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Introduction

Calculus of variations consists in solving partial differential equations by minimising or maximising an
energy, or more generally, by constructing critical points of a given functional. It goes back to the
work of Euler from 1744 ([10]) for 1-dimensional problems and to the work of Lagrange from 1760 ([18])
for problems in arbitrary dimension. Despite the efforts of the most brilliant minds of the time, what
became the Dirichlet principle (Dirichletsche Prinzip), namely, that one can construct a minimiser of any
reasonable functional (in particular, of the Dirichlet energy), could not be justified rigorously until the
work of Hilbert in 1904 ([14]), exactly 160 years after Euler’s seminal work. Since Hilbert’s fundamental
contribution, the calculus of variations has developed in manifold ways, with a recent emphasis on
min-max methods in cases where the standard methods fail (lack of coercivity of functionals, lack of
compactness, etc). In these lecture notes, we will show how modern methods allow us to recover fairly
easily Hilbert’s results and several generalisations, and we will study in details a degenerate case (the
problem of Plateau) that has had a tremendous influence on the entire field. We will start the lectures
by explaining the need of finding the appropriate functional spaces (Sobolev spaces), and then delve into
various notions of convexity where the so-called “direct method of the calculus of variations” works.






Chapter 1

General introduction

1.1 Early History and Sobolev Spaces

The modern study of polynomial equations begins with the proof of the d’Alembert-Gauss theorem in
1815. Their study had started during Antiquity (it is more ancient than the Babylonian civilisation).
Contrary to his predecessors who were looking for explicit solutions expressible by a succession of square
roots (which was bound to fail for equations of degree n > 4), Gauss showed by an abstract method that
any polynomial with complex coefficients admits exactly n roots (with multiplicity)—and he proved this
result more than a decade before the revolutionary work of Galois and Abel.

The calculus of variations was founded as a field by the successive contributions of Leonhard Euler
in 1744 ([10]) and Joseph-Louis Lagrange in 1760 ([18])—for higher dimension problems (Euler had
restricted his theory to 1-dimensional problems). The notion of Euler-Lagrange equation follows directly
from their works and can be stated as follows: let @ C R? be an open domain, £ : C*(Q) — R. Assume
that u € C°°(Q) N C°(Q) is such that E(u) < E(v) for all v € C°°(£) such that v = u on 9. Then, if
E admits a directional derivative in the direction h € C*°(£2) such that h = 0 on 91, then we have

DpE(u) = %E(u—i—th) =0. (1.1.1)

Indeed, by definition of Taylor expansion, we have
E(u+th) = E(u) +tDpE(u) + o(t).

If DpE(u) # 0 for [t| > 0 small enough (depending on the sign of Dy, E(u) € R*), we get a contradiction
as v, = u+th e C>®(Q)NC°Q) is such that v; = u on IQ for all t € R. Functions £ whose domain is
a function space are called functionals or Lagrangians. One of the simplest Lagrangians is given by the

Dirichlet energy
/|Vu\ dr = = /Z(8Il>

We have
1 9 t? 5
E(u+th)= |Vu+ch| de == [ |[Vulde+t [ Vu-Vhde+ — | |Vh|"dz.
2 Jo Q 2 Ja
Therefore, we have by Stokes formula

DpE(u) = Vu Vhda:—/dlv (hVu) dx—/hAudx— ho,udo — | hAudz

aQ Q
/ h Audzx,



where we used the hypothesis h = 0 on 9. As the equation is satisfied for all function h € C°(Q)
such that A = 0 on 0f2, we deduce that u satisfies the equation Au = 0 in €2, where A is the Laplacian
operator, given by

d 92
A=divy =Y ——.
— Ou;

We say that a function satisfying the equation Au = 0 is a harmonic function. The Dirichlet problem
consists in finding a harmonic function of prescribed boundary. Explicitly, if f € C°(09), does there
exist a function u € C?(Q) N C°(Q) such that Au=0in Q and u = f on 9Q ?

As in the case of polynomial equations, there exists explicit formulae for certain domains whose
geometry is simple enough. The most famous formula holds for the unit disk D C C ~ R? defined by

D=Cn{z:|z| <1}.

If f € C°(OD), then the function

u(z) 1/2W1_|Z|2f(e“9)d9 (1.1.2)

~or o e —z]2

is harmonic and is the only continuous solution to the equation Au =0 in D and v = f on D = S*. In
an analogous way, there exists similar formulae for the d-dimensional unit ball. Explicitly, if zo € R,
r > 0, and if we define the radius r ball of centre xo by

B(zo,r) =R4N{x: |z — 0| <7},

then for every harmonic function u in B(z, ), we have

_ L 2= e — ol -1
)= /agm,r) Te—gp W) (1.13)

where #7471 is the (d — 1)-dimensional Hausdorff measure (or alternatively, the standard volume form
on the sphere dB(zg,7)) and 5(d) = #471(S971) is the measure of the unit sphere S~1 = 9B(0,1)*.
Poisson’s formula (1.1.2) was already well known of Gauss and Kelvin, and allowed one to solve the
Poisson’s problem in sufficiently simple domains. In particular, in the case of 2-dimensional domains,
the uniformisation theorem of Riemann allows one to solve the Dirichlet problem in any simply connected
domain. Let us recall the statement of this theorem.

Theorem 1.1.1 (Riemann). Let Q C C be a simply connected domain. Then, there exists a biholomor-
phic map ¢ : Q@ — D from Q into the unit disk D.

Furthermore, the Cauchy-Riemann equations show that ¢ is a conformal map. If ¢ = f 4 ¢¢, then
we can identify ¢ with the map ¢ = (f, g) : Q@ — R2. As ¢ is holomorphic, we have

1 ) , 1 .
0=0:p=75(0: +i0y) (f +ig) =5 (0uf —0yg +i(0yf + 0ug)).
Therefore, we deduce that

029> = (0:£)° + (9:9)* = (9y9)* + (=0,f)* = 19, ¥|* = |V f|* = [VgI?,

and

<am¢a 8y1/)> =0, f ayf + 0z9 ayg =0, f 8y$ - ayf 0.f =0,

2
*Explicitly, we have 8(d) = L, where T is Euler’s Gamma function ([12, 3.2.13)).

r(2)
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which shows indeed that 1 is a conformal map. Recall that if QO C R? is an open domain, we say that a
map f € C1(Q,R?) is conformal if

0z f| = 0y f] > 0 and (O f,0yf) = 0.

This condition implies that f infinitesimally preserves the angles.

In particular, the Jacobian determinant of  is given by

Jac(th) = det Vb = det (gyjj gy;’) — det (gy; aiyff) = Buf) + (0, = VS (1.14)

If v = w o, the chain rule implies that

O0xV = O f Optt + 0y g Oyt = Oy f Opu — Oy f Oyt
O0yv = Oy f Ozu + Oyg Oyu = Oy f Ozu + O f Oyu.

Therefore, we deduce that
|Vo|? = |0, f Opu — Oy f Oyul? + |0y f Opu + O f Oyul® = |V | Vul?,

and the change of variable formula shows that

/ |W\2dx=/ |Vuow\2\Jac(w)\dx:/ Vul?dy.
P»=1(Q) »=1(Q) Q

As a consequence, the Dirichlet energy is conformally invariant, which shows by Poisson’s formula that
one can solve the Dirichlet energy on any simply connected domain of the plane. However, this method
does not work for more complicated domain (and in higher dimension), so we have to renounce having
explicit formulae. We can either use an approach with Green’s functions (which do not always exist for
more involved problems), or use a variational method. This latter approach will be the main focus of
this course. Following a counter-example of Weierstrass from 1869, Hilbert proved in 1900 the existence
of a solution to Dirichlet’s problem by minimising the Dirichlet energy ([14]). This method, known
under the name of the direct method of the calculus of variations, has been generalised in several settings
([6, 7, 4, 5]), notably by Courant and his school ([3]). In this course, it will be discussed at lengths.

1.2 The Problem of Plateau

We will see in the course that thanks to modern tools, it is relatively easy to solve the Dirichlet problem,
and a main feature of the calculus of variations is to solve problems for which the favourable structure
of the Dirichlet energy is not present. There are no universal methods and instead of trying to sketch
a general theory, we will present the resolution of a major problem that had a tremendous influence on
the calculus of variations: the Plateau’s problem.

The problem of Plateau is however intimately linked to the Dirichlet problem. Proposed by the
Belgian physicist Joseph Plateau (1849 and 1873), it consists in constructing a minimal surface, or
surface that minimises the area, of prescribed boundary. Jesse Douglas was awarded one of the first two
Fields medals in 1936 for his general solution of Plateau’s problem ([8]; Tibor Radé solved the problem
first, but his solution was less general; [19]). Let I' C R? be a closed simple curve and v : S* — R3 be a
parametrisation of I'. Then, a solution to the problem of Plateau is an immersion ® : D — R3 such that
® = v on D and that minimises the area. Let us recall that an immersion is a C! map such that

10,® x 9,®| > 0.

In other words, an immersion is a function that maps any pair of non-collinear vectors into (another)
pair of non-collinear vectors. Experimentally, using soapy water and metal wires, one can construct a
solution to Plateau’s problem , but it does not imply of course that the underlying mathematical problem
is solvable. The equation of minimal surfaces—for graphical solutions ®(z,y) = (x,y, u(x,y))—is the
first example Lagrange gave of his method in 1760. The area functional is given in general (this expression

9



comes from the change of variable formula for domains of different dimensions, also known under the
name of area formula [12, 3.2.3]) by

Area(®) = / J10:91210, /2 = (0,9,0,0)2dx dy.
D
For a graphical function as above, the area functional becomes

Area(®) = / V1+|Vul?dz dy.
D

For a graphical variation @(x, y) = (x,y, h(x,y)) where h = 0 on 9D, we get

Area((I)+t\I7):/ 1+\V(u+h)|2dxdy:/\/1+\Vu\2+2t<Vu,Vh)+t2|Vh|2da;dy
D

2
/ TFV“\/ AV, Vh) | _|VHP

14+ |Vul2 14 |Vul?

(Vu, Vh) 5
= [ V14 |VulPdedy +t | ———=dxdy+ O (t°),
/]D) [Vul D /14 |Vu|? ()

where we used the formula
1
Vi+z=1+ §x+0(:172).

We deduce that

DgArea(®) = Avu. b _, UL /h div d dy
14 |Vu|2

\/1—|—|Vu|2 oD /1 + [Vul?
Vu
— [ hdiv| ———= | dzdy
/Q <\/1 + Vu|2>

As the equation is satisfied for every function h that vanishes on the boundary, Stokes theorem shows

that
v <W> =0 sur €. (1.2.1)

V14 |Vul?

In local coordinates (z,y), the equation can be rewritten as follows:

ou\?\ 9%u Ou Ou 0u ou\*\ 9%u
1 — —2—— 1 — — =0. 1.2.2
< +<8y> > Oz 8x8y8x0y+ ( +<8x> 0y? ( )
This equation is elliptic and non-linear (the coefficients of the equation are variables too). In order to

solve it, direct methods are inefficient, but a rewriting of the equation will allow us to solve Plateau’s
problem. First, notice that by Cauchy’s inequality 2ab < a? + b* (a,b € R), we have

1 1
Area(®) §/|8w<1>||8y<1>|d$dy§ 5/ (10:®]* + |0, @) dxdy:§/ VO |2 dxdy = E(®). (1.2.3)
D D D

Furthermore, both functional coincide if and only if ® is conformal. The classical approach to solve the
problem of Plateau is to find a conformal and harmonic (for a conformal map is minimal if and only if it is
harmonic) map that satisfies suitable hypotheses on the boundary. The main difficulty of this approach
is the lack of compactness. This is the first issue one must needs solve in the calculus of variations: it
is necessary to find a class of functions stable (in a sense) under weak convergence. Indeed, if we choose
a minimising sequence {®}reny C C°(D,R3), we need to show that this limit limit is smooth, which
is not possible since we only know that {E(®Px)}ren is bounded, that is, the gradient of the function is
uniformly square integrable.

10



The basic principle of the calculus of variations is to find a solution in a class that is stable for weak
convergence, and then to show the regularity of the limit (this is generally the most technical part of the
proof, and we will not be able to say much about that in general). This approach is known under the
name of the direct method of the calculus of variations that we have mentioned above. The right class of
functions® is known under the name of Sobolev spaces ([2]). Those spaces appear for seemingly simple
problems like harmonic maps with values into manifolds ([15, 16]). If  C R? is an open subset, for all
1 < p < oo, we have

g1, ,94 € LP(2) such that

whP(Q)=LP( ) NS u: (1.2.4)
/uawdx:—/giwdi@EC’g"(Q)Vlgigd
Q Q

8171'

where C2°(2) C C*° () is the space of smooth functions with compact support in €. In other words, we
have ¢ € C°(Q) if and only if p € C*°(Q) and if there exits a compact subset K C € such that ¢ =0
in Q\ K. The Sobolev space WP can be seen as a space of distributions (in the sense of Schwartz) that
belong to LP and whose weak derivatives also belong to LP. For the problem of Plateau, we will consider
a subspace of de W12(DD) that has the right stability properties under weak convergence.

