ if \mathbf{X} has a density $f_{\mathbf{X}}(\mathbf{x})$ w.r.t. $\mu_{\mathbf{Y}} \times \mu_{\mathbf{Z}}$
- ⇒ then the marginal density of \mathbf{Y} w.r.t. $\mu_{\mathbf{Y}}$ is

$$f_{\mathbf{Y}}(\mathbf{y}) = \int_{\mathbb{R}^{d-r}} f_{\mathbf{X}}(\mathbf{y}, \mathbf{z}) \, d\mu_{\mathbf{Z}}(\mathbf{z}), \quad \mathbf{y} \in \mathbb{R}^r$$

- ▶ marginals DO NOT determine the joint distribution

Quantile function

Given a random variable X (taking values in \mathbb{R}) and a probability $\alpha \in (0, 1)$, the α -quantile function is supposed to be the number X such that $F_X(x) = \mathbb{P}(X \leq x) = \alpha$.

Since such x might not exist or might fail to be unique, we define the quantiles by the quantile function

$$F_X^-(\alpha) = \inf\{t \in \mathbb{R} : F_X(t) \geq \alpha\}.$$

F_X^- is left-continuous and $F_X(F_X^-(\alpha)) \geq \alpha$ for all $\alpha \in (0, 1)$.

If F_X is continuous (e.g., X is continuous) then $F_X(F_X^-(\alpha)) = \alpha$.

If F_X is continuous and strictly increasing on the set

$\{t : 0 < F_X(t) < 1\}$ (e.g., X has strictly positive density on a (possibly unbounded) interval I), then F_X is invertible and

$F_X^- = F_X^{-1}$ is continuous.

Independence

► general definition:

X_1, X_2, \dots (on the same probability space) independent

✓ iff $\forall k = 1, 2, \dots$, the events

$[X_{i_1} \in B_{i_1}], [X_{i_2} \in B_{i_2}], \dots, [X_{i_k} \in B_{i_k}]$ are independent for any finite sub-collection of Borel sets $B_{i_1}, B_{i_2}, \dots, B_{i_k}$

✓ iff the σ -algebras $\sigma(X_1), \sigma(X_2), \dots$ are independent

► X_1, \dots, X_d are independent iff

$$F_{(X_1, \dots, X_d)}(x_1, \dots, x_d) = F_{X_1}(x_1) \times \dots \times F_{X_d}(x_d)$$

(for all $x_1, \dots, x_d \in \mathbb{R}$)

► if densities exist: X_1, \dots, X_d are independent iff

$$f_{(X_1, \dots, X_d)}(x_1, \dots, x_d) = f_{X_1}(x_1) \times \dots \times f_{X_d}(x_d)$$

($[\mu_1 \times \dots \times \mu_d]$ -a.e.)

Expectation, Covariance

- ▶ $\text{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E} X)(Y - \mathbb{E} Y)]$
 - ✓ $\text{Cov}(aX + b, cY + d) = ac \text{Cov}(X, Y)$
 - ✓ Bilinear: similar to a scalar product...
- ▶ $\text{Corr}(X, Y) = \text{Cov}(X, Y) / \sqrt{\text{Var}(X) \text{Var}(Y)}$
 - ✓ $\text{Corr}(aX + b, cY + d) = \text{sgn}(ac) \text{Corr}(X, Y)$
 - ✓ $\text{Corr}(X, Y) = \pm 1 \implies \mathbb{P}(X = a \pm bY) = 1$
- ▶ $\text{Var}(\sum_{i=1}^d X_i) = \sum_i \text{Var} X_i + \sum_{i \neq j} \text{Cov}(X_i, X_j)$
- ▶ if X, Y are independent, then
 - ✓ $\mathbb{E} XY = \mathbb{E} X \mathbb{E} Y$
 - ✓ $\text{Cov}(X, Y) = 0$ (**converse is false!**)
 - ✓ $\text{Var}(X \pm Y) = \text{Var}(X) + \text{Var}(Y)$

Convolution

- ▶ X_1, X_2 continuous random variables with joint density $f_{(X_1, X_2)}$
- ▶ $Z = X_1 + X_2$
 - ✓ Z has density $f_Z(z) = \int_{\mathbb{R}} f_{(X_1, X_2)}(u, z - u)du$
 - ✓ if X_1, X_2 independent, $f_Z(z) = \int_{\mathbb{R}} f_{X_1}(u)f_{X_2}(z - u)du$
i.e., $f_Z = f_{X_1} * f_{X_2}$ (convolution)

