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The questions are independent of each other in the sense that one can admit previous
answers to treat the next questions. One need not solve all questions to get the maximal
grade, and questions can be solved in any order. Good luck! Bonne chance! Viel Erfolg!

Exercise 1 (Calderén’s theorem). In this exercise, we will prove Calderén’s following result.

Theorem. Let d > 2, and Q C R? be a bounded open connected domain. Then, the vector space space
spanned by products of real-valued harmonic functions is dense in L*({,R).

Recall that a real-valued function u € C*°(£2, R) is said harmonic if Au = 0, where

d 82
A=D 52
j=1

SN

is the Laplacian operator.
We let 7 = C®°(QR)N{u: Au=0 in Q}, Il = Span {u-v: (u,v) € I x H}.

(1) Let

d
A=C'nSC:¢-¢=> ¢ =0
j=1

Show that for all ¢ € A, the function u : Q — C,u(x) = €**¢ is harmonic.

(2) Fix some f € L?(©2,R), and assume that
/fwdsz for all w € II.
Q

Using well-chosen functions defined in (1), show that Z#(f 1g) = 0, where 1q is the indicator
function of €2, and .# is the Fourier transform. What can you deduce about f?

(3) Conclude the proof of the theorem.

Exercise 2 (Basic estimates for the Schrédinger equation). (1) Let d > 1, and o > 0 be a fixed real
number. Using the formula

7 (R >Rz e) () = (3)% e

for all £ € R™, show that the function g, : R” — C, 2z — e~ialzl® ig o tempered distribution (an
element of .7/(R%)), and show that

(2) Let f € .#(R%), and consider the following partial differential equation:

)
igutAu=0 in (0,00) x R?

u(0,z) = f(z)
where we recall that the Laplacian A is defined by

, (1

~—

and u € C1((0,0),.%'(R%)). Using the previous question, show that the following representation
formula holds for w:

1 ilz—y|?
u(t,z) = 7d/ e f(y)dy for all (t,z) € R% x R™
(2mit)z JRre



(3) Show that u € C*((0,00) x R%), and that for all ¢ > 0,

1
(27t)

()00 may = sup |u(t, z)| < 7 1L ey -
zERC 2
and that for all ¢ > 0, we have

[Ju(t, ')”L?(Rd) = [|u(0, ')”LZ(Rd) = ||f||L2(]Rd)'

More generally, estimate for all s € R the following norm |ju(t, -)|

/]

pe(ray (¢ > 0) in terms of

Hs (R4)*
(4) Let 2 < p < 0o. By a scaling argument, show that provided that the inequality
C
Jut, )l ega) < o I f 1l ey
1 1
holds for all f € .(R%) and all solution u of (1) (with initial data f), then o = d (2 - p). One

may introduce the following function u (¢, ) = u(A\?t, Az) for A > 0 in the proof.

This estimate is one of the basic ingredients of the proof of the space-time Strichartz estimates:

||UHLP(]R+7LQ(]Rd)) < C(p,q.,d) Hf”L?(]Rd)
d
2}

2 d
fO’/‘G”;"‘g: (PaQ)i’é(Q»OO)’PZQ

Exercise 3 (Elliptic Regularity). This exercise aims at generalising the elliptic estimates on the harmonic
functions. Namely, Au = f € C*°(2) implies that u € C*°(2). Here, we will prove the main step that
shows that weak solution of elliptic partial differential equation are continuous.

Let Q C R? be a connected open subset. Recall that for all 1 < p,q < oo, for all u € WHP(Q,R9)
and ¢ € Wy9(Q) such that uVe € L*(2) and pVu € L'(Q), we have for all 1 < j < d

/u@xjgodx:—/ (&Jju)godx.
Q Q

Restricting to 2 = B(0, 1) from now on, we let A = (a; j)1<j<a € L=(B(0,1),R%) be a space-dependent
uniformly elliptic matrix, i.e. there exists 0 < A < oo such that

d
AT < €A Z 2)&€; < A Va € B(0,1),V¢ € R (1)

We now let u € W2(B(0,1)) a weak solution (in 2’(B(0,1))) of the linear partial differential equation
div (A(z)Vu) = 0. (2)

Important note: all inequalities can be proven with “worse” constants than stated, provided that they
are universal constants (only depend on the ambient dimension and the parameter A), unless stated
otherwise.