*For many problems, but it is often necessary to use more “exotic spaces” (Hardy spaces, BMO space (here, BMO
stands for Bounded Mean Oscillation), Lorentz spaces, Besov spaces, etc. There is a whole zoo of spaces and one of the
main tasks of the analyst is to find the “right”functional space for the considered problem, which is similar to the algebraic
geometer who must find the right cohomology).

11
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Chapter 2

Sobolev Spaces

2.1 A General Result

Let us start by an elementary result that is the prototype of theorem used in the calculus of variations.

Theorem 2.1.1. Let (X,.7) be a topological space and let f : X — RU{oo} be a sequentially lower
semi-continuous function, i.c., assume that for all x € X and for all sequence {x,}, .y C X such that

T, — x, we have
n—oo

F(z) < liminf F(z,).

n—00

Furthermore, assume that F is coercive, i.e., that for all t € R, the level sets
Fr=Xn{z: F(x) <t}

are sequentially pre-compact. Then, F admits a minimiser.

Proof. Assume without loss of generality that F' # oo. Then, there exists € X such that F(x) < oo,
so we can pick a minimising sequence {z,}, .y, and since inf F/(X) < oo, there exists t € R such that
{%n},en C Fy, which shows that {x,}, .y admits a converging subsequence (let us write z € X its limit),

that we still write {z,,}, .y for simplicity. By definition of a minimisation sequence, we have

F(z,) — inf F(X).

n—oo

On the other hand, the lower semi-continuity shows that

F(z) <liminf F(z,) = inf F(X).

n—r oo

Since F(z) > inf F(X), we finally deduce that x is a minimiser of F'. O

In this course, we will be mostly interested to minimise functionals of the form
L(u) = / F(z,Vu,VZu,---,VFu)dz,
Q

where Q C R? is a fixed open subset and u : Q@ — R™ is a C* function. For this, we will have to introduce
Sobolev spaces, that are generalisations of Lebesgue spaces (L spaces, 1 < p < oo) and provide the
suitable framework for the calculus of variations. However, before we delve into the existence theory,
let us introduce the fundamental notions of the Euler-Lagrange equation. For this, we need elementary
facts on compactly supported functions.

13



2.2 Compactly supported functions

Let Q be an open set of R%, and define the space space of smooth functions of compact support by
2(9) = C2(Q2) = C>(Q) N {p : supp (p) CC O}

However, we encounter a first difficulty: does there exist a non-zero function ¢ € C°(Q)? We will
construct an important class of cut-off functions. First, introduce the function

FRoR,

e~ pour tout z > 0
T —
pour tout x < 0.

Let us show by induction that f belongs to C*°(R). We have

eF — 0,
x—0+
which shows that f € C°(R). For all z > 0, we have
1 a1
fl@) = —e>

8-

x
f(x) = <x14 - ;) e =,

By induction, let us show that for all n € N, there exists a polynomial of degree 2n such that
1 1

This is true for n = 0 and n = 1. If the property is verified for (™, then
d 1 1 1 1 1 1 1 1 1
n+1 _ —= —= —=
Jo @ = (P" <x>) <= (xzpn (x> — b (x» ¢ = P <x> N

Pasa(2) = 23(Po() — P())
which is indeed a polynomial of degree 2n + 2 = 2(n + 1). Finally, using the limit

) 1 1 . "
lim —e ™ = hrny—:()7
z—0+ ™ y—oo eY

where

that comes from the elementary comparison

oo k n+1
y> Y

Oﬁ_ (n+ 1)V

e¥ =

k=

we deduce that for all n € N,

8=

lim f™(z) = lim P, (1> e = =0.

r—0+ x—0+ x

As a consequence, f € C°(R), and g(x) = f(|z|?)f(1—|z|?) € C(R9)\ {0}. This allows us to construct
for all x € R™ and r > 0 a function ¢ € 2(B(x,2r)) such that ¢ > 0 and ¢ = 1 in B(z,r).

The major interest in the calculus of variations is that those functions are dense in Li (Q).

Lemma 2.2.1. Let f € LL _(Q) and assume that for all ¢ € C°(Q),
JREECE
Q
Then, f =0 identically.

14



Proof. Let K C § be a compact set. Since f is measurable, the function fx = sign(f)1x is also

measurable and belongs to L'(Q). Now, by a standard result on convolution, we find a sequence

{ok ey C C°(2) such that oy . fx in LY()). Therefore, a direct application of the Theorem
—00

of Dominated Convergence shows that

0= lim / f(@)on(@)dz = / F(2) fre () = /K (@)

k—o0

Therefore, fx = 0, and since the result holds for arbitrary compact K, we deduce that f = 0 identically.
O

2.3 Euler-Lagrange Equation

Now, we let O C R? be a bounded open subset, n > 1, and F € C?(Q,R", M,, 4(R)). To distinguish
partial derivatives, we write F' = F(z,&, P). We introduce the energy

E(u)z/ﬂF(amu,Vu)dx.

Theorem 2.3.1. Assume that u € C?(Q,R") N C°(Q,R™) minimises E amongst all functions v €
C?(Q,R™) N C°(Q,R") such that v = u on 9Q. Then, the following equation is verified

div (VpF(z,u,Vu)) = V¢F(z,u, Vu).
Proof. The proof follows the one from the introduction and we omit it. O

Definition 2.3.2. The equation is called the Euler-Lagrange equation.
The main difficulty is to give sense to the Euler-Lagrange equation for non-smooth functions, and
this will force us to introduce distributions and Sobolev functions. Before doing so, let us give a few

examples.

1
Example 2.3.3. 1. If F(z,&,P) = 3 |P|?, then the associated Euler-Lagrange equation is the Laplace

equation

1
2. If F(x,&,X) = —|X|P, then we get the so-called p-harmonic maps:
p

div (|Vul[P7?Vu) = 0.
Notice that if 1 < p < 2, then the equation is degenerate.

3. We have already mentioned the equation of minimal surfaces: F(z,&, P) = /14 |P|?. Its Euler-
Lagrange equation is given by

div [ —— ) =0,
V14 [Vul?
or alternatively

(1+ |Vul*)Au — (Vu)' - V2 - (Vu) = 0.

15



1
4. fd=m =2, and F(x,&, P) = §|P|2 + f(det(€)), where f: R — R is a real-valued function, one
checks that the Euler-Lagrange equation is given by

9 (raen®2) 2 (o)
Auq + Er (f (det Vu) a@) 02g (f (det Vu) 8x1) =0
0 , Ouy 0 / duy _

2.4 Basic Notions on Distributions

Let us first introduce a topology on the set of compactly supported functions.

For all compact K C €2, we define
Ik (1) = C=(Q) N{p : supp(p) C K}.
Notice that

2(Q) = U Ik ()

KcQ
K compact

For all m € N and compact subset K C Z(2), define the semi-norm on Z(Q2) by

el = Sup D%l (1) -

al<m

If {K,},cy is an exhaustive sequence of compact sets of £, the vector space (Z(Q), {||- ||,,en}) can be
equipped with a distance:

T R it P

+ — )
meN neN 2mam 1+ ||80 d)Hm,I(77

We will give an ad hoc definition for distributions, and see that in all reasonable cases (LP functions,
Radon measures, etc), the objects that we will consider are distributions.

In the case d = 1, if T =]a,b[C R is an open interval, intuitively, a distribution is a linear map
T : 92(I) — R such that for some locally integrable functions fo, -, f € Li_(I), we have for all
p e I(I)

7(9)= " [ )P @ (2.4.1)
k=0"1

where () (2) = ¢(x) and for all k > 1

(k) d*
2 (55) = W‘P(m)

All distributions that will appear in the lecture will take this form, but it is not always obvious to see
that a distribution reduces to this form. Let us now give the formal definition of distributions that
follows the above intuitive characterisation (2.4.1).

Definition 2.4.1. Let Q C R? be an open set. We say that a linear map T : 2(Q) — R is a distribution
if for all compact subset K C €2, there exists a constant Cx < co and an integer mg € N such that for
all o € Dk ()

TP < Ok |l = Cx sup sup [D%(z)], (2.4.2)

la|<mg zeK

16



where we denote || = a; + -+ + aq for all a € N%. We will also use the notation

(T, ) =T(p)

that is sometimes a more convenient notation to show the bilinearity in 7" and ¢ of the pairing.

The smallest integer mg € N such that the inequality (2.4.2) holds true (for some constant Cx < 00)
is called the order of the distribution and we denote it

ordg (T) € N.
The order of T is given by

m= sup ordg(T)eNU{cc}.
KcQ
K compact

We say that T is a distribution of finite order if ord(7T) < oco.
Remark 2.4.2. Analogously, we define complex-valued, or vector-valued definition by taking the product

spaces of distributions.

We will not define the general topology of distributions and stick to the one for sequences, which will
suffice for our purpose.
Definition 2.4.3. We say that sequence {7}, C 2'(2) converges to an element 7' € 2'(Q) if and
only if

T.(p) — T(p) forall ¢ € ().

n—oo

Remark 2.4.4. Analogously, we define complex-valued, or vector-valued definition by taking the product
spaces of distributions. Notice that distributions of order 0 are Radon measures. We will see examples
below

Examples 2.4.5. 1. If f € LL (Q), then the distribution 7' = f defined by integration such that

loc

T(p) = /Qf<pdx for all ¢ € 2(0)

is a distribution of order 0, with ||T[; = [|f[[;1(s)- More generally, if 7' = p is a real Radon
measure, then

T(p) = /Qcpdu

is also a distribution of order 0, such that ||T||;, = u(K). An important example is the Dirac mass
at xg € Q, given by

0z (#) = p(z0)-

2. The Dirac mass d, such that 6,(¢) = ¢(a) (a € Q) is a very important distribution (a measure, in
fact), that will have a crucial importance in several theorems for reasons that will be made clear
by convolution and Fourier transform.

3. Anticipating on the next section, for all & € R define for all n € N the distribution s e (R)
by (5,(;1)(90) = (=1)"¢(™(a). Then, the following distribution

T="Y &M

neN

has infinite order. Indeed, we see easily that for all n € N, the restriction of 7' to B(0,n + %) has
order n.
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3. Let I' ¢ R% be a C' curve. Then, we have
i) = [ pdie 7/
r

Indeed, if v : [0,1] — R? is a parametrisation of I', we have
el =| [ ctaenn o] < swlot [ bl = 2w) s oto)] < o
z€R

which shows that |T| is a distribution. Likewise, if ¥ C R? is a C?! surface, define |Z| € 2'(R?) by

|W@=wa-

If f:Q — R3 is a parametrisation of ¥ (where 2 C R? is open), then

216001 = | [ (st )l0n1 x O,ldrds] < Area(s) sup [of()] <
Q zER3

4. Likewise, if I' € R? is a C'' curve, define for all smooth vector field X : R¢ — R¢

:/X-dl.
r

Arguing similarly, one shows that [['] € 2/(RY). Assume now that d = 3. If ¥ is a C! surface,
define for all X € C*°(R3,R3)
X) = / X -dA.
)

It is easy to see that [¥] € 2/(R3,R?). Assuming that 9% is a C' curve, Stokes theorem shows
that

[Z}(rotX):/ErotX-dA: {EX-dl:[aE](X),

which allows one to elegantly rephrase Stokes theorem in this particular case ([M](dw) = [0M](w)).
In fact, this formula permits to generalise Stokes formula to non-smooth surfaces, and forms the
basis of the theory of Federer-Fleming ([12, Chapter 4]).

5. The principal value integral (at 0) of a function f : R\ {0} — R such that f € LL _(R\ {0}) is
defined by

p-v-f(p) = lim f(@)e(z)de.
eV JR\[—¢,e]

Under suitable conditions on f, p.v.f is a well-defined distribution, known as Cauchy principal
value. Take f(z) = 1. Then, by oddness of f, for all 0 < & < R < oo, we have

1 dx dx
@w.J>:/ o0 = [ ()=o) T+ [ s
z R\[—¢,¢] z [—R,—€]U[e,R] ”3 R\[-R,R]

and since ¢ is of class C!, the function M is bounded at 0, and for all 0 < R < oo, we have
1 —R dx R dx > dx
Vo=, = = — (0= )
<pvx f> /700 plz)— +[R(¢(x) »(0)— +/R plz)—

Taking R > 0 large enough such that supp(¢) C [-R, R], we deduce by Fubini’s theorem that

<p.V-;7¢> = /_Z(@(x) - 90(0))%:5
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_ _/OR (/O <p’(t)dt> df + /OR (/0 <p’(t)dt) dg (2.4.3)
We first compute
[ ([ eo) T = [ ([ o) 5= [ oo ([ 5)

Likewise, we have

R x R
/ (/ go’(t)dt) d :/ ¢'(t)log (R> dt, (2.4.5)
0 0 x 0 t
which implies that

<p.v.31:7cp> = - /z ¢’ (t) log (E_J) dt = /_Z ¢’ (t) log |t|dt + log(R) /_1; o' (t)dt

= —/ o' (t) log |t|dt, (2.4.6)
R

since supp(p) C [—R,R]. This expression easily shows that p.v.l has order 1, and that the
distributional derivative (as defined in the next section) of z + log|z| is p.v.2. Indeed, for all
v € 2(R), we have

\ [ 1og|t|dt\ < ( / 1og|t|dt> 1 iy -
R supp(¢’)

which shows that p.v.% has order at most 1. If this distribution had order 0, it would extend
to a Radon measure. We will therefore exhibit a bounded sequence {¢,},y in C¢(R) such that
(p.v.1, o) diverges. Now, let {¢n},cy C C2(R) such that ¢, is odd, supp(¢,) C [2,2], ¢ = ¢o
on [—2,2]\ [-1,1],

1
on(z) = -1 forall —1<z<—=

Sl

1
on(x) = nx forall — = <z<

n
<z <1

S

on(z) =1 for all

This sequence is bounded in C.(R) since supp(¢,) C [—2,2], and |, | < 1. However, we have

1 2 d Ld 5
p-v.—, n ) = lim 2/ gpo(x)—w +2/ i / ndx
€T e—0 1 x 1 |l'| e

n

2
d
:2/ gpo(z)g+2+210g(n) — 00.
1

n—oo

Therefore, we deduce that p.v.% is a distribution of order exactly 1. By introducing ¢(z) — ¢(—x),
give an alternative proof of the above results.

