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The questions are independent of each other in the sense that one can admit previous
answers to treat the next questions. One need not solve all questions to get the maximal
grade, and questions can be solved in any order. Good luck! Bonne chance ! Viel Erfolg!

Exercise 1 (Calderón’s theorem). In this exercise, we will prove Calderón’s following result.

Theorem. Let d ≥ 2, and Ω ⊂ Rd be a bounded open connected domain. Then, the vector space space
spanned by products of real-valued harmonic functions is dense in L2(Ω,R).

Recall that a real-valued function u ∈ C∞(Ω,R) is said harmonic if ∆u = 0, where

∆ =
d∑

j=1

∂2

∂x2
j

is the Laplacian operator.
We let H = C∞(Ω,R) ∩ {u : ∆u = 0 in Ω}, Π = Span {u · v : (u, v) ∈ H × H }.

(1) Let

A = Cd ∩

ζ : ζ · ζ =
d∑

j=1
ζ2

j = 0

 .

Show that for all ζ ∈ A, the function u : Ω → C, u(x) = ei x·ζ is harmonic.

(2) Fix some f ∈ L2(Ω,R), and assume that∫
Ω
f w dx = 0 for all w ∈ Π.

Using well-chosen functions defined in (1), show that F (f 1Ω) = 0, where 1Ω is the indicator
function of Ω, and F is the Fourier transform. What can you deduce about f?

(3) Conclude the proof of the theorem.

Exercise 2 (Basic estimates for the Schrödinger equation). (1) Let d ≥ 1, and α > 0 be a fixed real
number. Using the formula

F
(
Rd → R, x 7→ e−αx2

)
(ξ) =

(π
α

) d
2
e− |ξ|2

4α

for all ξ ∈ Rn, show that the function gα : Rn → C, x 7→ e−iα|x|2 is a tempered distribution (an
element of S ′(Rd)), and show that

ĝα(ξ) =
( π
i α

) d
2
ei

|ξ|2
4α .

(2) Let f ∈ S (Rd), and consider the following partial differential equation:i
∂

∂t
u+ ∆u = 0 in (0,∞) × Rd

u(0, x) = f(x)
, (1)

where we recall that the Laplacian ∆ is defined by

∆ =
d∑

j=1

∂2

∂x2
j

,

and u ∈ C1((0,∞),S ′(Rd)). Using the previous question, show that the following representation
formula holds for u:

u(t, x) = 1
(2π i t) d

2

∫
Rd

e
i|x−y|2

4t f(y)dy for all (t, x) ∈ R∗
+ × Rd.
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(3) Show that u ∈ C∞((0,∞) × Rd), and that for all t > 0,

∥u(t · )∥L∞(Rd) = sup
x∈Rd

|u(t, x)| ≤ 1
(2πt) d

2
∥f∥L1(Rd) ,

and that for all t > 0, we have

∥u(t, · )∥L2(Rd) = ∥u(0, · )∥L2(Rd) = ∥f∥L2(Rd) .

More generally, estimate for all s ∈ R the following norm ∥u(t, · )∥Hs(Rd) (t > 0) in terms of
∥f∥Hs(Rd).

(4) Let 2 ≤ p ≤ ∞. By a scaling argument, show that provided that the inequality

∥u(t, · )∥Lp(Rd) ≤ C

tα
∥f∥Lp′ (Rd)

holds for all f ∈ S (Rd) and all solution u of (1) (with initial data f), then α = d

(
1
2 − 1

p

)
. One

may introduce the following function uλ(t, x) = u(λ2 t, λ x) for λ > 0 in the proof.
This estimate is one of the basic ingredients of the proof of the space-time Strichartz estimates:

∥u∥Lp(R+,Lq(Rd)) ≤ C(p, q, d) ∥f∥L2(Rd)

for all 2
p

+ d

q
= d

2 , (p, q) ̸= (2,∞), p ≥ 2.

Exercise 3 (Elliptic Regularity). This exercise aims at generalising the elliptic estimates on the harmonic
functions. Namely, ∆u = f ∈ C∞(Ω) implies that u ∈ C∞(Ω). Here, we will prove the main step that
shows that weak solution of elliptic partial differential equation are continuous.

Let Ω ⊂ Rd be a connected open subset. Recall that for all 1 ≤ p, q ≤ ∞, for all u ∈ W 1,p(Ω,Rd)
and φ ∈ W 1,q

0 (Ω) such that u∇φ ∈ L1(Ω) and φ∇u ∈ L1(Ω), we have for all 1 ≤ j ≤ d∫
Ω
u ∂xjφdx = −

∫
Ω

(
∂xju

)
φdx.