Transformations of random vectors

- ▶ continuous $\mathbf{X} = (X_1, \dots, X_d)^\top$ with density $f_{\mathbf{X}}$
- ▶ $h : \mathbb{R}^d \rightarrow \mathbb{R}^d$
- ▶ $\mathbf{Y} = h(\mathbf{X}) = h(X_1, \dots, X_d)$
- ▶ $\mathbb{P}(\mathbf{X} \in A) = 1$ for some open set $A \subset \mathbb{R}^d$
- ▶ $h : A \rightarrow h(A)$ is one-to-one, has continuous partial derivatives and $\mathbf{J}_h(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in A$
- ▶ then the density of $\mathbf{Y} = h(X_1, \dots, X_d)$ is

$$f_{\mathbf{Y}}(\mathbf{y}) = \begin{cases} f_{\mathbf{X}}(h^{-1}(\mathbf{y})) |\mathbf{J}_h(h^{-1}(\mathbf{y}))|^{-1} \\ = f_{\mathbf{X}}(h^{-1}(\mathbf{y})) |\mathbf{J}_{h^{-1}}(\mathbf{y})|, & \mathbf{y} \in h(A), \\ 0 & \text{otherwise} \end{cases}$$

Conditional distribution

- ▶ $\mathbf{X} = (X_1, \dots, X_d)^\top = (\mathbf{Y}^\top, \mathbf{Z}^\top)^\top$
where $\mathbf{Y} = (X_1, \dots, X_r)^\top$, $\mathbf{Z} = (X_{r+1}, \dots, X_d)^\top$
- ▶ joint density $f_{\mathbf{X}}(\mathbf{y}, \mathbf{z})$ w.r.t. $\mu_{\mathbf{Y}} \times \mu_{\mathbf{Z}}$
- ▶ marginal density $f_{\mathbf{Z}}(\mathbf{z})$ w.r.t. $\mu_{\mathbf{Z}}$
- ▶ the conditional density of \mathbf{Y} given \mathbf{Z} is a measurable function $f_{\mathbf{Y}|\mathbf{Z}}(\mathbf{y}|\mathbf{z})$ satisfying

$$\mathbb{P}(\mathbf{Y} \in B, \mathbf{Z} \in C) = \int_C \left[\int_B f_{\mathbf{Y}|\mathbf{Z}}(\mathbf{y}|\mathbf{z}) d\mu_{\mathbf{Y}}(\mathbf{y}) \right] f_{\mathbf{Z}}(\mathbf{z}) d\mu_{\mathbf{Z}}(\mathbf{z})$$

- ▶ computational formula:

$$f_{\mathbf{Y}|\mathbf{Z}}(\mathbf{y}|\mathbf{z}) = \begin{cases} f_{\mathbf{X}}(\mathbf{y}, \mathbf{z}) / f_{\mathbf{Z}}(\mathbf{z}), & \text{if } f_{\mathbf{Z}}(\mathbf{z}) \neq 0, \\ 0 & \text{otherwise} \end{cases}$$

- ▶ More general cases require **disintegration** (nontrivial!)

Conditional expectation and variance

- ▶ $\mathbf{X} = (\mathbf{Y}^\top, \mathbf{Z}^\top)^\top$
- ▶ conditional expectation of $S = S(\mathbf{X}) = S(\mathbf{Y}, \mathbf{Z})$
given $\mathbf{Z} = \mathbf{z}$

$$\mathbb{E}[S|\mathbf{Z} = \mathbf{z}] = \int_{\mathbb{R}^{d-r}} S(\mathbf{y}, \mathbf{z}) f_{\mathbf{Y}|\mathbf{Z}}(\mathbf{y}|\mathbf{z}) d\mu_{\mathbf{Y}}(\mathbf{y})$$

- ▶ $\mathbb{E}[S|\mathbf{Z}]$ is a random variable (a function of \mathbf{Z})
- ▶ $\mathbb{E}(\mathbb{E}[S|\mathbf{Z}]) = \mathbb{E} S$
- ▶ conditional variance $\text{Var}[S|\mathbf{Z}] = \mathbb{E}[(S - \mathbb{E}[S|\mathbf{Z}])^2|\mathbf{Z}]$
- ▶ $\text{Var } S = \text{Var}(\mathbb{E}[S|\mathbf{Z}]) + \mathbb{E}(\text{Var}[S|\mathbf{Z}])$
- ▶ **general definition** (conditioning on a σ -algebra):
 $\mathbb{E}[X|\mathcal{G}]$ is a \mathcal{G} -measurable r.v. satisfying
 $\mathbb{E}\{1_A \mathbb{E}[X|\mathcal{G}]\} = \mathbb{E}\{1_A X\}$ for all $A \in \mathcal{G}$

Inequalities

Markov. Let Y be a non-negative random variable. Then

$$\mathbb{P}(Y \geq t) \leq \frac{\mathbb{E} Y}{t}, \quad \forall t \geq 0.$$

Chebyshev. Let X be any random variable with finite first moment. Then

$$\mathbb{P}(|X - \mathbb{E}[X]| \geq t) \leq \frac{\text{Var } X}{t^2}, \quad \forall t \geq 0.$$

Jensen. Let $\phi : \mathbb{R} \rightarrow \mathbb{R}$ be convex with $\mathbb{E}|\phi(X)| + \mathbb{E}|X| < \infty$. Then $\phi(\mathbb{E} X) \leq \mathbb{E} \phi(X)$.