(1) For d = 1, show directly that u € C°(B(0,1)).
(2) Show that for all ¢ € 2(B(0,1)) = C°(B(0,1)), the following identity holds

/ A(x)Vu-Veodr =0.
(0,1)

Notice that for all u,v € H*(B(0,1)), we have

Vu-Vouvdr = / a; &Clu@%vdaz.
/B(o,l) Al=) Z 4

i,7=1 B(0,1)



3)

(Caccioppoli inequality) Let u € W12(B(0,1)). Show that for all n € 2(B(0,1)), and ¢ € R, we
have

/ |Vu|*n?de < A2/ lu — c*|Vn|*dz.
B(0,1) B(0,1)

One can use the following test function ¢ = (u — c)n>.

By choosing an appropriate test function n, show that for all 0 < r; < ro < 1, we have for some
universal constant 0 < C' < oo,

C
/ Vul2ds < 72/ lu— of2dz )
B(0,r1) (r2 —71) B(0,72)\B(0,r1)

This is the Caccioppoli inequality.

Using the Poincaré-Wirtinger inequality and a scaling argument, show that for all for all 0 <7 < oo
if A(r) = B(0,2r)\ B(0,r) and u € WH2(B(0,7)), we have

/ lu — u,|2de < Crz/ |Vul|?dz,
A(r) A(r)

1
where u, = ][ udx = y / udx (for some universal constant ¢y) is the mean of u on A(r),
A(r) CaT™ JA(r)

and 0 < C' < oo is a universal constant independent of 7.

Deduce from the previous questions that there exists a universal contant 0 < 6 < 1 such that for

all0<r < %, we have
/ |Vul|?dr < 6 |Vul|*dz.
B(0,r) B(0,2r)

1
By induction, deduce that there exists 0 < o < 1 and 0 < C' < oo such that for all 0 < r < > we

have

/ |Vul?> < CT"/ |Vul|*dz.
B(0,r) B(0,1)

Hint: use a dyadic argument.

With the help of another optimal Poincaré-Wirtinger inequality, deduce that there exists a universal

1
constant 0 < C' < oo such that for all 0 < r < >

/ lu — 1, |2dr < CT2+°‘/ |Vu|?dz,
B(0,r) B(0,1)

~ 1
where u, :][ udr = ,—d/ udz is the mean of u on B(0, 7).
B(0,r) € JB(0r)

In the special case d = 2, show with the help of Lebesgue differentiation theorem and a translation
argument that u € C%#(B(0,1)) for some 0 < 3 < 1. Recall that the Lebesgue differentiation
theorem shows that for all u € Ll _(B(0,1)), and for all x € B(0,1), we havel

loc

! 1
dy = — dy — .
B(z,r)u(y) Y ) (o) u(y) dy o u(x)

TNotice that the theorem is stated on R2.



Furthermore, recall that the space of S-Holder functions is defined by

cosig) — oo n i ol 4 sup J4E@) = u@)]
Q) Q) lull co.s ) = lullpee $7!§2 |z —y|?
TFY

< 0

and equipped with the |Jul| 0.6 () norm defined above. On may first prove the following estimate

p14g ,
[Ugyr — Ugy,s] < C / |Vu|“dz
s B(0,1)
1 1 1
for all zp € B(0,5), and 0 < s <7 < 3, where ug,,, = udr = — udz.
B(zo,r) T JB(wo,r)

Assume from now on that d > 3. We say that v € H*(B(0,1)) is a weak sub-solution if for all
v € 2(B(0,1)), we have

/ A(z)Vu - Vedz <0, 4)
Q

or in other words

d
> / ()0, u 0y, v da < 0.
Q

ij=1

Using the chain rule and the product formula for Sobolev functions, show that for all convex,
increasing function ® € C?(R,R,) such that ®”(¢) = 0 for all [t| > R (for some fixed R > 0), then
for any sub-solution u € H'(B(0,1)), the function ®(u) € H'(B(0,1)) is a sub-solution.

From now on, we assume that the previous result holds for any increasing, convex function ® : R —

R, (not necessarily C? or satisfying the extra hypothesis on the second derivative).