Restricting to Ω = B(0, 1) from now on, we let A = (ai,j)1≤j≤d ∈ L∞(B(0, 1),Rd) be a space-dependent
uniformly elliptic matrix, i.e. there exists 0 < Λ < ∞ such that

Λ−1|ξ|2 ≤ ξtA(x)ξ =
d∑

i,j=1
ai,j(x)ξiξj ≤ Λ|ξ|2 ∀x ∈ B(0, 1),∀ξ ∈ Rd. (1)

We now let u ∈ W 1,2(B(0, 1)) a weak solution (in D ′(B(0, 1))) of the linear partial differential equation

div (A(x)∇u) = 0. (2)

Important note: all inequalities can be proven with “worse” constants than stated, provided that they
are universal constants (only depend on the ambient dimension and the parameter Λ), unless stated
otherwise.

(1) For d = 1, show directly that u ∈ C0(B(0, 1)).

(2) Show that for all φ ∈ D(B(0, 1)) = C∞
c (B(0, 1)), the following identity holds∫

B(0,1)
A(x)∇u · ∇φdx = 0.

Notice that for all u, v ∈ H1(B(0, 1)), we have∫
B(0,1)

A(x)∇u · ∇v dx =
d∑

i,j=1

∫
B(0,1)

ai,j(x)∂xiu ∂xjv dx.
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(3) (Caccioppoli inequality) Let u ∈ W 1,2(B(0, 1)). Show that for all η ∈ D(B(0, 1)), and c ∈ R, we
have ∫

B(0,1)
|∇u|2η2dx ≤ Λ2

∫
B(0,1)

|u− c|2|∇η|2dx.

One can use the following test function φ = (u− c)η2.

(4) By choosing an appropriate test function η, show that for all 0 < r1 < r2 < 1, we have for some
universal constant 0 < C < ∞,∫

B(0,r1)
|∇u|2dx ≤ C

(r2 − r1)2

∫
B(0,r2)\B(0,r1)

|u− c|2dx (3)

This is the Caccioppoli inequality.

(5) Using the Poincaré-Wirtinger inequality and a scaling argument, show that for all for all 0 < r < ∞
if A(r) = B(0, 2r) \B(0, r) and u ∈ W 1,2(B(0, r)), we have∫

A(r)
|u− ur|2dx ≤ Cr2

∫
A(r)

|∇u|2dx,

where ur = −
∫

A(r)
u dx = 1

cd rd

∫
A(r)

u dx (for some universal constant cd) is the mean of u on A(r),

and 0 < C < ∞ is a universal constant independent of r.

(6) Deduce from the previous questions that there exists a universal contant 0 < θ < 1 such that for
all 0 < r <

1
2 , we have ∫

B(0,r)
|∇u|2dx ≤ θ

∫
B(0,2r)

|∇u|2dx.

By induction, deduce that there exists 0 < α < 1 and 0 < C < ∞ such that for all 0 < r <
1
2 , we

have ∫
B(0,r)

|∇u|2 ≤ Crα

∫
B(0,1)

|∇u|2dx.

Hint: use a dyadic argument.

(7) With the help of another optimal Poincaré-Wirtinger inequality, deduce that there exists a universal
constant 0 < C < ∞ such that for all 0 < r <

1
2 ,∫

B(0,r)
|u− ũr|2dx ≤ Cr2+α

∫
B(0,1)

|∇u|2dx,

where ũr = −
∫

B(0,r)
u dx = 1

c′
dr

d

∫
B(0,r)

u dx is the mean of u on B(0, r).

(8∗) In the special case d = 2, show with the help of Lebesgue differentiation theorem and a translation
argument that u ∈ C0,β(B(0, 1

4 )) for some 0 < β < 1. Recall that the Lebesgue differentiation
theorem shows that for all u ∈ L1

loc(B(0, 1)), and for all x ∈ B(0, 1), we have†

−
∫

B(x,r)
u(y) dy = 1

πr2

∫
B(x,r)

u(y) dy −→
r→0

u(x).

†Notice that the theorem is stated on R2.
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Furthermore, recall that the space of β-Hölder functions is defined by

C0,β(Ω) = C0(Ω) ∩

u : ∥u∥C0,β(Ω) = ∥u∥L∞(Ω) + sup
x,y∈Ω
x ̸=y

|u(x) − u(y)|
|x− y|β

< ∞


and equipped with the ∥u∥C0,β(Ω) norm defined above. On may first prove the following estimate

|ux0,r − ux0,s| ≤ C
r1+ α

2

s

∫
B(0,1)

|∇u|2dx

for all x0 ∈ B(0, 1
2 ), and 0 < s < r < 1

2 , where ux0,r = −
∫

B(x0,r)
u dx = 1

πr2

∫
B(x0,r)

u dx.