Monotonicity and covariance. If $\mathbb{E}[X^2] < \infty$ and $g : \mathbb{R} \rightarrow \mathbb{R}$ is nondecreasing with $\mathbb{E}[g^2(X)] < \infty$, then $\text{Cov}[X, g(X)] \geq 0$.

Proof. $\mathbb{E}(X - \mathbb{E} X)(g(X) - g(\mathbb{E} X) + g(\mathbb{E} X) - \mathbb{E} g(X)) = [\mathbb{E}(X - \mathbb{E} X)][g(\mathbb{E} X) - \mathbb{E} g(X)] + \mathbb{E}(X - \mathbb{E} X)(g(X) - g(\mathbb{E} X))$, where the first term is zero and the second nonnegative since $g \uparrow$.

Probability
ooo

Random variables
oooooooo

Random vectors
oooooooooooo●oooooooooooo

Some distributions

Bernoulli distribution

A random variable X follows a Bernoulli distribution with parameter $p \in [0, 1]$, denoted $X \sim \text{Bern}(p)$, if

- ① it takes values in $\{0, 1\}$ (almost surely)
- ② it has probability mass function

$$f(x; p) = p\mathbf{1}\{x = 1\} + (1 - p)\mathbf{1}\{x = 0\}.$$

The mean, variance and moment generating functions of $X \sim \text{Bern}(p)$ are

$$\mathbb{E}[X] = p, \quad \text{Var}[X] = p(1 - p), \quad M(t) = 1 - p + pe^t.$$

Binomial distribution

A random variable X follows a Binomial distribution with parameters $p \in [0, 1]$ and $n \in \mathbb{N}$, denoted $X \sim B(n, p)$, if

- ① it takes values in $\{0, 1, 2, \dots, n\}$,
- ② it has probability mass function

$$f(x; p, n) = \binom{n}{x} p^x (1 - p)^{n-x}.$$

The mean, variance and moment generating functions of $X \sim \text{Binom}(n, p)$ are

$$\mathbb{E}[X] = np, \quad \text{Var}[X] = np(1 - p), \quad M(t) = (1 - p + pe^t)^n.$$

If $X = \sum_{i=1}^n Y_i$ with $Y_i \stackrel{iid}{\sim} \text{Bern}(p)$, then $X \sim B(n, p)$.

Geometric distribution

A random variable X follows a geometric distribution with parameter $p \in (0, 1]$, denoted $X \sim \text{Geom}(p)$, if

- ① it takes values in $\{0\} \cup \mathbb{N}$,
- ② it has probability mass function $f(x; p) = (1 - p)^x p$.

The mean, variance and moment generating functions of $X \sim \text{Geom}(p)$ are

$$\mathbb{E}[X] = \frac{1 - p}{p}, \quad \text{Var}[X] = \frac{1 - p}{p^2}, \quad M(t) = \frac{p}{1 - (1 - p)e^t}, \quad t < \log \frac{1}{1 - p}.$$

If $\{Y_i\}_{i \geq 1}$ are such that $Y_i \stackrel{iid}{\sim} \text{Bern}(p)$ and $X = \min\{k \in \mathbb{N} : Y_k = 1\} - 1$, then $X \sim \text{Geom}(p)$.

Negative binomial distribution

A random variable X follows a negative binomial distribution with parameters $p \in (0, 1]$ and $r > 0$, denoted $X \sim \text{NegBin}(r, p)$, if

- ① it takes values in $\mathcal{X} = \{0\} \cup \mathbb{N}$,
- ② it has probability mass function

$$f(x; p, r) = \binom{x+r-1}{x} (1-p)^x p^r.$$

The mean, variance and moment generating functions of $X \sim \text{NegBin}(r, p)$ are

$$\mathbb{E}[X] = r \frac{1-p}{p}, \quad \text{Var}[X] = r \frac{1-p}{p^2}, \quad M(t) = \frac{p^r}{[1 - (1-p)e^t]^r}, \quad t < -\log(1-p)$$

If $r \in \mathbb{N}$ and $X = \sum_{i=1}^r Y_i$ with $Y_i \stackrel{iid}{\sim} \text{Geom}(p)$ then $X \sim \text{NegBin}(r, p)$.

Poisson distribution

A random variable X follows a negative binomial distribution with parameter $\lambda > 0$, denoted $X \sim \text{Poisson}(\lambda)$, if

- ① it takes values in $\mathcal{X} = \{0\} \cup \mathbb{N}$,
- ② it has probability mass function $f(x; \lambda) = e^{-\lambda} \frac{\lambda^x}{x!}$.