(Moser iterations) Fix some 0 < 2r < 1, and for all j € N, let B; = B(0,r 4+ 277r), so that
Bj+1 C Bj C B(0,2T) and

By = () B; = B(0,7).
jEN

d
Show that for all 1 < X\ < L there exists 0 < 7 < oo such that for all j € N, for all

v € HY(Bj41), we have
2|2 2) 2X
H|U| HLQ(BJ'+1) <7 ||VU||L2(B.f+1) T ||U||L2(Bj+1) ‘

Fix1 <A< d%‘lQ, and let u € Hl(Bj) a positive weak sub-solution. With the help of the Caccioppoli

inequality (explain why it holds true for a sub-solution), show that u* € H'(Bji1), that u* is a
positive weak sub-solution, and show the inequality

<C@ +1) Jullf s,

2
Hu/\HLZ(B]»_H)

where C only depends on d, A,r > 0.

Let w € H'(B(0,1)) be a positive weak sub-solution. Define for all j € N the function u; = N

Explain why
”uHLOO(B(O,r)) = hfljololp ||uHL2>\j(Bj) ’
and prove the following inequality

[ullp (B0 < Cd A7) ullne B(0,20)) -



Solution

Exercise 1 (Calderén’s theorem). In this exercise, we will prove Calderén’s following result.

Theorem. Let d > 2, and Q C R? be a bounded open connected domain. Then, the vector space space
spanned by products of real-valued harmonic functions is dense in L*(Q,R).

Recall that a real-valued function u € C*°(Q, R) is said harmonic if Au = 0, where

d_ g0
A= o2
j=1

AN ]

is the Laplacian operator.
We let 7 = C®°(QR)N{u: Au=0 in Q}, Il = Span {u-v: (u,v) € H# x H}.

(1) Let

d
A=C'NQeC:¢-¢=) _¢G=0
j=1

Show that for all ¢ € A, the function u : Q — C,u(x) = €**¢ is harmonic.

(2) Fix some f € L*(,R), and assume that
/fwdx:() for all w € II.
)

Using well-chosen functions defined in (1), show that .Z(f1q) = 0, where 1q is the indicator
function of €, and .%# is the Fourier transform. What can you deduce about f?

(3) Conclude the proof of the theorem [thanks to Hahn-Banach theorem].

Proof.
(1) If u(z) = €'®¢, we compute for all 1 < j < d
Op;u=1Cju

2 2
Oz, u=—(; u.

Therefore, we get

d

d
Auzzaiju: —ZCJZu: —(¢-Qu =0,
j=1

j=1
which shows that « is harmonic.

(2) Since the real-part of harmonic functions is harmonic, for all { € A, we have

Re (¢!*%)Re (e”z), Re (e'*¢)Im (e”z),lm (e!*%)Re (e”z),lm (e!*)Im (e'¢) e I,

so the hypothesis shows that for all { € A, we have
Q

Notice that for all £ € RY, there exists € R? such that £ +in € A. Indeed, it suffices to take n such
that

d
> =[¢?, and (&) => &n; =0.
j=1



One can simply take ¢ € £+ ~ R4 of norm equal to ¢ which is non-empty since d > 2. Finally, taking

¢ =—%(£+in), we deduce that
/ f(x)e™ ™ 4dx = 0.
Q
Since this identity is valid for all ¢ € R?, we deduce that .# (1o f) = 0, which shows by uniqueness of
Fourier transform that f = 0.
(3) By Hahn-Banach theorem, if II was not dense in L2?(£),R), there would exist a linear form L :
L?(,R) — R such that L(w) = 0 for all w € II. By Riesz-Fréchet representation theorem, since L(w) =
O
(1) Let d > 1, and a > 0 be a fixed real

fQ fwdz for some f € L?(Q,R), the previous question shows that f = 0, which is a contradiction.

Exercise 2 (Basic estimates for the Schrodinger equation).

number. Using the formula
F (Rd - Rz e ) €3]

for all £ € R™, show that the function g, : R" — C,z — e~ialzl® ig o tempered distribution (an

™

5.6~ (2)

element of 2'(R%)), and show that

in (0,00) x R?