(9) Assume from now on that d ≥ 3. We say that u ∈ H1(B(0, 1)) is a weak sub-solution if for all
φ ∈ D(B(0, 1)), we have ∫

Ω
A(x)∇u · ∇φdx ≤ 0, (4)

or in other words
d∑

i,j=1

∫
Ω
ai,j(x)∂xiu ∂xjv dx ≤ 0.

Using the chain rule and the product formula for Sobolev functions, show that for all convex,
increasing function Φ ∈ C2(R,R+) such that Φ′′(t) = 0 for all |t| ≥ R (for some fixed R > 0), then
for any sub-solution u ∈ H1(B(0, 1)), the function Φ(u) ∈ H1(B(0, 1)) is a sub-solution.
From now on, we assume that the previous result holds for any increasing, convex function Φ : R →
R+ (not necessarily C2 or satisfying the extra hypothesis on the second derivative).

(10) (Moser iterations) Fix some 0 < 2r < 1, and for all j ∈ N, let Bj = B(0, r + 2−jr), so that
Bj+1 ⊂ Bj ⊂ B(0, 2r) and

B∞ =
⋂
j∈N

Bj = B(0, r).

Show that for all 1 ≤ λ ≤ d

d− 2 , there exists 0 < γ < ∞ such that for all j ∈ N, for all
v ∈ H1(Bj+1), we have ∥∥|v|λ

∥∥2
L2(Bj+1) ≤ γ ∥∇v∥2λ

L2(Bj+1) + γ ∥v∥2λ
L2(Bj+1) .

(11) Fix 1 < λ ≤ d
d−2 , and let u ∈ H1(Bj) a positive weak sub-solution. With the help of the Caccioppoli

inequality (explain why it holds true for a sub-solution), show that uλ ∈ H1(Bj+1), that uλ is a
positive weak sub-solution, and show the inequality∥∥uλ

∥∥2
L2(Bj+1) ≤ C(22λj + 1) ∥u∥2λ

L2(Bj) ,

where C only depends on d,Λ, r > 0.

(12) Let u ∈ H1(B(0, 1)) be a positive weak sub-solution. Define for all j ∈ N the function uj = uλj .
Explain why

∥u∥L∞(B(0,r)) = lim sup
j→∞

∥u∥L2λj (Bj) ,

and prove the following inequality

∥u∥L∞(B(0,r)) ≤ C(d,Λ, r) ∥u∥L2(B(0,2r)) .
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Solution

Exercise 1 (Calderón’s theorem). In this exercise, we will prove Calderón’s following result.

Theorem. Let d ≥ 2, and Ω ⊂ Rd be a bounded open connected domain. Then, the vector space space
spanned by products of real-valued harmonic functions is dense in L2(Ω,R).

Recall that a real-valued function u ∈ C∞(Ω,R) is said harmonic if ∆u = 0, where

∆ =
d∑

j=1

∂2

∂x2
j

is the Laplacian operator.
We let H = C∞(Ω,R) ∩ {u : ∆u = 0 in Ω}, Π = Span {u · v : (u, v) ∈ H × H }.

(1) Let

A = Cd ∩

ζ : ζ · ζ =
d∑

j=1
ζ2

j = 0

 .

Show that for all ζ ∈ A, the function u : Ω → C, u(x) = ei x·ζ is harmonic.

(2) Fix some f ∈ L2(Ω,R), and assume that∫
Ω
f w dx = 0 for all w ∈ Π.

Using well-chosen functions defined in (1), show that F (f 1Ω) = 0, where 1Ω is the indicator
function of Ω, and F is the Fourier transform. What can you deduce about f?

(3) Conclude the proof of the theorem [thanks to Hahn-Banach theorem].

Proof.

(1) If u(x) = ei x·ζ , we compute for all 1 ≤ j ≤ d

∂xju = i ζj u

∂2
xj
u = −ζ2

j u.

Therefore, we get

∆u =
d∑

j=1
∂2

xj
u = −

d∑
j=1

ζ2
j u = −(ζ · ζ)u = 0,

which shows that u is harmonic.

(2) Since the real-part of harmonic functions is harmonic, for all ζ ∈ A, we have

Re (ei x ζ)Re (ei x ζ),Re (ei x ζ)Im (ei x ζ), Im (ei x ζ)Re (ei x ζ), Im (ei x ζ)Im (ei x ζ) ∈ Π,

so the hypothesis shows that for all ζ ∈ A, we have∫
Ω
f(x) e2 i x·Re (ζ) dx = 0.

Notice that for all ξ ∈ Rd, there exists η ∈ Rd such that ξ + i η ∈ A. Indeed, it suffices to take η such
that

|η|2 = |ξ|2, and ⟨ξ, η⟩ =
d∑

j=1
ξj ηj = 0.
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One can simply take ζ ∈ ξ⊥ ≃ Rd−1 of norm equal to ξ which is non-empty since d ≥ 2. Finally, taking
ζ = − 1

2 (ξ + i η), we deduce that ∫
Ω
f(x)e−i x·ξdx = 0.