The first basic property of distributions is the multiplication by smooth functions. Recall that

& () = C*°() equipped with the compact-open topology (which makes it a Fréchet space).
Definition 2.4.6. For all T € 2'(Q2) and f € C*°(Q), the product S = fT defined by

(fT,0) =(T,fe) forall pc2(Q)

is a distribution such that for all compact K C €2, we have

ordg (fT) < ordg (). (2.4.7)
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Remark 2.4.7. That fT € 2'(Q) follows immediately since fo € 2(2) for all (f,¢) € C*°(Q) x 2(Q),
and the property of order is trivial by Leibniz formula.

In general, the product of two distributions makes no sense, but this is expected since even in the
case of LP functions, we know that if f € LP(Q), then fg € LL _(Q) if and only if g € L. (supp(f)),

loc loc

1 1
where -+ = =1.
p p

Example 2.4.8. We have x - (p.v.%) = 1. Indeed, for all ¢ € 2(Q),

<x~ (p.v.i) ,<p> - <p.v.i,x<p> ~ lim /R\[m] € <p(a;))d§ - /Rgo(as)da: — ().

We saw above that p.v.2 was a derivative of a Radon measure (of a function, more precisely). This
fact is general to distributions of finite support, but we will not prove this result.

The previous example also poses the question of division of distributions, but we will not address it
in those lecture notes.

2.4.1 Differentiation of Distributions

The fundamental idea of Schwartz (1945) is to show that by duality, one can define differentiation of dis-
tributions, and that this operation is continuous with respective to either topology—weak or strong—on

7'(Q).
Definition 2.4.9. For all multi-index a € R and T € 2'(2), we define DT € 2'(Q) to be the
distribution satisfying
DT(p) = (=1)*IT(D%).
It satisfies ord g (D*T) < ordg (T') + || for all compact K C €.

The continuity of this operation for the weak topology is trivial for

IT(D*O)| < Tl 1Dl i < NPl

holds for all compact subset K C Q.

In early work, Schwartz had not introduced the minus sign ([21]), but the sign convention is the one
consistent with integration by parts.

Of course, if T = f € C*(Q), integrating by parts, we deduce that

iT,(p = — T,igo :f/fangod:c:/cpar'fdm,
axi 8371‘ Q ! Q ‘

so that 0,,T = 0,, f. Sobolev spaces, which will make for half of those lectures, are sets of distributions
whose weak derivatives belong to some LP space (this will be treated in the Sobolev inequality below).
Thinking about partial differential equation (energy functionals), it becomes apparent why Sobolev spaces
are the natural settings to solve equations, and their good properties allows one to use (say) calculus of
variation in order to build solutions.

Examples 2.4.10. Let H = 1g, be the Heaviside function. Then, we have H' = ¢y in the sense of
distributions. Indeed, for all ¢ € 2(R), we have

(H' ) = —(H, ) = / H(2)g' () de = — / " ol (@)dz = 9(0) = (5o, ).

We saw in the first example that for C! functions by arcs, the usual derivative and the distributional
derivative coincide up to Dirac masses. This is a general fact, the formula of “jumps” allows on to
quantify the difference (both quantities only differ up to Dirac masses).
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Theorem 2.4.11. Let I C R an open interval, and f: I — R be a C* function by arcs, i.e. a function
such that there exists infI < ay < --- < an < supl such that f|(, a;i1), finfl,a1) A fla, sup1) GTE
functions of class C*. Then, we have

n—1 n
f/ = Z f/l(ai,aH_l) + fll(ian,al) + fll(an,supl) + Z (fl(aj) - fl(a;)) 5041‘7
i=1 =1

where f'(a) = lim f'(x) forallie{1,--- ,n}.

.’I,'—)(l,i

Proof. The proof goes exactly as in Examples 2.4.10 and is omitted. O

Remark 2.4.12. This formula has generalisations to higher dimension, but would force us to introduce
notions of differential geometry, that we consider to be outside the scope of those lectures.

The basic theorem about differentiation shows that the solution to an elliptic equation is generally
unique in 2'(R%). There are deep theorems that involve Sobolev spaces—to be introduced in the next

chapter—and we will simply mention elementary results related to continuous functions and first order
derivatives.

Theorem 2.4.13. Let T € 2'(R%) be such that VT = 0. Then, there exists Co € C™ such that T = C.
Proof. Showing by induction that 0,,7 = 0 implies that T is independent of z;,we need only show the

result for d = 1. Assume that 77 = 0, and separating real and complex part, assume without loss of
generality that T is real-valued. For all ¢ € 2(R), we have ¢ = ¢’ for some 1) € Z(R) if and only if

/ o(z)dx = 0. (2.4.8)
R

Denote by H the hyperplane of such functions. Indeed, provided that (2.4.8) holds, we deduce that the
following function

/ R m——

— 00

And since ¢ has compact support, there exists € R such that ¢(x) = 0 for all z > r, which shows that
(2.4.8) holds in particular. Now, let # € 2(R) such that

/ O(x)dx = 1.
R
For all ¢ € Z(R), we have

zp:@—a/@dfleH,
R

which implies since T = 0 that

or

This concludes the proof of the theorem. O
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2.5 Definition of Sobolev Spaces and Basic Properties

Let © be an open set of R? for some d > 1, that we choose connected for convenience.

Definition 2.5.1. Let m € Nand 1 < p < co. A function u € L] () belongs to the Sobolev space

loc

wmP(Q) if and only if for all |a| < m, we have D%y € LP(§)), where D® is its distributional derivative.
In other words, for all |a| < m, there exists f, € LP(2) such that for all ¢ € C°(2), we have

/uDo‘godx:(—l)la‘/fagodx, (2.5.1)
Q Q

and we write D%u = f,.

If p = 2, we commonly write W™2(Q) = H™(Q). We equip W™P?(Q) with the following norm

||U||W7mp(9) = Z ||Dau||LP(Q)‘ (2.5.2)

o] <m

Remark 2.5.2. If we forget about distribution theory, we can therefore take (2.5.1) as a definition. But
distributions are still useful, since for example, the dual of a Sobolev space is a space of distributions.

Theorem 2.5.3. The space W™P () is a Banach space. The space W™P(Q) is reflexive for 1 < p < 0o
and separable for 1 < p < co. The space H™(Q2) is a separable Hilbert space.

Proof. Step 1. W™P is a Banach space.

Let {un },cy € W™P(2) be a Cauchy sequence. Since LP((2) is a Banach space, there exists u € LP(£2)
and for all 0 < |a] < m, there exists u, € LP(2) such that u, — w and D%, — wu,. Now, by

n—oo n—oo

Holder’s inequality, for all ¢ € (), we have
[(un, ) = (u, ©)| < [lun — UHLP(Q) ||<PHLP’(Q) e 0.

Therefore, u,, — w in the distributional sense, and since derivation is continuous under o(2(2), 2'(2)),
n—r oo
we deduce that u, = D%u for all |a| < m, which concludes the proof.
Step 2. Other properties.

We have an isometry WP (Q) — LP(Q)V(4™) given by the natural map u {D%u} 4 <y, Where
N(d,m) = card(N¢ N {a : |a] < m}).

In particular, W™?(Q) is a closed space of LP(Q)N(@™) which implies the claims on reflexivity and
separability. O

Remark 2.5.4. There are many generalisations of Sobolev spaces, using more complicated norms or
weaker notions than functions. We will not list them all, but let us nevertheless mention the important
class of function of bounded variations, commonly called BV functions, that are L' functions whose
distributional derivative is a Radon measure. Those functions have applications to the study of minimal
surfaces, and we send to Giusti’s monograph for more details ([13]).

Theorem 2.5.5. Let u € W™P(Q), with 1 < p < co. Then, there exists a sequence {un},cy C Z(R)
such that

[lun — U’”LP(Q) e 0

2.5.3
D% (un — W)l () —2 0 forall Q' cca. ( )

Proof. Let {pn},cn C 2(R?) be an approximation of unity, i.e. a non-negative function with integral
1, support included in B(0, %), and such that p, — & in Z'(RY). Let v, = pp * (ulg). Then, the
n—oo

classical results of convolution show that

un —ulqllys(q) =20
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which shows the first part of (2.5.3). Now, fix some relatively compact open subset ' of 2, and let
X € 2(Q) such that x =1 on an open neighbourhood of €’. Then, for n € N large enough, we have
prx (X ) = pn * (ulg).

Indeed, we have

supp (pn * (x 1) = pn * (ula)) = supp(pn * (Lo — x)u)) C supp(p,) + supp(lo — x) € Q\
for n € N large enough. Indeed, supp (1g—x) C 2\’ which is an open set, and since supp (p,,) C B(0, %),
for n large enough, we also have

1 _
B (07 n) +supp(lg — x) C Q\ .
Now, we have
D*(py, x (xu)) = pn * (uD*x + x D*u) in 2'(RY).
In particular, we have

D% (v = W)l pqry —2 O

n— oo

Finally, if n € C*°(Q) is such that n(t) = 1 for ¢ < 1 and n(t) = 0 for ¢t > 2, defining n,(z) = n (tﬁ),

the sequence {u, =, v} has the required properties. O

neN

Remark 2.5.6. More generally, the Meyers-Serrin theorem shows that for all w € W™ P(Q), there exists
{tn},en € W™P(Q) N C>(Q) such that u, —u in Wm™P(Q).
n oo

2.6 Sobolev Embedding Theorem

2.6.1 Super-Critical Case

As we mentioned previously, the Sobolev inequality shows that a distribution u such that Vu € LP(R?) is
in fact a locally LY function for some exponent ¢ > 1. Assuming that u belongs to some L" space, we get
a global estimate. In particular, the Sobolev inequality is particularly easy to state for WP functions.
The argument generalises to W™ P spaces, and once more, we need only look at the case m = 1 to
deduce more general Sobolev inequalities. The results depend on the relation between 1 < p < co and
the ambient dimension d.

Theorem 2.6.1 (Sobolev). Assume that d > 2, and let 1 < p < d. Then, we have a continuous
embedding WP (R?) — LP"(R?), where

For d =1, for all interval I C R, we have a continuous embedding W1?(I) — C°(I), and
lll ey < O ltllygronry -

Proof. We only treat the case d = 1 for simplicity.
Lemma 2.6.2. Let g € Li _(I), and fix some xg € I. Define

loc

Then, we have f € C°(I), and f' = g in 9'(I).
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Proof. The continuity follows from the classical theorems of continuous dependence of the Lebesgue
integral (one can use the dominated convergence theorem for example). Now, for all ¢ € 2'(I), we have
by Fubini’s theorem

/f dz_/</”()dy> ¢ (2)dz
I
sup I
/f[/ 1{x<U<wO}dmdy+/ / 1{10<y<az}dxdy
sup
- _/1 (/H@( )1{r<y<mo}dfc> g(y)dy+/1 </ (P/(x)l{xo<y<x}dx> 9(y)dy
in o

=—£(A1¢um0mw@+j(Lmﬂduﬁﬂw@=—[w@mw@,

where we used that ¢ has compact support in I. Therefore, we have in the distributional sense ' = ¢
in 2'(I) as claimed. O

Thanks to the lemma and Theorem 2.4.13, we deduce that for all w € W1P(I) and for all ¢ € I, we
have

x

wm—uuwz/fmw@.

0

Provided that I = R and u € Z(R), we obtain similarly the formula

u(x»a(xnp*I::J/I p (2)|u(z) P d,

— 00

so that by Holder’s inequality
-1
u(@)[” < pllv'llue @ Lo -
so that
1
ol gy < PF lullgrgey -
The general result follows by density of Z(R) in WP (R). O

Recall the following elementary interpolation result.

Lemma 2.6.3. Let (X, u) be a measured space, 1 < p < q < oo, and u € LP N LY(X,pn). Then,
w € L™(X, u) for allp <r < gq, and we have

a 11—«
HUHLT(X) < ||U||Lp(x) ||U|‘Lq(x) ) (2.6.1)

where o € [0,1] is such that

(2.6.2)

Proof. Let p<r < qand 0 < a <1 such that
r=ap+ (1 —a)g.