The mean, variance and moment generating functions of $X \sim \text{Poisson}(\lambda)$ are

$$\mathbb{E}[X] = \lambda, \quad \text{Var}[X] = \lambda, \quad M(t) = \exp\{\lambda(e^t - 1)\}.$$

One can show that $\text{Binom}(n, \lambda/n) \rightarrow \text{Poisson}(\lambda)$ as $n \rightarrow \infty$

Uniform distribution

A random variable X follows a uniform distribution with parameters $-\infty < \theta_1 < \theta_2 < \infty$, denoted $X \sim \text{Unif}(\theta_1, \theta_2)$, if it has the density function

$$f_X(x; \theta) = \begin{cases} (\theta_2 - \theta_1)^{-1} & \text{if } x \in (\theta_1, \theta_2), \\ 0 & \text{otherwise.} \end{cases}$$

The mean, variance and moment generating functions of $X \sim \text{Unif}(\theta_1, \theta_2)$ are

$$\mathbb{E}[X] = (\theta_1 + \theta_2)/2, \text{Var}[X] = (\theta_2 - \theta_1)^2/12, M(t) = \frac{e^{t\theta_2} - e^{t\theta_1}}{t(\theta_2 - \theta_1)}, t \neq 0,$$

with $M(0) = 1$.

Exponential distribution

A random variable X follows an exponential distribution with parameter $\lambda > 0$, denoted $X \sim \text{Exp}(\lambda)$, if it has the density function

$$f_X(x; \lambda) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0 & \text{if } x < 0. \end{cases}$$

The mean, variance and moment generating functions of $X \sim \text{Exp}(\lambda)$ are

$$\mathbb{E}[X] = \lambda^{-1}, \quad \text{Var}[X] = \lambda^{-2}, \quad M(t) = \frac{\lambda}{\lambda - t}, \quad t < \lambda.$$

Gamma and χ^2 distributions

A random variable X follows a gamma distribution with parameters $r > 0$ et $\lambda > 0$, denoted $X \sim \text{Gamma}(r, \lambda)$, if it has the density function

$$f_X(x; r, \lambda) = \begin{cases} \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}, & \text{si } x \geq 0 \\ 0 & \text{if } x < 0. \end{cases}$$

The mean, variance and moment generating functions are

$$\mathbb{E}[X] = r/\lambda, \quad \text{Var}[X] = r/\lambda^2, \quad M(t) = \left(\frac{\lambda}{\lambda - t}\right)^r, \quad t < \lambda.$$

The χ^2_ν **distribution** is the particular case $\lambda = 1/2$ and $r = \nu/2$.

If $r \geq 1$ is an integer, then $\Gamma(r) = (r - 1)!$.

If $r \in \mathbb{N}$ and $X = \sum_{i=1}^r Y_i$ with $Y_i \stackrel{iid}{\sim} \text{Exp}(\lambda)$ then $X \sim \text{Gamma}(r, \lambda)$.

Normal (or Gaussian) distribution

A random variable X follows a normal distribution with parameters $\mu \in \mathbb{R}$ et $\sigma^2 > 0$, denoted $X \sim N(\mu, \sigma^2)$, if it has the density function

$$f_X(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}, \quad x \in \mathbb{R}.$$

The mean, variance and moment generating function of $X \sim N(\mu, \sigma^2)$ are

$$\mathbb{E}[X] = \mu, \quad \text{Var}[X] = \sigma^2, \quad M(t) = \exp\{t\mu + t^2\sigma^2/2\}.$$

If $Z \sim N(0, 1)$, we use the notation $\varphi(z) = f_Z(z)$ and $\Phi(z) = F_Z(z)$ for the corresponding density and distribution functions, which are called standard normal/Gaussian density/distribution functions.

Student t and Fisher–Snedecor distributions

A random variable X is said to follow the **Student t** distribution with parameter $k \in \mathbb{N}$ (called the number of degrees of freedom), denoted $X \sim t_k$, if it can be written as

$$X = \sqrt{n} \frac{\bar{Y}_n - \mu}{S}$$

where $n = k + 1$, $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, $\bar{Y}_n = \sum_{i=1}^n Y_i/n$, and $S^2 = \sum_{i=1}^n (\bar{Y}_i - \bar{Y})^2/(n - 1)$.

If $k > 1$ then $\mathbb{E} X = 0$ and if $k > 2$ then $\text{Var } X = k/(k - 2)$.

A random variable X is said to follow the **Fisher–Snedecor F** distribution with parameters $d_1, d_2 > 0$ if it can be written as $X = \frac{X_1/d_1}{X_2/d_2}$, where $X_1 \sim \chi^2_{d_1}$ and $X_2 \sim \chi^2_{d_2}$ are independent.