Since this identity is valid for all ξ ∈ Rd, we deduce that F (1Ωf) = 0, which shows by uniqueness of
Fourier transform that f = 0.

(3) By Hahn-Banach theorem, if Π was not dense in L2(Ω,R), there would exist a linear form L :
L2(Ω,R) → R such that L(w) = 0 for all w ∈ Π. By Riesz-Fréchet representation theorem, since L(w) =∫

Ω f w dx for some f ∈ L2(Ω,R), the previous question shows that f = 0, which is a contradiction.

Exercise 2 (Basic estimates for the Schrödinger equation). (1) Let d ≥ 1, and α > 0 be a fixed real
number. Using the formula

F
(
Rd → R, x 7→ e−αx2

)
(ξ) =

(π
α

) d
2
e− |ξ|2

4α

for all ξ ∈ Rn, show that the function gα : Rn → C, x 7→ e−iα|x|2 is a tempered distribution (an
element of D ′(Rd)), and show that

ĝα(ξ) =
( π
i α

) d
2
ei

|ξ|2
4α .

(2) Let f ∈ S (Rd), and consider the following partial differential equation:i
∂

∂t
u+ ∆u = 0 in (0,∞) × Rd

u(0, x) = f(x)
, (5)

where we recall that the Laplacian ∆ is defined by

∆ =
d∑

j=1

∂2

∂x2
j

,

and u ∈ C1((0,∞),S ′(Rd)). Using the previous question, show that the following representation
formula holds for u:

u(t, x) = 1
(2π i t) d

2

∫
Rd

e
i|x−y|2

4t f(y)dy for all (t, x) ∈ R∗
+ × Rd.

(3) Show that u ∈ C∞((0,∞) × Rd), and that for all t > 0,

∥u(t · )∥L∞(Rd) = sup
x∈Rd

|u(t, x)| ≤ 1
(2πt) d

2
∥f∥L1(Rd) ,

and that for all t > 0, we have

∥u(t, · )∥L2(Rd) = ∥u(0, · )∥L2(Rd) = ∥f∥L2(Rd) .

More generally, estimate for all s ∈ R the following norm ∥u(t, · )∥Hs(Rd) (t > 0) in terms of
∥f∥Hs(Rd).

(4) Let 2 ≤ p ≤ ∞. By a scaling argument, show that provided that the inequality

∥u(t, · )∥Lp(Rd) ≤ C

tα
∥f∥Lp′ (Rd)
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holds for all f ∈ S (Rd) and all solution u of (1) (with initial data f), then α = d

(
1
2 − 1

p

)
. One

may introduce the following function uλ(t, x) = u(λ2 t, λ x) for λ > 0 in the proof.
This estimate is one of the basic ingredients of the proof of the space-time Strichartz estimates:

∥u∥Lp(R+,Lq(Rd)) ≤ C(p, q, d) ∥f∥L2(Rd)

for all 2
p

+ d

q
= d

2 , (p, q) ̸= (2,∞), p ≥ 2.

Proof. (1) gα is a bounded function (of norm equal to 1), so

|⟨gα, φ⟩| ≤ ∥φ∥L∞(Rd) = ∥φ∥0,0 ,

which shows that gα is a tempered distribution. By analytic continuation, the formula (??) is
for all complex values α ∈ C such that e−α|x|2 is a tempered distribution (that is, for all α ∈
C ∩ {α : Re (α) ≥ 0}). Replacing α by i α shows that

F (x 7→ e−i α|x|2
)(ξ) =

( π
i α

) d
2
e− |ξ|2

4 i α =
( π
i α

) d
2
ei

|ξ|2
4 α .

(2) Taking the Fourier transform in x ∈ Rd of the equation, we find

i
∂

∂t
û(t, ξ) − |ξ|2û(t, ξ) = 0,

or

∂

∂t
û(t, ξ) = −i|ξ|2û(t, ξ).

Therefore, we get

û(t, ξ) = e−i t |ξ|2
û(0, ξ) = e−i t |ξ|2

f̂(ξ). (6)

Now, by the Fourier inverse formula and the first question, we have

1
(2π)d

F

(
1

(2π)d
×
( π
i α

) d
2
ei

|x|2
4t

)
= e−i t |ξ|2

,

which shows thanks to the convolution identity F (φ ∗ ψ) = F (φ)F (ψ) valid for all φ ∈ S ′(Rd)
and ψ ∈ S (Rd) that

u(t, x) =
(
y 7→ 1

(2πit) d
2
ei

|y|2
4t

)
∗ f(x) = 1

(2πit) d
2

∫
Rd

e
i|x−y|2

4t f(y)dy.