By the Hoélder’s inequality, for all 1 < s < oo, we have

/|u|rdu=/ |u|ap|u|(1—a)qdug (/ |uapsd,u> (/ |u|(1 a)gs’ dM)
X X X
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We choose s such that

which leads to

-
oo Pla=r)
(g —p)
or
1_1
T4
=17
P4
Since this last expression is equivalent to (2.6.2), we are done. O

Corollary 2.6.4. Let 1 < p < d, and u € WYP(R?). Then, for all

p < q < p*, we have a continuous
injection WP (R?) — LI(R?) and there exists a universal constant C =

C(p) < oo such that

||uHLq(]Rd) <C ||vu||W1,p(Rd) . (2.6.3)

2.6.2 Critical Case
Theorem 2.6.5. We have a continuous embedding

WHA(RY) — LP(RY)  for all d < p < 0.

2.6.3 Sub-Critical Case

Theorem 2.6.6. Assume that p > d. Then, WHP(R?) — C% N L>®(RY), where a = 1 — % € (0,1).
Furthermore, there exists C' < oo such that

||“||L00(Rd) <C ||U||w1,p(Rd) (2.6.4)

and

[u(z) = u(y)| < CIVullypgay [z =yl for a.e. z,y € R (2.6.5)

2.6.4 General Result for W™P(Q2)

Theorem 2.6.7. Let m € N and 1 < p < oo. We have the following results:

1 m dp
- m,p (R4 (R4 - v
1. pr d>0,thenW (R*) — LI(R®) for q i
1
2. If - — % =0, then W™P(RY) — LI(R) for all p < q < 0.
b
3. If I.m < 0, we have W™P(R?) «— L>(R?). PFurthermore, if a = (m - 4) . [m . 4} >0
* p d ? . ) - P P )

and k = [m — g}, we have u € C**(RY), and for all |B| < k, we have
IDPu(z) - Du(y)] < C [ullyms g -

Proof. The proof is done by induction thanks to the previous embedding theorems, and we leave it to
the reader. O
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Corollary 2.6.8. Let Q) be a bounded open subset of class C™ and assume that OS) is bounded. Then,
the following results hold:

1. If% - % > 0, then W™P(Q) — LI(Q) for q = %
1 m
2. If - — i 0, then W™P(Q) «— LI(Q) for all p < g < oo.
p
1L m d : d d
3. If - — 7 < 0, we have W™P(Q) «— L*(R%). Furthermore, if « = (m— 5) - [m— 5} > 0,

and k = [m— %}, we have u € C**(R?), and for all |B| < k, and for a.e. z,y € Q such that
B(z,2|z —y|) U B(y, 2|z — y|) C 2 we have

|DPu(z) — DPu(y)] < Cllullymn gy le = yl-

Remark 2.6.9. We recall that the hypothesis of C™ open subset could be weakened to Lipschitzian
subset by virtue of Stein Extension Theorem.

Theorem 2.6.10 (Rellich-Kondrachov). Assume that d > 2, and that Q is a bounded open subset of
class C' of RY. Then, we have

1. If p < d, then we have a compact embedding W1P(Q) «— L>®(Q) for all 1 < q < p*, where

« _ dp
=g

2. If p=d, then we have a compact embedding W1P(Q) — LP(Q) for all 1 < p < cc.

3. If p > d, we have a compact embedding W1P(Q) — C°(Q).

For all —0o < a < b < 0o, we have a compact embedding WP (Ja,b[) — C°([a,b]) for 1 < p < oo
and a compact embedding WH(Ja,b]) — Li(Ja,b]) for all 1 < q < oo.

Proof. Thanks to Ascoli’s theorem, we need only treat the case p < d.

We apply the following compactness criterion in L? (/2], IV.25).

Theorem 2.6.11 (Riesz-Fréchet-Kolmogorov). Let Q2 be an open subset of R?, and U C Q be a relatively
compact open subset. Let F be a bounded domain of LP(Q) with 1 < p < oo. Assume that

Ve >0, 36 >0 such that ||tnf = fllio@y) <€ Vh € B(0,6) and Vf € F,
where T, f(x) = f(z + h). Then, Fy is relatively compact in LP(U).

Fix some relatively compact open subset U C 2, to be determined later, and let ¢ > 0. Using the
interpolation inequality from Lemma (2.6.3), for all 1 < ¢ < p*, there exists 0 < « < 1 such that

1— 1—
s =l < e = wlla o Il = wlls®, < R IVl g I =l

—a| o a -« «
< 2B [Vl o s, = CIRI® < &
provided that h is small enough. On the other hand, we have by Hoélder’s inequality
n TT7 1_;%*
ullpa@e) < lullies @ (Zm(@Q\1)) <g,

provided that £ (2 \ U) is small enough.

We omit the proof of the case d = 1 which is very similar. O
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2.7 The Space W;""(Q)

2.7.1 Definition and first properties

Definition 2.7.1. Let 1 < p < oo. We define WJ"*(Q2) = mw the closure of the space of
compactly supported smooth functions in €2 for the W™P topology. For p = 2, we write H*(Q) =
W{™?(Q). The space WP () is a separable Banach space, and a reflexive space for 1 < p < co. H"(Q)
is a Hilbert space for the standard scalar product associated to H™(f2).

WP functions are functions whose traces up to the derivatives of order m—1 vanish on the boundary.
However, in order to make the idea of trace precise, one needs to introduce fractional Sobolev spaces,
that will be mentioned later in the course. We will therefore only prove two classical inequalities of
fundamental importance.

Furthermore, in order to solve boundary problems for partial differential equations, the notion of
trace is not formally needed in simple cases. Indeed, if g € WP(2), then we define the space

War(@) =W (@) 0 {uiu—g e W)}
of Sobolev functions whose trace on the boundary is g. This is not completely satisfactory for it requires
to be able to extend g, but we will treat below the easier case of traces in H*(Q2) (where s € R).
2.7.2 Poincaré Inequalities

Theorem 2.7.2 (Poincaré Inequality). Let 1 < p < oo, Q2 be a bounded subset. Then, there exists a
universal constant Cp < oo such that

lullipy < Cr [ Vullpgy  for all we WEP(Q). (2.7.1)
Proof. Let ¢ € 2(Q), and R > 0 be such that Q@ C R? N {z : |24 < R}. Then, we have

T4
go(x’,:rd):/ Oz (' t)dt.
-R

By Holder’s inequality, we deduce that

R

o, za)lP < (2R / Ouspla DIt
R

Therefore, Fubini’s theorem implies that

/ o(x)Pdz < (2R) / OasiplPd,
Q Q

which yields the announced inequality by density of 2(Q) in Wy* (). O
Remark 2.7.3. The proof shows that the statement is true for a set that is bounded in a single direction.

Theorem 2.7.4 (Poincaré-Wirtinger Inequality). Let 1 < p < oo, and Q2 be a bounded domain of R%.
Then, there exists a universal constant Cpy < oo such all u € WHP(Q), we have

/ lu — ug|P? < CPW/ |VulPdz, (2.7.2)
Q Q

where

_ a_ 1 / d
qu]{Iudf = Ziq) Qud.,?

is the mean of u on 2.
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Proof. We argue by contradiction, and let {u,} C W1P(Q) such that

neN*

[tn — unQHLP(Q) =1
1

[Vt < -

Let v, = up — ung. Then, {v,}, o is bounded in WHP(Q), which implies by the Rellich-Kondrachov
Theorem 2.6.10 that up to a subsequence, we have v,, — v € LP(Q) strongly, which implies in particular
n—oo

that [|v]|, o) = 1, and vg = 0. However, we also have by Fatou lemma
||VU||LP(Q) < linniior.}f ||an||Lp(Q) =0.

Therefore, v is constant, but the condition vg = 0 implies that v = 0, contradiction. O

2.8 The Dual Spaces W~ (Q)

Definition 2.8.1. For all 1 < p < co and m € N, we denote by W~ (Q) the dual space of W (Q).
Theorem 2.8.2. For all F € W~™%(Q), there exists fo € L’ (Q) (a € N%) such that

(Fouy= > /QfaD“udfd for all w € WJ"P(). (2.8.1)

laf<m

Remark 2.8.3. In general, the functions f, are not unique. Notice that our previous theorem on
Pr»(R?) is proven.

2.9 The Hilbert Spaces H*(RY)

2.9.1 Fourier Transform and Tempered Distributions

2.9.2 Fourier Transform

In this section, all functions will be complex valued unless stated otherwise (which will never happen).
As previously, we want to define the Fourier transform by duality. Explicitly, for all T € 2'(R?) and
¢ € P(R?), we want to define

<ﬁ<p> = (T, %)
where
F(0)(€) = 3(6) = / plw)e .

Recall the following basic facts on the Fourier transform.

Theorem 2.9.1 (Riemann-Lebesgue lemma). Let f € L*(R%). Then fe CO(RY), and

~

lim f(¢) =0. (2.9.1)

[€]—o00

The basic algebraic properties of the Fourier transform are listed below.

Proposition 2.9.2. Let f,g € L*(R?). Then, the following properties are verified.
1. For all A € C, we have
FNf+9)=2F(f)+ Z(9).
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2. IfmeN et |z|™f € LY(RY), then f € C™(R%,C), and for all |a| < m, we have

DoF(E) = (—i) / 2° f(z)e " Eda.

3. If f € C™(R?,C) for some n € N, and D*f € L*(R?) for all |a| < m, then for all |a| < m, we
have

F(D[)(€) = i"e*F (£)(©)-
Theorem 2.9.3. Let f € L'(R?).

1. (Fourier Inversion Formula) Iffe LY(RY), then for all z € RY, we have

_L N eiw{ _ 1 g o —r
1) = gt [ FOeSde = G 7(F (1) (a).

2. (Plancherel Identity) For all f € L2(R%), we have f € L2(R%) and

1 ~
| @i = o [ 1o (292

3. (Convolution Property) For all f,g € L*(R?), we have
F(f*g)=F(f) F(9) (2.9.3)

Remark 2.9.4. In other words, we have %2 = (2m)¢, Id o1, ol ¢(z) = —2.

However, the definition cannot make sense for all distributions. Indeed, for all ¢ € Z(R?), there
exists R > 0 such that

~ _ 7iw-§d .
() /B RGN

In particular, the function  can be extended to a pluri-holomorphic function, and the maximum principle
implies that @ does not have compact support unless ¢ = 0. In particular, ¢ ¢ Z2(R9) for all ¢ # 0, and
the expression (T, ) does not make sense in general. Therefore, we are confronted with the problem of
finding a topological vector space S C C>(R%) N L'(R?) such that 2(R%) C S, and with respect to the
Fourier inversion formula, that possesses the following invariance property: .%(S) = S. Furthermore, we
want to find a space on which the previous operation of differentiation is compatible. In other words, we
require that for all T € S’ (the dual of S), for all ¢ € S, a € N%, the following quantities are well-defined

(Z(DT), ¢)
and
(DHZ(T)), @)
Using both definitions of D and %, we get
(F(DT),¢) = (DT, F(p)) = (~=1)/*UT, D*F (p)) = (T, F(a%¢)) = (F(T), %),
whilst
(DU(F(T)),¢) = (=1)(F(T), D).
Combining both properties, we are led to the axioms

P D*p € S forall p € S and for all a,3 € N% (2.9.4)
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Furthermore, the stability condition .#(S) = S for Fourier transform shows that for all o, 3 € N¢, there
exists ¢ € S such that

DY = F ().
In particular, the Riemann-Lebesgue lemma implies that

P D%(z) — 0. (2.9.5)

|z| =00

Therefore, both properties (2.9.4) and (2.9.5) lead to the definition of the following minimal space .7 (R9),
that happens to be a Fréchet space, once equipped with a natural set of semi-norms.

Definition 2.9.5. The Schwartz space .7 (R?), or space of rapidly decreasing function, is defined as
follows:

S (RY) = C*°(RY) N {gp . sup |2?||D%p(x)| < oo for all (a, ) € N x Nd} .
z€R

The previous discussion shows that .#(R?) is the minimal space satisfying the desirable axioms of
Fourier transform—we want to take the smallest function space so that the dual space is the largest
possible. It happens to be a solution to our problem, as we will easily check.

Theorem 2.9.6. For all a, 8 € N¢, define the semi-norm || - 0.5 om0 S (RY) such that for all ¢ € .7 (RY),
lella,s = 12° Dl Lo (g - (2.9.6)

Then, the topological vector space (.7 (R9), {| - lo.5}) is is metrisable, and the closure of PD(RY) for the
induced topology is . (R?).

Furthermore, the Schwartz space is stable under Fourier transform: 7 (% (R%)) = 7 (R%).

Proof. Step 1: Stability under Fourier transform.