(2) Let f € .Z(R%), and consider the following partial differential equation:
0
i—u+Au=0

ot
u(0,2) = f(x)

where we recall that the Laplacian A is defined by

and u € C1((0,00),.7'(R%)). Using the previous question, show that the following representation
formula holds for w:
1 ile—y|? N d
u(t,z) = —— e f(y)dy forall (t,z) € RL x R%
(2mit)z JRre

1
1l ey

27rt)%

(

(3) Show that u € C*((0,00) x R?), and that for all ¢ > 0,
Hu(t'>HLoo(Rd) = sup |u(t,x)| <
zERC

pe(ray (t > 0) in terms of

and that for all ¢t > 0, we have
[u(t, )llp2@ay = 1140, )2 ey = 1fllL2(ray -

More generally, estimate for all s € R the following norm |ju(t, -)|

15 e e
C

(4) Let 2 < p < co. By a scaling argument, show that provided that the inequality
et ey < 3o 1l



holds for all f € .7 (R%) and all solution u of (1) (with initial data f), then o = d (

1 1
5 p). One

may introduce the following function uy (¢, ) = u(A\?¢, Az) for A > 0 in the proof.
This estimate is one of the basic ingredients of the proof of the space-time Strichartz estimates:

2
for all — + —
P q

Proof.

||UHLP(]R+’LQ(R(1)) < C(p,q,d) HfHL?(Rd)

, (p,q) # (2,00), p > 2.

d
2

(1) ga is a bounded function (of norm equal to 1), so
[(ga, )| < HSDHLOO(Rd) = ||90||0,07

’]T .
- ) T
X

1£12

CN{a:Re(a)>0}). Replacing « by i« shows that
7r )% _
e 4ia

which shows that g, is a tempered distribution. By analytic continuation, the formula (?7?) is
for all complex values o € C such that ezl ig a tempered distribution (that is, for all a €

(

Flarm e g = (X

(2) Taking the Fourier transform in z € R? of the equation, we find

— —ilePac, o).

or
0
57 (t:€)
U, €) = e G(0,6) = eI fle).

Therefore, we get

Now, by the Fourier inverse formula and the first question, we have
d
2 wI2> _ 67“|5|2

(1 (7)ot

SR WXE)

(2m)
which shows thanks to the convolution identity .7 (¢ * ) = % ()% (¢) valid for all ¢ € .#/(R?)
ile—y|?
[
Rd

and ¢ € .7 (RY) that
1 i\y 2 1
e 4t *x () = ———
% ) /(@) (2m't)%

ulte) = (y 7 (amit)
= [ fllr2(ay

1
L2(R4)

(3) By Parseval identity and (6), we have
~

u =—
% L2(R%) (27_‘_)%

u =
s ey = 75

7]

while the triangle inequality directly implies that
1 / 1
fy)ldy = f :
Wl = g I e

4
2

Ju(t, z)| < @)

(4) We notice that uy is also a solution of (5) of initial data fy(z) = f(A\x) since
drun(t,z) = A Ou(\?t, A x)



Gij up(t,x) = AQ(’?iju()\Qt, Az)
Auy(t, ) = N2Au(N’t, tx).
Now, we compute

1
P 1 D
||uA<t,->Lp<Rd)=(/ u(A%Ax)Pdw) S (/ |u<A2t,y>|dy)
R4 Az=y Ap R4

Likewise, we have

1
Hf)\HLP’(]Rd) = )\j Hf||L2(]Rd) :

Finally, we deduce that

C 1
Nt - e — ey -
Hu( ) )HLp(Rd) = ta )\d(ﬁfi) Hf”Lp (R4)
Choosing A = t2, we get
C
o0 Mhagee) €~y W lhor oo
72\

Taking t — oo or t — 0, we deduce that
d (1 1 d 2 1 1
a=-|=—-—=-)=-(1-=)=d|z—-]).
2\p »p 2 p 2 p

Exercise 3 (Elliptic Regularity). This exercise aims at generalising the elliptic estimates on the harmonic
functions. Namely, Au = f € C°°() implies that u € C*°(Q2). Here, we will prove the main step that
shows that weak solution of elliptic partial differential equation are continuous.

Let © C R? be a connected open subset. Recall that for all 1 < p,q < oo, for all u € W“’(Q,Rd)
and ¢ € W;9(Q) such that uVe € L1(Q) and pVu € L1(Q), we have for all 1 < j < d

/u@Ijgpda::—/ (&Cju)godx.
Q Q

Restricting to Q2 = B(0, 1) from now on, we let A = (a; j)1<j<a € L=(B(0,1),R?%) be a space-dependent
uniformly elliptic matrix, i.e. there exists 0 < A < oo such that

O

d
AP < EA@)E =Y aij(2)&8 < AEPP Vo e B(0,1),¥¢ € R (7)
i,j=1

We now let u € W2(B(0,1)) a weak solution (in 2’(B(0,1))) of the linear partial differential equation
div (A(z)Vu) = 0. (8)
Important note: all inequalities can be proven with “worse” constants than stated, provided that they

are universal constants (only depend on the ambient dimension and the parameter A), unless stated
otherwise.