(3) By Parseval identity and (6), we have

∥u∥L2(Rd) = 1
(2π) d

2
∥û∥L2(Rd) = 1

(2π) d
2

∥∥∥f̂ ∥∥∥
L2(Rd)

= ∥f∥L2(Rd) ,

while the triangle inequality directly implies that

|u(t, x)| ≤ 1
(2πt) d

2

∫
Rd

|f(y)|dy = 1
(2πt) d

2
∥f∥L1(Rd) .

(4) We notice that uλ is also a solution of (5) of initial data fλ(x) = f(λx) since

∂tuλ(t, x) = λ2 ∂tu(λ2t, λ x)
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∂2
xj
uλ(t, x) = λ2∂2

xj
u(λ2t, λx)

∆uλ(t, x) = λ2∆u(λ2t, tx).

Now, we compute

∥uλ(t, · )∥Lp(Rd) =
(∫

Rd

|u(λ2t, λx)|pdx
) 1

p

= =
λx=y

1
λ

d
p

(∫
Rd

|u(λ2t, y)|dy
) 1

p

.

Likewise, we have

∥fλ∥Lp′ (Rd) = 1
λ

d
p′

∥f∥L2(Rd) .

Finally, we deduce that ∥∥u(λ2t, · )
∥∥

Lp(Rd) ≤ C

tα
1

λ
d
(

1
p′ − 1

p

) ∥f∥Lp′ (Rd) .

Choosing λ = t−2, we get

∥u(1, · )∥Lp(Rd) ≤ C

t
α− d

2

(
1

p′ − 1
p

) ∥f∥Lp′ (Rd) .

Taking t → ∞ or t → 0, we deduce that

α = d

2

(
1
p′ − 1

p

)
= d

2

(
1 − 2

p

)
= d

(
1
2 − 1

p

)
.

Exercise 3 (Elliptic Regularity). This exercise aims at generalising the elliptic estimates on the harmonic
functions. Namely, ∆u = f ∈ C∞(Ω) implies that u ∈ C∞(Ω). Here, we will prove the main step that
shows that weak solution of elliptic partial differential equation are continuous.

Let Ω ⊂ Rd be a connected open subset. Recall that for all 1 ≤ p, q ≤ ∞, for all u ∈ W 1,p(Ω,Rd)
and φ ∈ W 1,q

0 (Ω) such that u∇φ ∈ L1(Ω) and φ∇u ∈ L1(Ω), we have for all 1 ≤ j ≤ d∫
Ω
u ∂xjφdx = −

∫
Ω

(
∂xju

)
φdx.

Restricting to Ω = B(0, 1) from now on, we let A = (ai,j)1≤j≤d ∈ L∞(B(0, 1),Rd) be a space-dependent
uniformly elliptic matrix, i.e. there exists 0 < Λ < ∞ such that

Λ−1|ξ|2 ≤ ξtA(x)ξ =
d∑

i,j=1
ai,j(x)ξiξj ≤ Λ|ξ|2 ∀x ∈ B(0, 1),∀ξ ∈ Rd. (7)

We now let u ∈ W 1,2(B(0, 1)) a weak solution (in D ′(B(0, 1))) of the linear partial differential equation

div (A(x)∇u) = 0. (8)

Important note: all inequalities can be proven with “worse” constants than stated, provided that they
are universal constants (only depend on the ambient dimension and the parameter Λ), unless stated
otherwise.

(1) For d = 1, show directly that u ∈ C0(B(0, 1)).

Proof. It is a direct consequence of the Sobolev embedding W 1,2(]0, 1[) ↪→ C0, 1
2 ([0, 1]).
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(2) Show that for all φ ∈ D(B(0, 1)) = C∞
c (B(0, 1)), the following identity holds∫

B(0,1)
A(x)∇u · ∇φdx = 0.

Notice that for all u, v ∈ H1(B(0, 1)), we have∫
B(0,1)

A(x)∇u · ∇v dx =
d∑

i,j=1

∫
B(0,1)

ai,j(x)∂xi
u ∂xj

v dx.

Proof. Since div(A(x)∇u) = 0, by multiplying this equation by φ and integrating by parts, the
identity follows immediately.

(3) (Caccioppoli inequality) Let u ∈ W 1,2(B(0, 1)). Show that for all η ∈ D(B(0, 1)), and c ∈ R, we
have ∫

B(0,1)
|∇u|2η2dx ≤ Λ2

∫
B(0,1)

|u− c|2|∇η|2dx.

One can use the following test function φ = (u− c)η2.

Proof. We have

0 =
∫

B(0,1)
A(x)∇u · ∇φη2 dx =

∫
B(0,1)

A(x)∇u · ∇u η2 dx+ 2
∫

B(0,1)
A(x)∇u · (∇η) (u− c)η dx.