We first show that .7 (R?) is stable under .#, since we trivially have 2(R%) C .%(R?). The inverse
Fourier formula will then show that (% (R%)) = Z(R?). Let ¢ € .#(R?). Then, for all a, 3 € N4,
and we have z*DPf € L'(R?), which shows by the Riemann-Lebesgue lemma (Theorem 2.9.1) and
Proposition 2.9.2 that

181l 5 = sup [€°]|D@(&)] = sup |F (2D p)()]
E€Rd £€Rd
Now, we have for all £ € R?

|y(anﬂgo)(§)| = ‘/ x“‘DBcp(gc)e_”'fdx
R4

<)
B(0,1

)

dzx

29| DPp(w)|dz + ||2° 222D, / dr
| H (I .-

B(d)
< ald) I¢llg.0+ =7 10l5.ar20e, = 2@ (Iellga + 10l5.0120c, )
where ey = (1,---,1). Finally, we get the inequality
180, < @) (I19l5.0 + 190502000 - (2.9.7)

Therefore, we have .% (. (R%)) C .#(R%), which shows as we said above that .# (. (R%)) = .7 (R9),
since Z ! = (21)"%.F o

Step 2: Density of test functions in the space of Schwartz functions.
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Let ¢ € . (R%), and {n,},cy C Z2(R?) such that 7, : RY — [0,1], 5, = 1 on B(0,n) and supp(n,) C
B(0,n 4+ 1) for all n € N, and consider ¢,, = 1,,¢o. Then, we have for all (p,a) € N x N¢

sup (1 + [2])?| D% (on () — ¢(2))] < sup (1 —=mn)(1 + [2)P|[ D% ()]
z€R4 z€B(0,n+1)\B(0,n)

+Z<g> S D@D )

B<a 0,n+1)\B(0,n)
B#0
< sup (1+ |z)P|Dp(x)| + C > sup (1+ |z)?| D Pp(z)|] — O.
z€B(0,n+1)\B(0,n) B<a r€B(0,n+1)\B(0,n) nereo
B#0
This concludes the proof of this lemma. O

We can now move to the definition of tempered distributions.

Definition 2.9.7. The space of of tempered distributions, denoted by .#’(R?) is the dual space of the
Schwartz space .#(R?). In other words, we have T € .#'(R?) if and only if there exists m € N and
C < oo such that for all p € .7 (R%), we have

[T(p)| <C  sup
lal,[B1<N

Since Z(R?) is a dense subset of .%(R?), a tempered distribution T' € .#”/(R%) can also be seen as an
element of 7’(R%), and it is defined by its values on 2(R%).

Definition 2.9.8. For all T € .%/(RY), its Fourier transform .7 (T') = T is the tempered distribution
such that for all ¢ € .(R%), we have

(Z(1), ) = (T, F(¢))-

That the Fourier transform maps Z'(R?) into .#'(R?) follows from the above discussion and the
invariance property of .%(R%) by .#. By the Fourier inversion formula, the Fourier transform is in fact
an isometry.

Examples 2.9.9. 1. We have .#(1) = (27)%J. Indeed, by the Fourier inversion formula, we have

B(¢)de = / £)e€0dg = (27)4p(0) = (27)%60().

Rd

Likewise, we have
(F(680).9) = 3(0) = [ pla)e™"dn = (1),

which shows that 6y = 1 and 1 = (2m)480, which is obviously consistent with the Fourier inversion
formula.

2. Likewise, computing the Fourier transform of polynomials (that are trivially tempered distribu-
tions) is easy. Fix some a € N?. Then, we have

(Fa)) = [ €3 = ()i D ()
Indeed, for all z € R?, we have by integration by parts and the Fourier inversion formula
[ eaeesde =iipe [ pe)etde = i*IDz () pla) = (21D ().

Therefore, we have

9 = (2m)%ileI D6,

31



while

d

(FD00). ) = (-110°0) = (~)*1¢ [ pla)ea)

|¢=0
= (! [ ()lat (e = (i1, )
which implies that
m = jlolge,
Once more, we see that those results are consistent with the Fourier inversion formula.

1

. Let us now compute the Fourier transform of v.p.— € ./(R). We have by Example 2.4.8 the
x

identity

r-v.p.—=1.
x

Let u € .%/(R) such that u = V.pé. Then, recalling that —/ig(’) =z, we have
F(—i6p)F (u) =1=F(d).
Furthermore, by the property of Fourier transform on convolution, we have
F(—i60)F(u) = F(—idy*u) = —i.F (0o xu') = —i F(u'),
and the previous equation becomes
—i Z (') = F ().
Since .# is an automorphisme on .#’(R%), we deduce that
w =idy=iH,
where H is the Heaviside function. Therefore, we have
(u—iH) = 0.
We deduce that there exists ¢ € C such that
u=1H +c.

However, since V.p.% is an odd distribution, its (inverse) Fourier transform is an odd distribution

(the proof is immediate by a change of variable), which implies that ¢ = —3, and

71 (pi) (€) = Lsan(e).

The inverse Fourier transform (notice the change of sign!) shows that

# (g ) (€ = -imsmn(e)

Conversely, we have (without using tricks this time)
0

Fem@he)=- [ oo+ [ peds = ( RGN @(§)ds> .

— 1
oo < €
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The truncation that we have made allows us to use Fubini’s theorem and get

[ [ s o (< [T [

€

-

1

= —22'/R<p(:1:) (/: sin(x - §)d§> = —22'/R<p(:v)cos(€x) ;COS (2) dx

= —i/RW (cos(em) — cos (E)> dx.

Notice that for all ¢ € .#(R), we have (by dominated convergence for example)

/RW cos(ex)dr — Mdm = <p.v.;c7 g0> .

€T e—=0 Jpr xT

On the other hand, since (z) = W € Z(R), the Riemann-Lebesgue lemma shows that

/w cos dac—Re/z/) e'e 1“”dx—>0,
e—0

which finally shows that

F(sgn(&)) = —2i p.V.é. (2.9.8)

Therefore, we have

1
—27rsgn(€) = F2(sgn(€)) = —2i.F <p.v.x> = —2i (—imsgn(§)) = —2mwsgn(§)
as the Fourier inversion formula predicts.

For other examples, refer to [9] (p. 385).
The Hilbert transform H : .(R) — .’/(R) is defined by
1 1
H(p) = (Wp-V-> * @,

T

that is, for all z € R,

i Pz —y)
H(p)(x) = lim e T dy.

Then, the previous result and Parceval formula show that H extends to an isometry H : L?(R) — L?(R),
since

—

H(p) = isgn(£)e,

[P = 5 [ (@R = 5= [ 18P = [ e

In fact, H belongs to a general class of bounded operators that well-behaved on LP spaces, called
Calderon-Zygmund operators. They are the basic objects studied in harmonic analysis, but their study
goes beyond the scope of this course.

so that
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2.9.3 Basic Properties
Those spaces will be the first examples of interpolation spaces, and they are easy to define.
Definition 2.9.10. For all s € R define
H* (R = /(R N {u: (1+ |¢[2)5.7(u) € L2®Y},
and equip it with the following norm:

1
2

wn = ([ @+ Ieriaerd) (2.9.9)

[l

Remark 2.9.11. In the case of S', the space H*(S?) is defined as follows:
H(SYHY =2'(S)n{u: (1 +n|)uel*2)},

where for all n € Z, we have

We equip H®(S') with the following norm:

[l s z) = (Z(1+ Inlz)‘“lﬂ(n)?) : (2.9.10)

nez
Theorem 2.9.12. For all s € R, H*(R?) is a separable Hilbert space, and for m € Z, H™(R?) =

Wm2(R®) with equivalent norms.

Proof. The following quantity
<u,v>s:/ (1+ [¢*)*a(e)o(€)de (2.9.11)
R4

is a scalar product on H*, and the map u + (1 4 |£|?)2% is an isometric bijection between H*® and L2.
Since L?(R?) is complete, we deduce that H* is complete for the norm above. We need only treat the
second part in the case m > 0. By the properties of the Fourier transform, for all u € ./ (R%), we have
F(D%u) = il*l¢2u, which shows by Parseval identity that

1 R 3
D% ul ey = ([ lePiaceas) (20,12
(271')2 R4
Notice that here exists constants 0 < C},, < oo such that
CLlA+1EP)™ < Y 1€ < Cm(1+ €)% (2.9.13)
la|<m

Indeed, for all |a| < m, we have
€ < JePel <+ Je)m,
while
Sl =14 DI 2 Cul+ [P = Ca(1+ 1)
jal<m =1

thanks to the binomial formula. Finally, we deduce by (2.9.12) and (2.9.13) that both H™(R?) norms
are equivalent. O

Theorem 2.9.13. 2(R?) is dense in H*(R?).
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2.9.4 Duality

Theorem 2.9.14 (Duality). For all s € R, for all L € (H*(RY))', there exists a unique v € H—*(R?)
such that

L(u) = {u,v) = /Rd u(x)v(x)dz  for all u € H*(RY).

Remark 2.9.15. First, for all (u,v) € H*(R?) x H~*(R%), we have by Parseval identity:

1 PSR
(00) = s [ €60

In particular, we deduce that

[ (u,0) | =

||H g(IRd) )

e | [ ERRO (1 6P H0(6) de| <

which shows that the map L, : u + (u,v) is a continuous linear form on H*(R%), i.e. an element of
(H*(R%))’, and that furthermore, we have

1
||Lv||(HS(Rd))’SﬁHUHH (Rd) - (2.9.14)

The proof of the Theorem builds on this first step and Hahn-Banach theorem, and we omit it.

2.9.5 Traces

Theorem 2.9.16. For all s > 3, the operator v : ./ (R?) — #(R9™1), such that
1(@)(a) = (@', 0),

admits a unique continuous linear extension H*(R%) — H~2 (R%).

Proof. Fix some ¢ € .#(R%). Thanks to the Fourier inversion formula and Fubini’s theorem, we have
for all 2/ € R41

V) = o0 = g [ (e e gy

- @ﬂ% /R(H (/R 6(5/’5d)d€d> et e g,

Using once more the inverse Fourier formula, we deduce that
~ 1 .
P(E') = 27T/ o t)yd —/ B (14 €2 +12)5) (14 ¢ + %) 2dt.

Since s > %, we have

/ dt 1 / dt Cs e
a (L EP+2) — L+ [Py 3 e 087 (4jgP)yp3
which implies by Cauchy-Schwarz inequality that

-~ Cs 1

B < Gop e

Another application of Fubini’s theorem shows that

/R<1+ €% +1%)°|p (€', 1) Pt

()l

o N2Y\s—% (el (2 ¢!
b = [, QIR THIEOR
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Cs Cs

< o2 [ Qe ROPdE = 2 ol

By density of .(R%) in H*(R?), we deduce that v : H*(R?) — H*~2(R%1) is a continuous linear map

such that
1
Il < 1 / 1 > 1 s
M=o\ +2) “7V2s—1

which concludes the proof of the theorem. O

Remark 2.9.17. In particular, if we have a continuous trace operator H!(Bg2(0,1)) — Hz(S) (where
H*(S') is defined in (2.9.10)), and more generally, the trace theorem is true for a C* domain, but requires
to define the fractional Sobolev space, but we will only consider it on R% or S'.

Those results have applications to the solvability of the Dirichlet problem for H 3 data, which is
crucial in many applications (see [1], and the exercises).
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Chapter 3

Topology and Functional Spaces

3.1 Basic definitions

We assume the reader familiar with the basic notions of topology, and only recall a few basic definitions.

Definition 3.1.1. Let X be an arbitrary set. We say that 7 C £?(X) is a topology if the following
properties are verified:

L. If {Us};c; C 7 is an arbitrary family of elements of .7, then U U; € 7 (stability by arbitrary
iel
union)

2. IfUy,---,U, € 7, then m U; € J (stability by finite intersection).
i=1

Elements of 7 are called open sets, and complements of open sets are called closed sets. We say that
such a couple (X, ) is a topological space.

Remark 3.1.2. Notice that a set may be closed and open. Taking an empty union and empty inter-
section, we deduce that both @ and X are open sets, which implies by definition that they are closed
too.

On a non-empty set X, there are always at least two topologies: the trivial topology given by 7 =
{2, X}, and the discrete topology given by 7 = Z(X).

We will need of the notion of basis of topology later.
Definition-Proposition 3.1.3. Let 9 = {U;},.; be a non-empty collection of sets of a non-empty

set X. The smallest topology & that contains Jy is given by the following construction. Let J; be the
family of finite intersection of Fy. Then, T is given by

T =PX)NW:W=|]JV;,V;€F forall jeJ . (3.1.1)
jedJ
Proof. Notice that an arbitrary intersection of topologies is a topology. Indeed, let {ﬂj}j ¢ be a family
of topologies, and consider .7 = ﬂ Tj, and {U;},c; C 7. In particular, we have U U; € J; for all
JjeJ el
j € J, which implies that U U; € 7. Therefore, .7 is well-defined and given by
iel
yl _ m y//’

T topology JoC T
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which is a topology by the above proof. Now, we need to show that .7 = .7’. Notice that we trivially
have .7 C .7’ by using both defining properties of topologies. Therefore, we need only show that .7 is
a topology to conclude the proof. By construction, .7 is stable by arbitrary unions, so we only have to

check that 7 is stable under finite intersection. Let Wy,--- W, € 7. Then, there exists sets Ji,- -, J,
and V; ;, € 1 (ji € Ji, 1 < i < n) such that
Wi= | Vi
Ji€Ji

Furthermore, we have V; ;, =U}. N---N U‘k?i for some Ui’fji € 7. Finally, we deduce that

,Ji 2]

k
win--nW, =] U (U

n i

i=1j;€J; k=1

Let x € Wy N ---NW,. Then, for all 1 <i < n, there exists j; € J; such that = € Ui{ji N---N Uf; In
particular, we have

n ki

k
T € ﬂ (ﬂ Ui,ji> ,

i=1 \k=1

and
n k;
Win--NW, eW = U ﬂ(ﬂU@Je%.
(J1,+ 5dn)EJL XX Jp i=1 \k=1

Likewise, if x € W, then there exists (41, ,jn) € J1 X -+ X J,, such that

n k;

k
ce()( o)

=1 \k=1

A fortiori, we have
n k;
ze) UF, =Win.-- nWw,,
i=1j,€J; k=1

which proves that W =W;N---NW, € 9] and that .7 is a topology on X. O

Let us also recall the fundamental notion of neighbourhood.

