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Probability space

▶ A set Ω ̸= ∅
✓ ω ∈ Ω: elementary events
✓ subsets A ⊆ Ω: events

▶ σ-algebra (also called σ-field) A of events

✓ (Ω,A): measurable space
✓ A ∈ A measurable sets

▶ Probability measure P on (Ω,A)

✓ (Ω,A,P) probability space
✓ P(A) probability of event A
✓ union bound: P(∪i∈NAi ) ≤

∑
i∈N P(Ai ) . . .

✓ . . . with equality for disjoint sets

▶ Why a σ-algebra?

✓ if P(A) and P(B) are defined, so are
P(Ac), P(A ∩ B), P(A ∪ B), P(A \ B), . . .
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Conditional probability, independence

▶ Let A,B ∈ A such that P(B) > 0

✓ conditional probability P(A|B) = P(A∩B)
P(B)

▶ Let A,B1,B2, . . . ∈ A, B1,B2, . . . disjoint, ∪iBi = Ω,

✓ law of total probability: P(A) =
∑∞

i=1 P(A|Bi )P(Bi )

✓ Bayes theorem: P(Bj |A) = P(Bj∩A)
P(A) =

P(A|Bj ) P(Bj )∑∞
i=1 P(A|Bi ) P(Bi )

if

P(A) > 0

▶ The events A1,A2, · · · ∈ A are independent iff

for any finite sub-collection Ai1 , . . . ,Aik :

P(Ai1 ∩ · · · ∩ Aik ) = P(Ai1)× P(Ai2)× . . .× P(Aik )



Random variables
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Random variables with values in R

▶ probability space (Ω,A,P), sample space (R,B(R))
✓ (real-valued-) random variable is a measurable mapping

X : (Ω,A) → (R,B(R)) elementary event ω ∈ Ω ⇝ a
numerical value X (ω) ∈ R

▶ measurability

✓ preimages of Borel sets are measurable,
i.e. for every B ∈ B(R), [X ∈ B] = {ω ∈ Ω : X (ω) ∈ B} ∈ A

⇒ the probabilities P(X ∈ B) are well defined
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Distribution of a random variable

▶ Distribution function

✓ Definition: FX (x) = P(X ≤ x), x ∈ R
✓ Properties:

nondecreasing, right-continuous, left-limits (cadlag)
limx→∞ FX (x) = 1, limx→−∞ FX (x) = 0
P(X > x) = 1− FX (x), P(X = x) = FX (x)− FX (x−)

▶ Pushforward measure

✓ Definition: PX (B) = P(X ∈ B),B ∈ B
✓ PX is a probability measure on the sample space (R,B(R))
✓ PX is the pushforward of P by the function X

▶ Computing probabilities:

✓ for B ∈ B:
P(X ∈ B) =

∫
[X∈B]

dP(ω) =
∫
B

dPX (x) =
∫
B

dFX (x)

✓ for B = (a, b]: P(X ∈ B) = FX (b)− FX (a)
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Density

▶ Radon–Nikodym theorem

If ν ≪ µ then there is a measurable function ϕ such that
ν(A) =

∫
A ϕ(u)dµ(u)

▶ ϕ is denoted dν
dµ

▶ ϕ is called the Radon–Nikodym derivative

▶ ϕ is nonnegative, unique µ-a.e.

▶ Relevance for random variables:

▶ if PX ≪ µ, then
✓ fX = dPX

dµ is called the density of the distribution PX

✓ P(X ∈ B) = PX (B) =
∫
B
fX (x)dµ(x)
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Special Cases: continuous vs. discrete random variables

▶ continuous r. v.: µ = the Lebesgue measure
✓ PX (B) = P(X ∈ B) =

∫
B
fX (x)dx

✓ FX (x) =
∫ x

−∞ fX (u)du
✓ FX (x) continuous
✓ fX (x) =

d
dx FX (x)

✓ Intuition: “fX (x)dx ≈ P(x ≤ X ≤ x + dx)”
✓ But: fX (x) ̸= P(X = x) = 0
✓ Can be fX (x) > 1 for some x

▶ discrete r. v.: µ = the counting measure on S = {x1, x2, . . . }
✓ PX (B) = P(X ∈ B) =

∑
j :xj∈B fX (xj)

✓ FX (x) =
∑

j :xj≤x fX (xj)

✓ FX (x) piecewise constant with possible jumps at x1, x2, . . .
✓ fX (x) = P(X = x) for every x ∈ S
✓ fX (x) ≤ 1 for every x ∈ S
✓ P(X = x) can be nonzero only for x ∈ S
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Transformations of random variables

▶ X ∼ FX continuous, Y = h(X ) ∼ FY ⇒ FY =?