Using the elliptic estimate, we have

Λ−1
∫

B(0,1)
|∇u|2dx ≤

∫
B(0,1)

A(x)∇u · ∇u η2 dx.

Now, by the Cauchy-Schwarz inequality, we have∣∣∣∣∣
∫

B(0,1)
A(x)∇u · (∇η)(u− c)η dx

∣∣∣∣∣ ≤ Λ
∫

B(0,1)
|∇u||∇η||η|dx

≤ Λ
(∫

B(0,1)
|∇u|2η2dx

) 1
2
(∫

B(0,1)
|u− c|2dx

) 1
2

.

Therefore, we have

Λ−1
∫

B(0,1)
|∇u|2η2 dx ≤ Λ

(∫
B(0,1)

|∇u|2η2dx

) 1
2
(∫

B(0,1)
|u− c|2|∇η|2dx

) 1
2

.

Since all integrals are finite, if the left-hand side integral is zero, then we are done. Otherwise, we
divide by the square root of the left-hand side and find that∫

B(0,1)
|∇u|2η2 dx ≤ Λ2

∫
B(0,1)

|u− c|2|∇η|2dx

(4) By choosing an appropriate test function η, show that for all 0 < r1 < r2 < 1, we have for some
universal constant 0 < C < ∞,∫

B(0,r1)
|∇u|2dx ≤ C

(r2 − r1)2

∫
B(0,r2)\B(0,r1)

|u− c|2dx (9)

This is the Caccioppoli inequality.
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Proof. We take η such that η = 1 on Br1(0), and supp(η) ⊂ B(0, r2). By using an approximation
of a linear function, we can choose η radial such that |∇η| ≤ 2

(r2−r1) , which shows by the previous
inequality since ∇η = 0 on B(0, r1) that∫

Br1 (0)
|∇u|2dx ≤

∫
Br1 (0)

|∇u|2η2dx ≤ 4Λ2

(r2 − r1)2

∫
Br2 (0)

|u− c|2dx.

(5) Using the Poincaré-Wirtinger inequality and a scaling argument, show that for all for all 0 < r < ∞
if A(r) = B(0, 2r) \B(0, r) and u ∈ W 1,2(B(0, r)), we have∫

A(r)
|u− ur|2dx ≤ Cr2

∫
A(r)

|∇u|2dx,

where ur = −
∫

A(r)
u dx = 1

cd rd

∫
A(r)

u dx (for some universal constant cd) is the mean of u on A(r),

and 0 < C < ∞ is a universal constant independent of r.

Proof. By the Poincaré-Wirtinger inequality, we have∫
A(1)

|v − v1|2dx ≤ C

∫
A(r)

|∇v|2dx

for all v ∈ W 1,2(A(1)). If v(x) = u(rx), where u ∈ W 1,2(A(r)), then by the change of variable
rx = y, we get ∫

A(1)
|v − v1|2dx = r−d

∫
A(r)

|u− ur|2dy,

while ∫
A(1)

|∇v|2dx =
∫

A(1)
r2|∇u(rx)|2dx = r2−d

∫
A(r)

|∇u|2dy,

which concludes the proof by multiplying both sides by rd.

(6) Deduce from the previous questions that there exists a universal contant 0 < θ < 1 such that for
all 0 < r <

1
2 , we have ∫

B(0,r)
|∇u|2dx ≤ θ

∫
B(0,2r)

|∇u|2dx.

By induction, deduce that there exists 0 < α < 1 and 0 < C < ∞ such that for all 0 < r <
1
2 , we

have ∫
B(0,r)

|∇u|2 ≤ Crα

∫
B(0,1)

|∇u|2dx.

Hint: use a dyadic argument.

Proof. Using the Caccioppoli inequality and the previous Poincaré inequality, we get∫
B(0,r)

|∇u|2dx ≤ Λ2

r2 × Cr2
∫

B(0,2r)\B(0,r)
|∇u|2dx = CΛ2

∫
B(0,2r)\B(0,r)

|∇u|2dx.
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By adding CΛ2
∫

B(0,r)
|∇u|2dx on both sides, we get

(1 + CΛ2)
∫

B(0,r)
|∇u|2dx ≤ CΛ2

∫
B(0,2r)

|∇u|2dx,

which proves the inequality with θ = CΛ2

1+CΛ2 ∈ (0, 1).

Let j ∈ N such that 2jr < 1 ≤ 2j+1r. The inequality shows that j log(2) + log(r) < 0 ≤
(j + 1) log(2) + log(r), or

j < log2

(
1
r

)
≤ j + 1,

and

log2 (r) < −j ≤ 1 + log2 (r) .