Definition 3.1.4. Let (X, .7) be a topological space. We say that a (non-empty) set N is a neighbour-
hood of a point € X if there exists an open set U containing x such that U C N.

Finally, we also need the basic notion of interior, closure and frontier of a set.

Definition 3.1.5. Let (X,.7) be a topological space. Let A C X. Its interior, denoted by int(A) or A,
is the largest open set contained in A, given explicitly by

int(A)=|J U,

UCcAUeT

whilst the closure of A, denoted by clos(A) or A, is the smallest closed set containing A, given explicitly
by

clos(4) = ﬂ F.

FDOAX\FeZ

The frontier (or boundary) of A is given by 94 = A\ int(A).
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The defining properties of a topology trivially imply that those notions are well-defined for the
arbitrary intersection of closed sets is closed. Those definitions show that arbitrary unions are in general
needed to perform basic operations that mimic the classical notions in Euclidean spaces and manifolds.

The following notion will prove crucial in many a proof of those lectures. Indeed, proofs are typically
much easier for smooth or more regular functions, and when those functions are dense in a given (Banach)
space of functions, a standard argument typically allows one to extend the proof from smooth functions
to arbitrary functions in the said Banach space.

Definition 3.1.6. We say that a subset A C X of a topological space (X,.7) is dense if A = X.
We say that X is separable if it admits a countable dense set.
Finally, recall the notion of continuity.

Definition 3.1.7. Let (X, ), (Y,.) be two topological spaces. We say that a map f : X — Y is
continuous if for all open set V € ., we have f~1(V) € 7.

We can finally move to the familiar concept of metric spaces (all spaces encountered in this lecture
are metrisable).

Definition 3.1.8. Let X be an arbitrary set. We say that a map d : X x X — Ry is a metric if the
following three properties are satisfied

1. d(z,y) = 0 if and only if y = = (definiteness).
2. d(z,y) = d(y,z) for all z,y € X (symmetry).

3. d(z,y) < d(x,2) +d(z,y) for all z,y,2 € X (triangle inequality).

If d is a metric on X, the open ball of centre x € X and radius r > 0 is defined by B(z,r) = XN
{y : d(z,y) < r}, and the closed ball by B(z,r) = X N{y : d(z,y) < r}.

Definition 3.1.9. A metric space (X, d) is a topological space whose basis of open sets is given by the

sets of all open balls {B(z, T)}xeX,r>O'

Remark 3.1.10. Notice that metric spaces are always separated. It is quite unfortunate choice of
terminology, for the closed ball in an arbitrary metric is not always closed. However, the closed ball is
always closed in a normed space.

Theorem 3.1.11. Let (X,d) and (Y, h) be two metric spaces. Then f: X — 'Y is continuous if and only
if f is sequentially continuous, i.e. for all x € X and for all sequences {x,},cy such that v, — x, we
n—oo

have f(xy,) vd f(z)eY.

We can now move on to the definition of normed space, Banach space, and Hilbert space.

Definition 3.1.12. 1. Let X be a vector space on a field K (where K =R or K = C). We say that
amap ||-||y : X = R is a norm if the following associated map d : X — X — R, such that
dx(z,y) = ||z — y|lx is a distance on X, and for all A € K, we have

Aallx = (Al -
The metric space (X, dx) is called a normed space and denoted (abusively) (X, |- y)-
2. We say that (X, || || ) is a Banach space if the metric space (X, | - || y) is a complete metric space.
In the following, K will denote either R or C.
Remarks 3.1.13. 1. Notice that we have by the triangle inequality for all z,y € X
Iz +yll = d(z, —y) < d(z,0) + d(0, —y) = [lz]| + [lyll.
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2. In reality, there are no abuses of notations for the distance associated to a norm is defined bi-
univocally.

We can now move to the definition of Hilbert spaces. We first need to remind the definition of scalar
product.

Definition 3.1.14. Let E be a vector space on K. A scalar product (-, -) : E x E — R is a positive-
definite symmetric bilinear functional. In other words, it satisfies the following properties:

1. (z,z) >0 for all z € E\ {0} (positive-definiteness).

2. (x,y) = (y,z) for all z,y € E (conjugate symmetry).

3. Au+v,w) = Nu,w) + (v,w) for all u,v,w € E and A € K (linearity in the first variable).
Remark 3.1.15. Since (-, -) is symmetric, we need only check the linearity in the first variable.

Definition 3.1.16. We say that a Banach space (H, || -||) is a Hilbert space if the following functional

1 2 2
@y) =7 (le+ylP ~llz—yl?), ayen
is a scalar product on H.

We do not recall here the useful properties of Hilbert spaces (Riesz-Fréchet representation theorem,
Hilbertian basis, and spectral decomposition that will not play a role immediately).

Remark 3.1.17. It may seem that we are replacing a definition by a theorem, but the polarisation
formula shows that it is a trivially equivalent definition.

Before mentioning the notion of dual space of a normed space and weak topology, let us recall a
statement of the Hahn-Banach theorem (see [2]).

Theorem 3.1.18 (Hahn-Banach). Let X be a real vector space and N : X — R be a sub-linear homoge-
nous map of degree 1, i.e. a map such that

1. N(Az) = AN(x) for allz € X and A > 0.
2. N(z+y) < N(z)+ N(y) for all z,y € X.

Let Y C X be a sub-vector space, and f:Y — R be a linear map such that f < N)y. Then, there exists
an extension f: X — R—i.e. such that ﬂy = f—such that f < N on X.

The proof uses the axiom of choice, and more precisely, the equivalent formulation known as the
Zorn’s lemma.* First introduce the following definitions.

Definition 3.1.19. (i) A partial order on a set X is a binary relation < on X x X that satisfies the
following properties:

1. x <z for all x € X (reflexivity).
2. Forall z,y € X, if x <y and y < z, then = y (anti-symmetry).

3. For all z,y, z, if ¢ <y and y < z, then z < z (transitivity).

(ii) We say that a subset Y C X is totally ordered (by <) if for all z,y € Y, we have either x < y, or
y < z—in which case, we say that < is a total order (on Y).

(iii) We say that an element x € X is an upper bound of Y is y < z for all y € X.
(iv) Finally, we say that € X is a maximal element if for all y € X such that « <y, we have y = «.

* Another equivalent statement for the axiom of choice is Zermelo’s Theorem, that asserts that any set can be well-
ordered. This terminology is rather poorly chosen for what is called either a lemma or a theorem is nothing else than an
axiom. However, more than a century of usage will not be erased easily.
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Lemma 3.1.20 (Zorn’s lemma). Let (X, <) be a non-empty inductive set, i.e. a set such that every
totally ordered subset admits an upper bound. Then, X admits a mazximal element.

We can finally prove the Hahn-Banach theorem.

Proof. (Of Theorem 3.1.18)
Step 1. Finite-dimensional case.

The theorem is true in finite dimension without the axiom of choice, so let us first prove that a linear
map f: R¥ C R® — R (where k < n) always admits an extension f to RF+1 gatisfying f < N on R*TL,
Seeing R* as R* x {0} C R", we extend f by f: R¥ x R — R by

flz,t) = f(x) + at for all (z,t) € RF x R,
for some a € R to be determined later. For all (z,t) € R*¥*! we must have
flz)+at < N(x,t),

where we identify by abuse of notation (x,t) with («,,¢,0) € R™. For ¢ > 0, by homogeneity of N, the
inequality is equivalent to

(fx) +at <IN(E '2,1)) <= (fly) +a < N(y,1) (y=t""'z)),
and for ¢ < 0, we get the condition
f(y) —a < N(y,-1).
Therefore, o must satisfy

sup (f(y) = N(y,—1)) < < inf (=f(z) + N(z,1)).
yERKk z€R

Such an « always exists for f(y) — N(y,—1) < —f(z) + N(z,1) for all y,z € R¥. Indeed, we have by
linearity of f

fW@)+ 1) =fly+2) <Ny+z)=Ny+z-1+1) < N(y,—1) + N(z,1),
which concludes the proof of this step. Notice that an immediate induction gives an extension of f to
R™.
Step 2. General case.
Let E be the set of extensions g : D(g) — R of f (where D(g) D Y is the domain of g) such that
g < N|p(g)- We introduce the partial order relation < on E as follows:

(91 < g2) <= (D(91) C D(g2) and g2 = g1 on D(g1)).

The set E is not empty since f € E. Furthermore if F' C E is totally ordered, writing F' = {g;},.;, we
see that g : |J,c; D(g9:) — R such that g = g; on D(g;) is a well-defined function and an upper bound of
F. Therefore, E is inductive, and admits a maximal element that we will denote by fy,. By Step 1, if
D(fo) # X, fo admits an extension f, : D(f,) — R such that D(f,)/D(fy) ~ R has codimension 1. In
particular, it would imply that fp is not a maximal element, a contradiction. Therefore, D(fy) = X and
f = fo is an extension of f satisfying all expected properties. O

Remark 3.1.21. Notice that we do not use the finite-dimension of the ambient space R™ in Step 1,
and this why we can apply it to the (potentially) infinite-dimensional case of Step 2.

We now let in the rest of this chapter (X, || -||) be a normed space. The dual space X’ (or X*) is the
space of continuous linear forms f : X — R equipped with the following dual norm

1fllx: = sup [f(z)] (3.1.2)
eX

X
llzll<1

From Hahn-Banach theorem, we deduce the following corollary.
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Corollary 3.1.22. Let Y C X be a sub-vector space, and f :' Y — R be a continuous linear form. Then,
there eists an extension f: X — R such that ||f| ., = [Iflly-

Proof. Take N(z) = || f|ly. ||lz||. O

Corollary 3.1.23. For all x € X, there exists f € X' such that || f|| . = ||z x and f(z) = |jz||%-

Proof. Apply Corollary 3.1.22 to fo: Rz — Rt ||x|\§( t. O

Corollary 3.1.24. For all x € X, we have

ol = sup [f(z)] = max [f(z)]. (3.1.3)
fex’ fex
1l <1 11l <1
Proof. The inequality |f(x)| <[/ f|lx. [|z||x and Corollary 3.1.23 imply the result immediately. O

We will not mention other the geometric forms of Hahn-Banach theorem (see [2]), but we will need
the following very useful result in the rest of the lecture.

Theorem 3.1.25. Let Y C X be a sub-vector space such that Y # X. Then, there exists f € X'\ {0}
such that fjy = 0.

3.2 The Three Fundamental Theorem of Linear Operators in
Banach Spaces

First recall the Baire lemma.

Lemma 3.2.1 (Baire). Let (X,d) be a complete metric space. Let {F,}, .y C X a sequence of closed

spaces of empty interior, i.e. such that int(F,) = & for alln € N. Then, U F,, has empty interior too.
neN

Let Y be a normed vector space. We denote by -Z(X,Y) the space of continuous linear operators
X — Y, equipped with the following norm

Il xvy = s [T@)lly -

x
llzll x <1
We skip the standard proof by induction, and we simply recall the main theorems of Banach spaces.

Theorem 3.2.2 (Banach-Steinhaus, or Principle of Uniform Boundedness). Let (X, | | y), (Y, Ily),
be two Banach spaces, and {T;},.; C L (X,Y) be a family of continuous linear operators from X into
Y. Assume that for all x € X, we have

su? | Ti(x)]y < oo (3.2.1)
1€

Then, we have

Sup T3l x,y) < o©- (3.2.2)

Proof. For all n € N, let F,, = X N{z:Vi € I,||T;(x)| <n}. Then F, is an intersection of closed sets,

therefore, a closed set. Furthermore, we have U F,, = X. Therefore, by Baire’s lemma, we deduce that
neN

there exists N € N such that int(F) # @. In particular, there exists an open ball B(zg,r) in Fy, and

we deduce that

Viel, |Ti(x—zo)|ly <N for all x € B(xo,).
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By linearity, we deduce that
. 1
viel, |Ti(@)lly < — (N + [ Ts(zo)lly) 2l x < Clizllx
using (3.2.1) with z = z. O

Let us list a few corollaries.

Corollary 3.2.3. Let X and Y be two Banach spaces. Let {T,}, .y C Z(X,Y) be a sequence of linear
continuous operators from X toY, such that for all x € X, the sequence {T,(x)}, oy C Y converges to
a limit denoted by T'(x) € Y. Then, the following properties are satisfied:

L. sup | Thl| ¢(x,y) < o©-
neN
2. Te Z(X)Y).
3. 1Tl 2(x,yy < liminf [T o x v -

Proof. The first point 1. follows from Theorem 3.2.2. In particular, there exists a constant C' < oo such
that

sup [|[Tn(2)]ly < Cllz|y forall z € X.
neN

In particular, we have
|T(2)|ly <Cllz|ly forall e X.
By linearity of T,,, we deduce that T is linear, which proves 2. Finally, the inequality
IZ0(@)) < 1 Tll o xs el forall = € X
implies the last point 3. O

Corollary 3.2.4. Let X be a Banach space and A C X an arbitrary subset. Assume that A is weakly
bounded, i.e. for all f € X', the set f(A) CR is bounded. Then, A is strongly bounded in X.