▶ h strictly monotonic:

FY (y) = P(h(X ) ≤ y)

=

{
P(X ≤ h−1(y)) = FX (h

−1(y)) if h increasing,

P(X ≥ h−1(y)) = 1− FX (h
−1(y)) if h decreasing

▶ h strictly monotonic and differentiable:

differentiate to obtain fY (y) =
fX (h

−1(y))
|h′(h−1(y))|

▶ Special case:

If U ∼ Unif(0, 1) and F is a distribution function then
X = F−1(U) ∼ F (where F−1(u) = inf{x ∈ R : F (x) ≥ u})
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Expectation

▶ Definition:
EX =

∫
Ω X (ω) dP(ω) =

∫
R x dPX (x) =

∫
R x dFX (x)

▶ Expectation is linear: E(X1 + αX2) = E(X1) + αX2

▶ If X ≥ 0 a.s., we have EX =
∫∞
0 (1− FX (x)) dx (exercise)

▶ If PX ≪ µ with dPX
dµ = fX then EX =

∫
R x fX (x) dµ(x)

✓ For continuous variables: EX =
∫
R x fX (x) dx

✓ For discrete variables: EX =
∑

j xj fX (xj) =
∑

j xj P(X = xj)

▶ If h is nice

E h(X ) =

∫
Ω
h(X (ω))d P(ω) =

∫
R
h(x)d PX (x) =

∫
R
h(x)dFX (x)=

∫
R
h(x)fX (x)dµ(x)); or =

∑
j

h(xj)P(X = xj)


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Moments

▶ Definition: the kth moment: EX k

▶ Central moments

✓ µk = E[(X − EX )k ]

▶ Variance

✓ VarX = E[(X − EX )2]
✓ Var(aX + b) = a2 VarX
✓ (Variance is like a squared norm. . . )

▶ Moment generating function

✓ MX (t) = E exp{tX}
✓ if MX (t) is finite for |t| < b for some b > 0 then

EX k = M
(k)
X (0)

✓ MX (t) = MY (t) < ∞ around a neighbourhood of 0 =⇒ X
and Y have the same distribution



Random vectors; collections of random variables
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Random Vectors

Equivalent Definitions

▶ random vector X = (X1, . . . ,Xd)
⊤

✓ a vector of random variables defined on the same probability
space (Ω,A,P)

✓ a random variable with values in (Rd ,Bd)
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Distribution

▶ PX is a probability measure on (Rd ,Bd):

PX(B) = P(X ∈ B) = P((X1, . . . ,Xd)
⊤ ∈ B), where B ∈ Bd

▶ distribution function

FX(x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd)

▶ limxj→−∞ FX(x1, . . . , xd) = 0 for any j ∈ {1, . . . , d}
▶ limx1→+∞,...,xd→+∞ FX(x1, . . . , xd) = 1
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Density

▶ if PX is absolutely continuous w.r.t. a measure µ on (Rd ,Bd),
then the joint density fX(x1, . . . , xd) is the Radon–Nikodym
derivative of PX w.r.t. µ

▶ continuous case (µ = λ× · · · × λ)
✓ FX(x1, . . . , xd) =

∫ x1
−∞· · ·

∫ xd
−∞ fX(u1, . . . , ud) du1 . . . dud

✓ fX(x1, . . . , xd) =
∂d

∂x1...∂xd
FX(x1, . . . , xd)

▶ discrete case (µ = γS1 × · · · × γSd )
✓ fX(u1, . . . , ud) = P(X1 = u1, . . . ,Xd = ud).
✓ In this case the density is sometimes called probability mass

function

▶ there could be more complicated cases . . .
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Marginal distributions

▶ X = (X1, . . . ,Xd)
⊤ = (Y⊤,Z⊤)⊤

where Y = (X1, . . . ,Xr )
⊤ and Z = (Xr+1, . . . ,Xd)