(1) For d = 1, show directly that u € C°(B(0,1)).

Proof. It is a direct consequence of the Sobolev embedding W2(]0, 1]) < C%2 ([0, 1)). O



(2)

(3)

Show that for all ¢ € 2(B(0,1)) = C°(B(0,1)), the following identity holds
/ A(xz)Vu - Veodr = 0.
B(0,1)

Notice that for all u,v € H'(B(0,1)), we have

d
> / @i ()0, u D0 dut.
B(0,1)

ij=1

/ A(x)Vu - Vodr =
B(0,1)

Proof. Since div(A(z)Vu) = 0, by multiplying this equation by ¢ and integrating by parts, the
identity follows immediately. O

(Caccioppoli inequality) Let u € W12(B(0,1)). Show that for all n € 2(B(0,1)), and ¢ € R, we
have

/ |Vul?n?de < A2/ lu — c*|Vn|*dz.
B(0,1) B(0,1)

One can use the following test function ¢ = (u — c)n>.

Proof. We have

0= / A(z)Vu-Vonde = / A(x)Vu - Vun? de + 2/ A(z)Vu - (Vn) (u— c)nde.
B(0,1) B(0,1) B(0,1)

Using the elliptic estimate, we have

At |Vul?dz < / A(x)Vu - Vun? de.
B(0,1) B(0,1)

Now, by the Cauchy-Schwarz inequality, we have

<A / IV ul[Vrn|dz
B(0,1)

<A / |Vul*n?dz
B(0,1)
(/B(O 1)

)

/ A(z)Vu - (Vn)(u— c)ndx
B(0,1)

1
2

N

</ lu — cha:>
B(0,1)

Therefore, we have

AT |Vu\2772 de < A / |Vu|2772d:1:
B(0,1) B(0,1)

Since all integrals are finite, if the left-hand side integral is zero, then we are done. Otherwise, we
divide by the square root of the left-hand side and find that

2

ju— CQWIle")

/ |Vul|*n? dz < A2/ lu — c|*|Vn|*da
B(0,1) B(0,1)
O

By choosing an appropriate test function n, show that for all 0 < r; < ro < 1, we have for some
universal constant 0 < C' < oo,

C
/ |Vul?dz < 72/ lu — c|*da (9)
B(0,r1) (r2 — 1) B(0,r2)\B(0,71)

This is the Caccioppoli inequality.



Proof. We take 7 such that n = 1 on B,,(0), and supp(n) C B(0,73). By using an approximation
of a linear function, we can choose n radial such that |Vn| < (7‘2737‘1)’ which shows by the previous

inequality since Vi = 0 on B(0,r) that

4A?
/ |Vu|?de < / |Vul*n?de < 72/ lu — c|*da.
B, (0) By, (0) (r2—711)% JB,,(0)

T1

O

Using the Poincaré-Wirtinger inequality and a scaling argument, show that for all for all 0 < r < oo
if A(r) = B(0,2r)\ B(0,r) and u € WH2(B(0,7)), we have

/ lu — u,|2de < C’I"Q/ |Vu|?dz,
A(r) A(r)

where u, :][ udx = y / udz (for some universal constant cq) is the mean of u on A(r),
A(r) CaT™ JA(r)

and 0 < C' < oo is a universal constant independent of 7.

Proof. By the Poincaré-Wirtinger inequality, we have

/ |v — vy |?de < C/ |Vo|?dx
A1) A(r)

for all v € WH2(A(1)). If v(x) = u(rz), where u € W12(A(r)), then by the change of variable

rer =1y, we get
/ \val|2dx :r*d/ |u7ur\2dy,
A1) A(r)

/ |Vol2dz = / r?|Vu(rz)|*de = 7"2_d/ |Vu|*dy,
A1) A1) A(r)

which concludes the proof by multiplying both sides by r<. O

while

Deduce from the previous questions that there exists a universal contant 0 < 6 < 1 such that for

1
all0 < r < > we have
/ |Vul|?dr < 6 |Vul|*dz.
B(0,r) B(0,2r)

1
By induction, deduce that there exists 0 < o < 1 and 0 < C' < oo such that for all 0 < r < ok we

have

/ |Vu|?> < C’ro‘/ |Vul|*d.
B(0,r) B(0,1)

Hint: use a dyadic argument.