Then, by a direct induction, we deduce that∫
B(0,r)

|∇u|2dx ≤ θj

∫
B(0,2jr)

|∇u|2dx ≤ 1
θ
rlog2( 1

θ )
∫

B(0,1)
|∇u|2dx,

since θj = exp
(
−j log

( 1
θ

))
≤ exp

(
(1 + log2 (r)) log

( 1
θ

))
= 1

θ r
log2( 1

θ ). We deduce the claim with
α = log2

( 1
θ

)
.

(7) With the help of another optimal Poincaré-Wirtinger inequality, deduce that there exists a universal
constant 0 < C < ∞ such that for all 0 < r <

1
2 ,∫

B(0,r)
|u− ũr|2dx ≤ Cr2+α

∫
B(0,1)

|∇u|2dx,

where ũr = −
∫

B(0,r)
u dx = 1

c′
dr

d

∫
B(0,r)

u dx is the mean of u on B(0, r).

Proof. The proof is exactly the same as before and we omit it.

(8∗) In the special case d = 2, show with the help of Lebesgue differentiation theorem and a translation
argument that u ∈ C0,β(B(0, 1

4 )) for some 0 < β < 1. Recall that the Lebesgue differentiation
theorem shows that for all u ∈ L1

loc(B(0, 1)), and for all x ∈ B(0, 1), we have‡

−
∫

B(x,r)
u(y) dy = 1

πr2

∫
B(x,r)

u(y) dy −→
r→0

u(x).

Furthermore, recall that the space of β-Hölder functions is defined by

C0,β(Ω) = C0(Ω) ∩

u : ∥u∥C0,β(Ω) = ∥u∥L∞(Ω) + sup
x,y∈Ω
x ̸=y

|u(x) − u(y)|
|x− y|β

< ∞


and equipped with the ∥u∥C0,β(Ω) norm defined above. On may first prove the following estimate

|ux0,r − ux0,s| ≤ C
r1+ α

2

s

∫
B(0,1)

|∇u|2dx

for all x0 ∈ B(0, 1
2 ), and 0 < s < r < 1

2 , where ux0,r = −
∫

B(x0,r)
u dx = 1

πr2

∫
B(x0,r)

u dx.

‡Notice that the theorem is stated on R2.
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Proof. By translation, we deduce that for all x0 ∈ B(0, 1
4 ), we have for all 0 < r < 1

2∫
B(x0,r)

|u− ux0,r|2dx ≤ Cr2+α

(∫
B(0,1)

|∇u|2dx

) 1
2

.

Now, we have by the triangle inequality

|ux0,r − ux0,s|2 = −
∫

B(x0,s)
|ux0,r − ux0,s|2dx

≤ 2−
∫

B(x0,s)
|u− ux0,r|2dx+ 2

∫
B(x0,s)

|u− ux0,s|2dx

≤ C
r2

s2 −
∫

B(x0,r)
+ Csα

∫
B(0,1)

|∇u|2dx

≤ C

(
r2+α

s2 + s2+α

s2

)∫
B(0,1)

|∇u|2dx

≤ C
r2+α

s2

∫
B(0,1)

|∇u|2dx,

which proves the inequality. Now, take r = ri = r02−i, and s = ri+1 = r02−i−1. We get

|ux0,ri − ux0,ri+1 | ≤ C2− α
2 irα

0 ∥∇u∥L2(B(0,1)) .

Therefore, the series
∑∞

i=0 |ux0,ri
−ux0,ri+1 | is summable, and we deduce in particular that ux0,ri

−→
i→∞

u(x0) by Lebesgue differentiation theorem. Furthermore, we have

|u(x0) − ux0,r0 | ≤ Cr
α
2

0 ∥∇u∥L2(B(0,1)) .

Finally, if x0, y0 ∈ B(0, 1
4 ) and r0 = 2|x0 − y0|, we have by the triangle inequality

|u(x0) − u(y0)| ≤ C|x0 − y0| α
2 ∥∇u∥L2(B(0,1)) + |ux0,r0 − uy0,r0 |,

and

|ux0,r0 − uy0,r0 |2 ≤ −
∫

B(y0,
r0
2 )

|ux0,r0 − uy0,r0 |2dx

≤ 8−
∫

B(x0,r0)
|u− ux0,r0 |2dx+ 8

∫
B(y0,r0)

|u− uy0,r0 |2dx

≤ C|x0 − y0|α,

which concludes the proof.

(9) Assume from now on that d ≥ 3. We say that u ∈ H1(B(0, 1)) is a weak sub-solution if for all
φ ∈ D(B(0, 1)), we have ∫

Ω
A(x)∇u · ∇φdx ≤ 0, (10)

or in other words
d∑

i,j=1

∫
Ω
ai,j(x)∂xi

u ∂xj
v dx ≤ 0.