⊤

▶ marginal distribution function of Y:

FY(y) = lim
xr+1→∞,...,xd→∞

FX(x), y ∈ Rr

▶ if X has a density fX(x) w.r.t. µY × µZ

⇒ then the marginal density of Y w.r.t. µY is

fY(y) =

∫
Rd−r

fX(y, z) dµZ(z), y ∈ Rr

▶ marginals DO NOT determine the joint distribution



Probability Random variables Random vectors

Quantile function

Given a random variable X (taking values in R) and a probability
α ∈ (0, 1), the α-quantile function is supposed to be the number
X such that FX (x) = P(X ≤ x) = α.
Since such x might not exist or might fail to be unique, we define
the quantiles by the quantile function

F−
X (α) = inf{t ∈ R : FX (t) ≥ α}.

F−
X is left-continuous and FX (F

−
X (α)) ≥ α for all α ∈ (0.1).

If FX is continuous (e.g., X is conitnuous) then FX (F
−
X (α)) = α.

if FX is continuous and strictly increasing on the set
{t : 0 < FX (t) < 1} (e.g., X has strictly positive density on a
(possibly unbounded) interval I ), then FX is invertible and
F−
X = F−1

X is continuous.
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Independence

▶ general definition:
X1,X2, . . . (on the same probability space) independent
✓ iff ∀k = 1, 2, . . ., the events

[Xi1 ∈ Bi1 ], [Xi2 ∈ Bi2 ], . . . , [Xik ∈ Bik ] are independent for any
finite sub-collection of Borel sets Bi1 ,Bi2 , . . . ,Bik

✓ iff the σ-algebras σ(X1), σ(X2), . . . are independent

▶ X1, . . . ,Xd are independent iff

F(X1,...,Xd )(x1, . . . , xd) = FX1(x1)× . . .× FXd
(xd)

(for all x1, . . . , xd ∈ R)
▶ if densities exist: X1, . . . ,Xd are independent iff

f(X1,...,Xd )(x1, . . . , xd) = fX1(x1)× . . .× fXd
(xd)

([µ1 × · · · × µd ]-a.e.)
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Expectation, Covariance

▶ Cov(X ,Y ) = E[(X − EX )(Y − EY )]
✓ Cov(aX + b, cY + d) = ac Cov(X ,Y )
✓ Bilinear: similar to a scalar product. . .

▶ Corr(X ,Y ) = Cov(X ,Y )/
√
Var(X ) Var(Y )

✓ Corr(aX + b, cY + d) = sgn (ac) Corr(X ,Y )
✓ Corr(X ,Y ) = ±1 =⇒ P(X = a± bY ) = 1

▶ Var(
∑d

i=1 Xi ) =
∑

i VarXi +
∑

i ̸=j Cov(Xi ,Xj)

▶ if X ,Y are independent, then
✓ EXY = EX EY
✓ Cov(X ,Y ) = 0 (converse is false!)
✓ Var(X ± Y ) = Var(X ) + Var(Y )
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Convolution

▶ X1,X2 continuous random variables with joint density f(X1,X2)

▶ Z = X1 + X2

✓ Z has density fZ (z) =
∫
R f(X1,X2)(u, z − u)du

✓ if X1,X2 independent, fZ (z) =
∫
R fX1(u)fX2(z − u)du

i.e., fZ = fX1 ∗ fX2 (convolution)
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Transformations of random vectors

▶ continuous X = (X1, . . . ,Xd)
⊤ with density fX

▶ h : Rd → Rd

▶ Y = h(X) = h(X1, . . . ,Xd)

▶ P(X ∈ A) = 1 for some open set A ⊂ Rd

▶ h : A → h(A) is one-to-one, has continuous partial derivatives
and Jh(x) ̸= 0 for all x ∈ A

▶ then the density of Y = h(X1, . . . ,Xd) is

fY(y) =


fX(h

−1(y))|Jh(h−1(y))|−1

= fX(h
−1(y))|Jh−1(y)|, y ∈ h(A),

0 otherwise
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Conditional distribution

▶ X = (X1, . . . ,Xd)
⊤ = (Y⊤,Z⊤)⊤

where Y = (X1, . . . ,Xr )
⊤, Z = (Xr+1, . . . ,Xd)