Proof. Using the Caccioppoli inequality and the previous Poincaré inequality, we get

A2
/ |Vu|*dx < — X C’rQ/ |Vu|?dz = C’AQ/ |Vu|?d.
B(0,r) r B(0,2r)\B(0,r) B(0,2r)\B(0,r)

10



By adding CAQ/ |Vu|?dz on both sides, we get
B(0,r)

(1+ CAQ)/

|Vul|*dr < CAQ/ |Vul|*dx,
B(0,r)

B(0,2r)

which proves the inequality with 6§ = % € (0,1).

Let j € N such that 2/r < 1 < 2/71p. The inequality shows that jlog(2) + log(r) < 0 <
(5 + 1) log(2) + log(r), or

. 1 .

J < log, <r) <Jj+1,
and

log, (1) < —j <1+ 1log, (1) .

Then, by a direct induction, we deduce that

. 1 (1
/ |Vu|*de < 03/ |Vu|*dx < —rlog'?(?)/ |Vu|?de,
B(0,r) B(0,291) ¢ B(0,1)

since 67 = exp (—jlog (1)) < exp ((1+log, (r))log (§)) = %rlog?(%). We deduce the claim with
a = log,y (%) O

(7) With the help of another optimal Poincaré-Wirtinger inequality, deduce that there exists a universal
1
constant 0 < C' < oo such that for all 0 < r < >

/ lu — 1, |2dr < CT2+O‘/ |Vu|?dz,
B(0,r) B(0,1)

~ 1
where @, :][ udr = —— udz is the mean of v on B(0,r).
B(0,r) € JB(O0r)

Proof. The proof is exactly the same as before and we omit it. O

(8*) In the special case d = 2, show with the help of Lebesgue differentiation theorem and a translation
argument that u € C%#(B(0,1)) for some 0 < 8 < 1. Recall that the Lebesgue differentiation
theorem shows that for all u € Ll _(B(0,1)), and for all € B(0,1), we havet

1
u(y)dy = —5 u(y) dy — u(x).
]lB(m,r) mr? B(z,r) r—0

Furthermore, recall that the space of S-Hoélder functions is defined by

[uz) — uly)|

<
w—yp =

(@) = @) w ulloos o) = Ielleoy + sup
T,y
TF#Y

and equipped with the ||u]| c0.6(0 norm defined above. On may first prove the following estimate

e
[tgy,r — Ugy,s] < C / |Vu|>dx
S B(0,1)
1 1 L
for all 2o € B(0,5), and 0 < s <r < 5, where uzmr:][ udr = — udz.
B(xo,r) r B(xo,r)

#Notice that the theorem is stated on R2.

11



Proof. By translation, we deduce that for all ¢ € B(0, %), we have for all 0 < r < %

/ U — Ugy |2 d < CP2T / |Vu|*dx
B(zq,r) B(0,1)

N

Now, we have by the triangle inequality

‘uloﬂ' - ul’o,$|2 :]{3( )‘ul‘oﬂ' - u$078|2d'r
To,S

< 2][ |u—u$0,r|2dx+2/ U — g, s |*dx
B(zo,s) B(zo,s)

2

< C’% JrCSO‘/ |Vu|da
5% JB(wo,r) B(0,1)

T2+a S2+a
< C’( s+ — > / |Vu|2dx
S S B(0,1)

7,2+o¢
<C—; / |Vul?dz,
§ B(0,1)

which proves the inequality. Now, take r = r; = 1927 %, and s = Tig1 = ro2 1. We get

. o0 . . .
Therefore, the series ) . |tzq,r; —Uzg,r.,, | is sSummable, and we deduce in particular that uz, ., P

|uI0,T7; - UIO,Ti+1| < 02_71%85 ||vu||L2(B(O,1)) :

u(xo) by Lebesgue differentiation theorem. Furthermore, we have

[u(T0) — Uzg,re| < CT§ ||VUHL2(B(O,1)) :

Finally, if zo,y0 € B(0, 1) and ro = 2|z — yo|, we have by the triangle inequality

|u(x0) - u(y0)| < C‘xo - y0|% ”quL?(B(O,l)) + |u$07T0 - uy07T0|’

and

2 2
Ugo,ro — uyoﬂ”0| < ][ (4. 70) |u$o,To - uy07T0| dx
B(yo, 3

which concludes the proof.