Using the chain rule and the product formula for Sobolev functions, show that for all convex,
increasing function Φ ∈ C2(R,R+) such that Φ′′(t) = 0 for all |t| ≥ R (for some fixed R > 0), then
for any sub-solution u ∈ H1(B(0, 1)), the function Φ(u) ∈ H1(B(0, 1)) is a sub-solution.
From now on, we assume that the previous result holds for any increasing, convex function Φ : R →
R+ (not necessarily C2 or satisfying the extra hypothesis on the second derivative).
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(10) (Moser iterations) Fix some 0 < 2r < 1, and for all j ∈ N, let Bj = B(0, r + 2−jr), so that
Bj+1 ⊂ Bj ⊂ B(0, 2r) and

B∞ =
⋂
j∈N

Bj = B(0, r).

Show that for all 1 ≤ λ ≤ d

d− 2 , there exists 0 < γ < ∞ such that for all j ∈ N, for all
v ∈ H1(Bj+1), we have ∥∥|v|λ

∥∥2
L2(Bj+1) ≤ γ ∥∇v∥2λ

L2(Bj+1) + γ ∥v∥2λ
L2(Bj+1) .

Proof. By the Sobolev embedding theorem, since 2∗ = 2d
d−2 , there exists 0 < C = C(r) < ∞

(independent of j by a scaling argument since B(0, r) ⊂ Bj ⊂ B(0, 2r) for all j ∈ N) and such that

∥∥|v|λ
∥∥2

L2(Bj+1) = ∥v∥2λ
L2λ(Bj+1) ≤ C ∥v∥2λ

W1,2(Bj+1) = C
(

∥∇v∥L2(Bj+1) + ∥v∥L2(Bj)

)2λ

≤ 22λ−1C
(

∥∇v∥2λ
L2(Bj+1) + ∥v∥2λ

L2(Bj+1)

)
by convexity of R+ → R+, t 7→ t2λ.

(11) Fix 1 < λ ≤ d
d−2 , and let u ∈ H1(Bj) a positive weak sub-solution. With the help of the Caccioppoli

inequality (explain why it holds true for a sub-solution), show that uλ ∈ H1(Bj+1), that uλ is a
positive weak sub-solution, and show the inequality∥∥uλ

∥∥2
L2(Bj+1) ≤ C(22λj + 1) ∥u∥2λ

L2(Bj) ,

where C only depends on d,Λ, r > 0.

Proof. By (10), uλ ∈ L2(Bj+1), and by the extension of question (9) to general convex functions,
we deduce that uλ is a positive weak sub-solution. By Caccioppoli inequality that works for sub-
solutions since the proof works mutadis mutandis if one replace the equality by an inequality, we
get

∥∇u∥L2(Bj+1) ≤ 2Λ
(r + 2−jr) − (r + 2−j−1r) ∥u∥L2(Bj) = 4Λ

r
2j ∥u∥L2(Bj) ..

Since ∥u∥L2(Bj+1) ≤ ∥u∥L2(Bj), we get by (10)

∥∥uλ
∥∥2

L2(Bj+1) ≤ γ

(
1 + 4Λ

r
22λj

)
∥u∥2λ

L2(Bj)

= C(r)(22λj + 1) ∥u∥2λ
L2(Bj) .

(12) Let u ∈ H1(B(0, 1)) be a positive weak sub-solution. Define for all j ∈ N the function uj = uλj .
Explain why

∥u∥L∞(B(0,r)) = lim sup
j→∞

∥u∥L2λj (Bj) ,

and prove the following inequality

∥u∥L∞(B(0,r)) ≤ C(d,Λ, r) ∥u∥L2(B(0,2r)) .
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Proof. This is a standard result from the theory of Lp spaces. Now, notice that the previous
inequality can be rewritten as

∥uj+1∥L2(Bj+1) ≤ C(22λj + 1) ∥uj∥λ
L2(Bj) .

Since Lj+1 = ∥u∥L2λj+1 (Bj+1) = ∥uj+1∥
1

λj+1
L2(Bj+1) Now, we have by direct induction

Lj+1 ≤
(
C(22λj + 1)

) 1
λj+1 Lj ,

which shows by a direct induction that

Lj ≤
j∏

i=0

(
C(22λi + 1)

) 1
λi+1 L0 =

j∏
i=0

(
C(22λi + 1)

) 1
λi+1 ∥u∥L2(B(0,1)) .

Since the product
∞∏

i=0

(
C(22λi + 1)

) 1
λi+1

is absolutely convergent, we obtain the announced estimate. Indeed, notice that

(
C(22λi + 1)

) 1
λi+1 = exp

(
1

λi+1 log(1 + 22λi)
)

= exp
(

2λ log(2) i

λi+1 + o

(
i

λi+1

))
and the geometric series

∞∑
i=0

i

λi+1

converges since λ > 1.
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