⊤

▶ joint density fX(y, z) w.r.t. µY × µZ

▶ marginal density fZ(z) w.r.t. µZ

▶ the conditional density of Y given Z is a measurable function
fY|Z(y|z) satisfying

P(Y ∈ B,Z ∈ C ) =

∫
C

[∫
B
fY|Z(y|z)dµY(y)

]
fZ(z)dµZ(z)

▶ computational formula:

fY|Z(y|z) =

{
fX(y, z)/fZ(z), if fZ(z) ̸= 0,

0 otherwise

▶ More general cases require disintegration (nontrivial!)
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Conditional expectation and variance

▶ X = (Y⊤,Z⊤)⊤

▶ conditional expectation of S = S(X) = S(Y,Z)
given Z = z

E[S |Z = z] =

∫
Rd−r

S(y, z)fY|Z(y|z)dµY(y)

▶ E[S |Z] is a random variable (a function of Z)

▶ E(E[S |Z]) = ES

▶ conditional variance Var[S |Z] = E[(S − E[S |Z])2|Z]
▶ Var S = Var(E[S |Z]) + E(Var[S |Z])
▶ general definition (conditioning on a σ-algebra):

E[X |G] is a G-measurable r.v. satisfying
E{1A E[X |G]} = E{1AX} for all A ∈ G
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Inequalities

Markov. Let Y be a non-negative random variable. Then

P(Y ≥ t) ≤ EY

t
, ∀t ≥ 0.

Chebishev. Let X be any random variable with finite first
moment. Then

P(|X − E[X ]| ≥ t) ≤ VarX

t2
, ∀t ≥ 0.

Jensen. Let ϕ : R → R be convex with E |ϕ(X )|+ E |X | < ∞.
Then ϕ(EX ) ≤ Eϕ(X ).
Monotonicity and covariance. If E[X 2] < ∞ and g : R → R is
nondecreasing with E[g2(X )] < ∞, then Cov[X , g(X )] ≥ 0.
Proof. E(X − EX )(g(X )− g(EX ) + g(EX )− E g(X )) =
[E(X − EX )][g(EX )− E g(X )] + E(X − EX )(g(X )− g(EX )),
where the first term is zero and the second nonnegative since g ↑.
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Some distributions
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Bernoulli distribution

A random variable X follows a Bernoulli distribution with
parameter p ∈ [0, 1], denoted X ∼ Bern(p), if

1 it takes values in {0, 1} (almost surely)

2 it has probability mass function
f (x ; p) = p1{x = 1}+ (1− p)1{x = 0}.

The mean, variance and moment generating functions of
X ∼ Bern(p) are

E[X ] = p, Var[X ] = p(1− p), M(t) = 1− p + pet .
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Binomial distribution

A random variable X follows a Binomial distribution with
parameters p ∈ [0, 1] and n ∈ N, denoted X ∼ B(n, p), if

1 it takes values in {0, 1, 2, . . . , n},
2 it has probability mass function

f (x ; p, n) =

(
n

x

)
px(1− p)n−x .

The mean, variance and moment generating functions of
X ∼ Binom(n, p) are

E[X ] = np, Var[X ] = np(1− p), M(t) = (1− p + pet)n.

If X =
∑n

i=1 Yi with Yi
iid∼ Bern(p), then X ∼ B(n, p).
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Geometric distribution

A random variable X follows a geometric distribution with
parameter p ∈ (0, 1], denoted X ∼ Geom(p), if

1 it takes values in {0} ∪ N,

2 it has probability mass function f (x ; p) = (1− p)xp.

The mean, variance and moment generating functions of
X ∼ Geom(p) are

E[X ] =
1− p

p
, Var[X ] =

1− p

p2
, M(t) =

p

1− (1− p)et
, t < log

1

1− p
.

If {Yi}i≥1 are such that Yi
iid∼ Bern(p) and

X = min{k ∈ N : Yk = 1} − 1, then X ∼ Geom(p).
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Negative binomial distribution

A random variable X follows a negative binomial distribution with
parameters p ∈ (0, 1] and r > 0, denoted X ∼ NegBin(r , p), if

1 it takes values in X = {0} ∪ N,
2 it has probability mass function

f (x ; p, r) =

(
x + r − 1

x

)
(1− p)xpr .