< 8][ |u—u10,ro|2dx+8/ \u—uyo,ro|2dx
B(‘"Eoﬂ‘o) B(yO)TO)

< Clzo — yol®,

— 00

O

(9) Assume from now on that d > 3. We say that u € H'(B(0,1)) is a weak sub-solution if for all

v € 2(B(0,1)), we have

or in other words

/ A(x)Vu - Veodz <0,
Q

d
Z / ;,j(2) 0z, u O, v dx < 0.
Q

ij=1

(10)

Using the chain rule and the product formula for Sobolev functions, show that for all convex,
increasing function ® € C?(R, R ) such that ®”(t) = 0 for all |[t| > R (for some fixed R > 0), then
for any sub-solution v € H'(B(0,1)), the function ®(u) € H*(B(0,1)) is a sub-solution.

From now on, we assume that the previous result holds for any increasing, convex function ® : R —
R (not necessarily C? or satisfying the extra hypothesis on the second derivative).

12



(10)

(Moser iterations) Fix some 0 < 2r < 1, and for all j € N, let B; = B(0,r 4+ 277r), so that
Bjt1 C B; C B(0,2r) and

By = ()| B; = B(0,7).

JjEN

d
Show that for all 1 < A < T there exists 0 < 7 < oo such that for all j € N, for all

v € H'(Bj41), we have
A2 2A
|||U| HL?(B]-+1) <7 ||VU||L2(B et ||v||L2(Bj+1) .

Proof. By the Sobolev embedding theorem, since 2* = dQ—fl?, there exists 0 < C' = C(r) < o©
(independent of j by a scaling argument since B(0,r) C B; C B(0,2r) for all j € N) and such that

2
10 i,y = W00, 100 < € ol = € (190 + 0l )
<221 (||Vv||L2(BJ+1) + ||U||L2(B +1)>

by convexity of Ry — Ry, ¢+ 2}, O

Fix1 <A< dd27 and let u € Hl(Bj) a positive weak sub-solution. With the help of the Caccioppoli
inequality (explain why it holds true for a sub-solution), show that u* € H'(B;11), that u* is a

positive weak sub-solution, and show the inequality

1|2, ) < CE +1) [ulfas,)

where C' only depends on d, A,r > 0.

Proof. By (10), u* € L*(B,41), and by the extension of question (9) to general convex functions,
we deduce that u” is a positive weak sub-solution. By Caccioppoli inequality that works for sub-
solutions since the proof works mutadis mutandis if one replace the equality by an inequality, we
get

2A 4A
||Vu||L2(Bj+1) S (,r,+ 2—j,r) _ (,r + 27j71 ) || ||L2 B ) - TZJ HUHLZ(B )

Since Hu||L2(Bj+1) < ||UHL2(B]-)’ we get by (10)

A2 4N o\
[ s,y <7 (14 2222
= @ 1) P

O

Let u € H*(B(0,1)) be a positive weak sub-solution. Define for all j € N the function u; = uN .
Explain why

”uHL‘X’(B(O,r)) = hinjoljp ||UHLW(BJ-) ’

and prove the following inequality

[ullp (B0, < Cd, As) ullne 50,20y -
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Proof. This is a standard result from the theory of LP spaces. Now, notice that the previous
inequality can be rewritten as
20j A
||uj+1||L2(Bj+1) < 0(2 T+ 1) HUJ'HI}(BJ.) .

1

Since Ljy1 = [lullpani+r g, ) = HWHHQ%&HQ Now, we have by direct induction

. 1
Ljt1 < (C(2%M 4+ 1)) ¥ L,
which shows by a direct induction that
J . 1 J . 1
L < [T (@ + 1)) Lo = [T (CR™ + 1) Ilullyz(s0,1)) -
i=0 i=0
Since the product

oo

[ (c® + 1)

i=0
is absolutely convergent, we obtain the announced estimate. Indeed, notice that

. . 1 - ) v
(C(22 +1)) 77 = exp ()\Z_H log(1 + 22,\1)) = exp (2/\log(2))\iJr1 +o (}JH))

and the geometric series

o0 .

i
2 5
i=0

converges since \ > 1. O
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