Proof. Let {Ta},c 4 C Z(X',R) be defined by T,(f) = f(a) for all f € X’. Then, we have
sup | T.(f)|| < oo forall f e X'
acA
Therefore, by Theorem 3.2.2, we have
sup [|Ta| o (x/ gy < 00
acA
In particular, we have

[f(@)] < Cliflly forall feX'.

Using Corollary 3.1.23, we deduce that ||a]| < C for all a € A, which concludes the proof. O

The dual statement is given by the following.

Corollary 3.2.5. Let X be a Banach space and F' C X'. Assume that for oll x € X, the set F(x) =
Rn{y:y= f(z) for some f € F} is bounded. Then, F is bounded.

Proof. The proof is almost identical, using the family {T; = f}feF' O
The second fundamental theorem of Banach is the following.
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Theorem 3.2.6 (Open Mapping Theorem). Let X and Y be two Banach spaces, and T € £ (X,Y) be
a surjective linear continuous operator. Then, there exists r > 0 such that

By(O,T) C T(Bx(o, 1))

We skip the long proof.
Finally, we give the third theorem of Banach.

Theorem 3.2.7 (Closed Graph Theorem). Let X, Y be two Banach spaces, and T : X —'Y be a linear
map. Assume that the graph of T,

G(T) =X xY n{(z,y) :y =T(x)}
is a closed set of X X Y. Then T is continuous.

Proof. Consider on X the norm ||z = ||z| x + |T(z)|y. Since ¥(T) is closed, (X, ||-||) is a Banach
space. Furthermore, we have -]y < [|-[|. By the open map theorem applied to the identity map
X, -1 = (X, - 1), we deduce that there exists r > 0 such that

rllzl| < |lz|| forall x € Bix . )(0,1),
which shows that ||| oy y) < £ —1 < 0. O

The argument in the second part of the proof works in a more general setting.

Corollary 3.2.8. Let X andY be two Banach spaces, and let T € £ (X,Y) be a bijective linear operator.
Then, the inverse T~1 :Y — X is continuous.

Proof. By the Open Mapping Theorem (Theorem 3.2.6), we deduce that there exists r > 0 such that
rlz|lx < || T(z)|ly, for all z € Bx(0,1),

< 1 O

which shows that ||T*1H$(Y7X) <.

3.3 Weak Topology

3.3.1 General Definition

Let X be a set and {Y;},.; be a family of topological spaces. For all i € I, we fix some map ¢; :
X — Y. The weak topology on X is with topology that makes all maps ¢; : X — Y, continuous.
Notice that this is well-defined by Definition 3.1.3), and the associated pre-topology is given by % =
{(pi_l(Vi) : V; open subset of Yl}

Proposition 3.3.1. Let {x,},y be a sequence of X. Then x,, — x for the weak topology if and only

n—

if pi(xn) — wi(z) €Y foralliel.
n—oo
Proof. The first implication is trivial for each map ¢; : X — Y; is continuous with respect to the weak

topology. Conversely, let U be a neighbourhood of . By the construction of Definition 3.1.3, we can
assume that

n
U= e, (Vi)
j=1

where V;; is an open set of Y;, (by hypothesis, V;; is also a neighbourhood of ¢;,(x)). For all 1 < j <n,
there exists N; € N such that ¢;, (z,,) € Vj; for al n > N;. In particular, taking N = max {Ny,---, Ny},
we deduce that for all n > N, z,, € U, which concludes the proof. O
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3.3.2 Weak Topology on a Banach Space

Let X be a Banach space, and f € X’. Let ¢ : X — R be defined by ¢s(z) = f(z) for all z € X. Then,
the weak topology o(X, X’) on X is the weak topology associated to the family of maps {gof}fex,. To
emphasise the duality, we will sometimes write f(z) = (f, x).

We will denote the weak convergence of {x,}, .y C X to some element x € X in the weak topology
by the half-arrow —. Notice that by what precedes (Proposition 3.3.1), we have

(mn ol x) = (f(xn) — f(z) €R forall fe X').

Let us list some basic properties of the weak topology.

Proposition 3.3.2. The weak topology o(X, X") is separated.

Proof. The proof follows from the geometric version of Hahn-Banach theorem, and will be omitted. [
Proposition 3.3.3. Let {z,}, .y C X. The following properties are verified:
1. The sequence {xn}, .y weakly converges to some element x € X if and only if f(x,) — f(z) € R
n—roo
forall f e X'.

2. If x, — x strongly, then x,, — =z weakly.
n—oo

n—r oo

3. If v, — x weakly, then {||lz,|},cn C Ry is bounded and

n—r oo

|lz|| < liminf ||z, . (3.3.1)
n—oo

4. If x, o weakly, and {fn}, oy C X' converges towards some element f € X', then f,(z,) —

f(a). o

Proof. The first property 1. is trivial by definition of the weak topology and Proposition 3.3.1. The
second 2. follows from the inequality |f(zn) — f(@)| < |fllx/ [|l2n — 2] x-

Let us prove 3. now. We apply Corollary 3.2.5. We need to check that for all f € X', {f(zn)},cy CR
is bounded, which is trivially satisfied since f(zy) — f(z) by definition of the weak convergence.
n—oo

Furthermore, for all n € N, we have

|f(zn)] < Hf”xf Hxn\lm

which implies that
)] < 1l lim inf [l
Finally, Corollary 3.1.24 implies that

_ o '
lzllx = max|f(z)] < liminf [l 5

£l <1

The last property 4. follows immediately by the triangle inequality:

[fn(zn) = f@)] < |fulzn) = flzn)| + [f(@n) = f@)] < fn = Fllix lonllx + 1 lLx l2n — 2l

which implies the claim by the previous property 3.. O]

We end this section by a few remarks on the weak topology.

Remarks 3.3.4. The weak topology has many surprising properties:
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1. The adherence of the unit sphere S = X N{x : ||z| y = 1} for the weak topology is the closed ball
B =Xn{z:|z|x <1}. We will see that in a reflexive space (to be defined in Definition 3.4.1), B
is a compact set for the weak topology, although this set is never compact for the strong topology
in infinite dimension. This is why the weak topology is so important: it allows one to solve partial
differential equations thanks to a compactness argument.

2. The interior of B = X N{x : ||z[y < 1} for the weak topology is empty.

3. In infinite dimension, the weak topology is never metrisable. This is why it is futile to define it
using convergence of sequences, although for most applications, one need only look at sequences.

4. In infinite dimension, there are sequences that converge weakly but do not converge strongly.

3.4 Weak x Topology

Let X be a Banach space, X' its dual space, and X" = (X’)’ the dual space of X’ (also called bidual of
X). We endow it with the following norm

lollx» = sup  [o(f)l. (3.4.1)
fex’

171l x <1

There is a canonical injection J : X — X", defined as follows. Let z € X and J(z) : X' = R, f —
(J(x), f) = f(x). Then J(z) € X”. Furthermore, we immediately check that J defines a linear map
X — X", which is an isometry for

1) r = sup |[(J(@), f)l = sup |f(x)] =]y, (3.4.2)
fex’ fex’
[1fllxr <1 1fllxr <1

using Corollary 3.1.23.

Therefore, X is isometric to a subset of X”. This allows us to introduce a fundamental notion that
will prove fundamental in the following (and explain all the pathologies of spaces such as L' and L*°).

Definition 3.4.1 (Reflexive spaces). We say that a Banach space is reflexive if the isometric injection
J: X — X" is surjective, i.e. J(X)=X".

Common examples of reflexive spaces are the LP spaces (on a locally compact group, say) for expo-
nents 1 < p < o0.

Before listing the major properties of reflexive spaces, we now define the weak * topology (X', X)
on X'.

Definition 3.4.2. The weak * topology* is the smallest topology that makes all maps J(z) : X’ — R
continuous, where z € X. We denote it o(X’, X). We denote by the convergence for sequences of X’.

Let us give a few basic properties of the weak topology.

Proposition 3.4.3. The weak * topology on X' is separated.

Proof. Let f,g € X’ such that f # g. Then, there exists € X such that f(z) # g(z). Assume without
loss of generality that f(z) < g(z), and let o € R such that

f(z) <a <g(z),

then J(z) (] — o0, af) and J(x)~!(Ja, 00) are disjoint open (for the weak * topology) subset of X’ that
respectively contain f and g. O

*One pronounces weak star topology.
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We now list the basic properties of the weak * topology (the proof is almost identical to the one of
Proposition 3.3.3, and we omit it).

Proposition 3.4.4. Let {f,},cn C X'. Then the following properties are satisfied.
1. The sequence {fn}, ey converges to f € X' if and only if f,(x) — f(z) for allz € X.
n—oo

2. If fn — f € X' strongly, then f, = | weakly for the weak topology o(X', X"). If fp, = fe
n o0 n o0 n (o]
X' for the weak topology o(X', X"), then f, — f weakly for the weak x topology (X', X).
n—oo

3. If fan — oof, then {||fallx/},en € Ry is bounded and

£l < liminf || full ., - (3.4.3)

4. If fun — oof, and x, — x strongly, then f,(z,) — f(z).
n—oo

n—oo
We end this section by a fundamental compactness theorem that justifies the introduction.

Theorem 3.4.5 (Banach-Alaoglu-Bourbaki). The unit closed ball B = X' 0 {f : || f| x, <1} is compact
for the weak * topology o(X', X).

Proof. The proof is an easy application of Tychonoff’s theorem (the arbitrary product of compact set is
compact). Notice that this “theorem” is equivalent to the axiom of choice, so it was not very limiting to
use Hahn-Banach theorem previously considering that the compactness of the unit ball for the weak x
topology is needed in many applications.

Now, let Y = RX equipped with the product topology. Let ® : X’ — Y defined by

O(f) = {f(2)},ex forall fe X'

By definition of the product topology, since each canonical projection 7, o ® = J(z) : X' — R is
continuous (z € X), we deduce that ® is a continuous map. Here, we denoted 7, : ¥ = RX — R the
canonical projection on the “z factor.” Furthermore, note that ® is injective since for all given elements
fyg € X', the equality f = g holds if and only if f(z) = g(z) for all z € X. Now, consider the inverse
map &1 : ®(X’) — X’. We need only prove that for all # € X, the map y — (®~!(y), x) is continuous,
but it is trivial since (®~1(y), x) = 7, (y).

Now, we observe that

©(B) =Y {y : [ma(y)| < |2l Totar (y) = 72 (y) + 72 (y),
Taz(y) = A (y) for all z,2" € X and X\ € R}.

Notice that the set A1 = Y N {y: |7 (y)| < [|z]| forall z € X} = [[,cx[—Illzl,|z]]] is compact by
Tychonoff’s theorem, whilst

Ay =Y N{y : Topar (y) = T2(y) + 72 (¥), Mra(y) = Ame(y) for all x,:c' € X and A € R}

is closed as intersection of closed sets. Therefore, we deduce that ®(B) = A; N As is compact. O

3.5 Reflexive Spaces

Recall that by the Definition 3.4.1, a Banach space is reflexive if the canonical (isometric) injection
J: X — X" is surjective. The major theorem is the following result of Kakutani.

Theorem 3.5.1 (Kakutani). Let X be a Banach space. Then, X is reflexive if and only if the unit
closed ball B =X N{z : ||lz||x <1} is compact for the weak topology o(X, X').

We omit the (rather technical) proof.
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Remark 3.5.2. We see that for a reflexive space, the weak * topology is useless. However, for a non-
reflexive space that is the dual of a Banach space (as L™), the weak * topology furnishes a topology for
which the unit ball is compact, which has fundamental applications to calculus of variations and partial
differential equations.

We also mention the following theorem that is not trivial, contrary to what one may think.

Theorem 3.5.3. A Banach space is reflexive if and only if its dual space is reflexive.

3.6 Separable Spaces

We have the following results.
Theorem 3.6.1. Let X be a Banach space such that X' is separable. Then, X is separable.

Remark 3.6.2. L, the dual of L!, is not separable, although L! (as all Lebesgue spaces LP for
1 < p < 00) is separable (provided that we consider the space L' on an open subset of R? for example).

Theorem 3.6.3. Let X be a Banach space. Then X is reflexive and separable if and only if X' is
reflexive and separable.

We assume the reader familiar with Lebesgue spaces (since they are special cases of Sobolev spaces)
and do not recall here the basic results such as the Holder’s inequality (we will see generalisations of
it), the convergence theorems of Lebesgue or Fatou, or the inequality for convolutions that will all be
treated in the more general setting of Lorentz and Orlicz spaces.

48



Chapter 4

Convexity

4.1 Introduction

In this chapter, we will restrict to functionals of the form
E(u) = / F(Vu)dz,
Q

where 2 C R? is an open subset and u : Q — R", while F' : M, 4(R) — R. The situation between the
scalar case (n = 1) and the vectorial case (n > 1) vastly differ. In this chapter, we will aim to solve the
problem

L)

where
A =W Q) N{u:u=gon 90} 1<p< oo

and g : 02 — R"™ is a given boundary data (whose regularity will be fixed later). The model case is
F(X)=|X?,p=2,and g € H'/2(0Q). The case p = 1 is delicate and we will assume in the rest of
the chapter that p > 1. We assume further that Q is a bounded, smooth (Lipschitz regular would be
enough) open subset of R?.