The mean, variance and moment generating functions of
X ∼ NegBin(r , p) are

E[X ] = r
1− p

p
, Var[X ] = r

1− p

p2
, M(t) =

pr

[1− (1− p)et ]r
, t < − log(1−p).

If r ∈ N and X =
∑r

i=1 Yi with Yi
iid∼ Geom(p) then

X ∼ NegBin(r , p).
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Poisson distribution

A random variable X follows a negative binomial distribution with
parameter λ > 0, denoted X ∼ Poisson(λ), if

1 it takes values in X = {0} ∪ N,

2 it has probability mass function f (x ;λ) = e−λλ
x

x!
.

The mean, variance and moment generating functions of
X ∼ Poisson(λ) are

E[X ] = λ, Var[X ] = λ, M(t) = exp{λ(et − 1)}.

One can show that Binom(n, λ/n) → Poisson(λ) as n → ∞
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Uniform distribution

A random variable X follows a uniform distribution with
parameters −∞ < θ1 < θ2 < ∞, denoted X ∼ Unif(θ1, θ2), if it
has the density function

fX (x ; θ) =

{
(θ2 − θ1)

−1 if x ∈ (θ1, θ2),

0 otherwise.

The mean, variance and moment generating functions of
X ∼ Unif(θ1, θ2) are

E[X ] = (θ1+θ2)/2, Var[X ] = (θ2−θ1)
2/12, M(t) =

etθ2 − etθ1

t(θ2 − θ1)
, t ̸= 0,

with M(0) = 1.
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Exponential distribution

A random variable X follows an exponential distribution with
parameter λ > 0, denoted X ∼ Exp(λ), if it has the density
function

fX (x ;λ) =

{
λe−λx , if x ≥ 0

0 if x < 0.

The mean, variance and moment generating functions of
X ∼ Exp(λ) are

E[X ] = λ−1, Var[X ] = λ−2, M(t) =
λ

λ− t
, t < λ.
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Gamma and χ2 distributions

A random variable X follows a gamma distribution with
parameters r > 0 et λ > 0, denoted X ∼ Gamma(r , λ), if it has
the density function

fX (x ; r , λ) =

{
λr

Γ(r)x
r−1e−λx , si x ≥ 0

0 if x < 0.

The mean, variance and moment generating functions are

E[X ] = r/λ, Var[X ] = r/λ2, M(t) =

(
λ

λ− t

)r

, t < λ.

The χ2
ν distribution is the particlar case λ = 1/2 and r = ν/2.

If r ≥ 1 is an integer, then Γ(r) = (r − 1)!.

If r ∈ N and X =
∑r

i=1 Yi with Yi
iid∼ Exp(λ) then

X ∼ Gamma(r , λ).
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Normal (or Gaussian) distribution

A random variable X follows a normal distribution with parameters
µ ∈ R et σ2 > 0, denoted X ∼ N(µ, σ2), if it has the density
function

fX (x ;µ, σ
2) =

1

σ
√
2π

exp

{
−1

2

(
x − µ

σ

)2
}
, x ∈ R.

The mean, variance and moment generating function of
X ∼ N(µ, σ2) are

E[X ] = µ, Var[X ] = σ2, M(t) = exp{tµ+ t2σ2/2}.

If Z ∼ N(0, 1), we use the notation φ(z) = fZ (z) and
Φ(z) = FZ (z) for the corresponding density and distribution
functions, which are called standard normal/Gaussian
density/distribution functions.
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Student t and Fisher–Snedecor distributions

A random variable X is said to follow the Student t distribution
with parameter k ∈ N (called the number of degrees of freedom),
denoted X ∼ tk , if it can be written as

X =
√
n
Y n − µ

S

where n = k + 1, Y1, . . . ,Yn

iid
N (µ, σ2), Y n =

∑n
i=1 Yi/n, and

S2 =
∑n

i=1(Y i − Y )2/(n − 1).
If k > 1 then EX = 0 and if k > 2 then VarX = k/(k − 2).
A random variable X is said to follow the Fisher–Snedecor F
distribution with parameters d1, d2 > 0 if it can be written as
X = X1/d1

X2/d2
, where X1 ∼ χ2

d1
and X2 ∼ χ2

d2
are independent.
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