To have a chance to find a minimiser, recalling Theorem 2.1.1, we impose the following coercivity
condition

F(X)>alXP—p  forall X € M, 4(R),

where a@ > 0 and 8 > 0 are fixed constants. To apply the proof of Theorem 2.1.1, we need to show
the lower semi-continuity of E for the weak convergence in WP, Indeed, if {up},oy C WHP(Q) is a
minimising sequence, we deduce in particular that

1
/ |Vug|Pde < —F(ug) + é|Q| <TI < 0.
Q (0% (0%

Therefore, if g admits an extension g € W1P(Q), we deduce that uy — g € Wol’p(Q), and the Poincaré
inequality implies that

||Uk||Lp(Q) < ||§||Lp(9) + flur — §||Lp(Q) < ||§||Lp(§z) + Cp ||V (ur — §)||Lp(Q)
<9l @) + CP IVGlLe ) + Cp I VukllLo (o)
< (14 Cp) [Gllgr (e + CrT < 0,
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which shows that {uy}, cy is bounded in WLP(§). Therefore, up to a subsequence, we deduce that there
exists u € W1P(Q) such that

up — u weakly in W1P(Q).

k—o0

Therefore, we will deduce the existence of a minimiser provided that

E(u) <liminf E(uy) < 0.
k—oo

If there exists a minimiser, assuming that F is a C? function, we deduce that for all ¢ € 2(Q,R"), we
have F(u) < E(u+ t¢), which shows that we must have

d

We expand
Blu+te) = /QF(Vu+tV<p)dx - /QF(u)dx —i—t/QVF(Vu) Ve ds + t;/QDQF(Vu)(V%Vgo)dJH—o(tz).
We deduce from (4.1.1) that

/QVF(VU) -Vodr=0  forall p € 2(Q,R").

This shows that u solves in the distributional sense the equation
div (VF(Vu)) =0 in 2'(Q). (4.1.2)

Furthermore, as the function ¢ — E(u + t ¢) admits its minimum at ¢ = 0, we deduce that

- 8@ d¢!
D?*F Ydx = dz > 0. 4.1.3
/ F(Vu)(Ve,Ve)de = /”E lk% 1 Qpl 6‘zz a1, ( )

4.2 The Scalar Case

First assume that n = 1. Then, the inequality (4.1.3) reduces to

6@ Op
> 4.2.1
/ Z 0 18pj 8:51 O0x; dr 2 0. ( )

i,j=1

This inequality shows that the following condition must hold:

O*F
Op; Op;

(Vu(2))& & >0 forall z € Q, for all ¢ € R (4.2.2)

This inequality shows that F must be a convex function on the domain of F. Recall that a C? function
F is convex if and only if

E'D?F(p)¢ >0  forall p,& € RY. (4.2.3)

We will show that this condition is a sufficient and necessary condition for the lower semi-continuity of
E in the weak topology.

Theorem 4.2.1. The functional E is lower semi-continuous for the weak convergence in WP (Q) if and
only F : R = R is a convex function.
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Proof. Let us first show that the lower semi-continuity implies the convexity of F'. Assume for simplicity
that Q@ = @Q =J0,1[? (the general argument would follow from a standard covering argument). Let

© € CX(Q) and p € R%. For all k € N, we divide Q into 2¥? cubes of length 2* denoted by {Ql}zQZ
Define

1
ug(x) = ok (2k(x—ml))+p-:17 for all x € @y,

where x; is the centre of the cube @; and let w(z) = p-x. Then, it is easy to see that uy ké u in
— 00

W1LP(Q). Therefore, as F is lower semi-continuous, we deduce that
ZYQ)F(p) = E(u )<hkm1nfE Ug) / F(p+ Vy)dz.

Therefore, the function u(z) = p -  is a minimiser with respect to its own boundary value in 9Q. This
implies that (4.2.2) holds for all £ € R?, and since p was arbitrary, we deduce that F is convex.

Conversely, if F is convex, it is the supremum of affine functions. First assume that

F(X)= max (a;- X +b)  a; €RY b eR.
1<i<m

Then, we make the decomposition Q = E; U ---U E,,, where
E;,=Qn{z: F(Vu(z)) = a; - Vu(x) + b;},

and assume without loss of generality that Z4(E; N E;) = 0 for all i # j. Then, as the weak convergence
implies the convergence of means, we deduce that

/FVudx—Z/ z) + b;) da
kll_)n;oZ/ - Vug(x) + b;) de
<hm1nf2/ (Vuyg)d

< lim inf/ F(Vug)dz = liminf E(uy),
Q k—o0

k—o0

where we used that F(z) > a; -z + b; for all 1 < i < m. In general, the result follows thanks to the
monotone convergence theorem. O

One of the main goals of the modern theory of calculus of variation is to show how to remedy the lack

of coercivity or convexity of functionals to construct critical points of them. In the final chapter of the
lecture notes, we will see what kind of methods can be implemented in the case of the area functional.

4.3 The Vectorial Case
We assume that n > 2 and we consider
E(u) = / F(Vu)dx
Q

where v : @ ¢ R - R” and F : M, 4(R) — R. We assume as previously that there exists o« > 0 and
B > 0 such that for every matrix X € M, 4(R), the following inequality holds

F(X) > alX]P -
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Once more, we look for a condition that ensures the lower semi-continuity of F' for the weak convergence.
The condition (4.1.3) becomes

d n
oF
Z Z E) - (Vu(z))mem &€ >0
ij=1 k=1 9Pi 9Pj

)

for all z € Q, € € R? and € R”. This inequality allows us to introduce the Hadamard-Legendre
inequality

(n@&'D’F(X)(n@&) >0  forall X € My q(R), { €RY, neR", (4.3.1)

where nn ® & € M, 4(R) is the matrix whose (k,7) entry is given by n& (1 < i <d, 1 <k <mn). A
function satisfying the condition (4.3.1) is called a rank-one convex function. The condition implies that
for all X, &,n as above, the real variable function

ft) =F(X +tneg)) (4.3.2)

is convex, but it does not imply that F' is convex.

If we repeat the proof of Theorem 4.2.1, we arrive as the following condition

ZYUQ)F(X) < / F(X +Ve)dz  forall p € CZ(Q).
Q

It turns out to be the optimal condition to have lower semi-continuity of F for the weak convergence.
Definition 4.3.1. We say that a function F': M,, 4(R) — R is quasiconvez if for all X € M, 4(R), for
all cube Q C R? and ¢ € C°(€2), the following inequality holds:
/ F(X)dz < / F(X +Vo(x))dz.
Q Q

From now, we also assume that
0<F(X)<C(1+1|X]P). (4.3.3)
Theorem 4.3.2. Assume that F' satisfies the growth condition (4.3.3). Then, the functional E is lower
semi-continuous for the weak topology if and only if F' is quasi-convex.
Proof. We start by an elementary lemma.

Lemma 4.3.3. If F' is rank-one convex and verifies the condition (4.3.3), then there exists C' < 0o such
that

IVF(X)| < COA+|X[P7Y)  forall X € M, q4(R).

Proof. Define f as above in (4.3.2) and fix 1 < k <mn and 1 <i < d and let € R™ such that 7, = 1,
m =0 (for all | < k) and £ € R? be such that & = 1 and & = 0 (for all j # 7). Then, as f is convex, we
have the estimate

[F(O0) == sup [f(z)] < CA+ X[ +7rP),

¢
T zeB(0,r)
so the estimate follows with r = | X| + 1. O

We now return to the proof of the theorem. We have already seen that the condition was necessary.
Let us show that it is sufficient. Let {uy}, oy be such that wuy T uE€ WLP(Q,R"). In particular, we
— 00

have

sup ||Vuk||LIJ(Q) < o0
keN
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and ug k—) u strongly. There exists a subsequence such that
— 00

lim E(ug,;) = liminf E(ug).

Jj—o0 k—o0

Define the measures i, = (|Vug|? + [Vul? + 1) d£?. Then, up to a subsequence, there exists a Radon
measure 4 such that pp, — p, which means that for all ¢ € CY(Q), we have
J—00

lim [ pduy; = /Q pdpu.

J—00 Q

In particular, p has finite total measure. In particular, for at most countable hyperplanes H C R, we
have u(Q N H) > 0, so we can (up to tilting the domain) assume that for all dyadic ¢ (¢ = 2% for some
i€7Z),if Hi(q) =R¥N{(21, - ,2q) : ; = q}, then u(H;(q)) = 0 for all 1 <i < d. Let 2; be the set of
all open dyadic cubes in R? of edge length 2. Then, u(0Q) =0 for all Q € 2; (1 <i < d).

Now, fix € > 0 and choose a relatively compact open subset Q' C € such that

/ F(Vu)dz < €.
Q\Q/

Denote by (Vu); the piecewise constant function which on the cube Q; € 2; is equal to (Vu)g, (the
average). Then, we have (Vu); — Vu strongly in LP(Q2), and as a consequence, we have
71— 00

F(Vu);) — F(Vu) strongly in L'(Q).
1—> 00
Then, fix i € N such that 27¢ < dist(Q’, Q) and
(V)i = Vullp ) + [F((Vu)i) = F(Vu)|Lig) <e.

Now, let (by compactness) let {Q;};"; be the cubes in 2; that intersect . Let 0 < ¢ < 1 and Q.
be the open cube concentric with and parallel to @Q; with edge length 027 %. Let also {Ghen € 2(9)
be smooth compactly supported functions such that 0 < ¢ < 1, ( = 1 on §, supp((;) € 2\ @i, and
VGl (@) < C(1 —0)712". Write vf = G(u; —u), A = (Vu)g, (1 <1< m). Then, we get

m

E(uy;) = | F(Vug,;)dx > Z/Q F(Vuy,)dr = i/Q F(Vu+ V(u, —u))ds
1 =1 Y Q

F(Vu+ Vul )dx + E;

Ms HMS \

/ AZ+V’UZ dSC+E1+E2,

Il
—

where

E, = Z/l (F(Vu + V(ug, —u)) — F(Vu + Vvlj)dx)

&
I

Z/Q (F(v“‘*‘vvlj) — F(4 +Vvlj)) dz

The quasi-convexity implies that

Z/ Ald$+E1+E2

/ Vuz dl‘+E1+E3 E(U)+E1+EQ+E3,

IV
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where

Es= [ F(Vu);)dx — / F(Vu)dz.
% Q

By the lemma, we have
|Eq] < C’Z/ . (1 + | Vul? + [Vug, [P + VG [P |lug; — u\p) dz,
=1 Y Q\Q
which yields

limsup |E1| < Cu (U Qi \ @l)
1=1

Jj—o0
while the previous estimates and the lemma show that

limsup(|E1| + |E3]) < Ce.

‘]*)OO
We can now take ¢ — 1 to finally deduce that

E(u) <liminf E(uy)
k—o0
which concludes the proof of the theorem. O

Checking quasi-convexity is impossible in practice, but another property ensures the lower semi-
continuity.

Definition 4.3.4. We say that a function F' : M,, 4(R) — R is poly-convex if for all X € M, 4(R), F(X)
is a convex function of the determinants of minors of X.

Theorem 4.3.5. A poly-convex function is quasi-convex.

As a consequence, if
F(X) = |X]" + f(det X),

where f: R — R is a convex function, then E is lower semi-continuous for the weak convergence.
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Chapter 5

Plateau’s Problem

5.1 Notations

We note D = CN{z:|z| < 1} the unit disk of the plane and S = 9D = CN {z: |z| = 1} its boundary.

5.2 Statement of the Problem

Let v : S* — R™ be a continuous injective map and I' = v(S'). We say that I" is a Jordan curve. If
u € WH2(D,R"), its area is given by

A(u) = / |0z, u A Oy, ulda.
D
Recall that if v =", v;e; and w =Y. | w;e; (where (e1,--- ,e,) is the canonical base), then

vAwWw= E (viw; — vjw;) e; A ej,
1<i<j<n

and the scalar product on A2R™ is given by

Aw = > |vw; — vjwil?
1<i<j<n

In the special case where n = 3, we also have
A(u) = / |0z, u X Op,uldr,
D

where x is the vector product. As we mentioned in the introduction, the area is too weak a functional
to allow us to minimise it and expect a proper control. Indeed, although we need u € W12(DD) to define
the area, it does not control the entire gradient in L?. We will therefore minimise the Dirichlet energy

1 9, 1 Oou 2
E(u)—§/D|Vu| dm_?/]])(azl )dxldxg

amongst conformal maps. The main difficulty is to show that our class is not empty and possesses
good compactness properties. Although A is invariant under the entire diffeomorphism group of D, the
Dirichlet energy F is also invariant under the group of positive conformal diffeomorphisms of the disk:
A1 (D). Although the group is finite-dimensional, it is non-compact and that will create significant
technical complications in the proof. Since conformal and holomorphic maps are equivalent, we can

* L |oe
8$2
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fairly easily classify the elements of .#Z (D). On a f € .#,(D) if and only if there exists a € D and
0 € T = R/27Z such that

e Z—a
Jz) =e 1—az

Therefore, ., (D) is homeomorphic to D x T or equivalently, to D x S*. Now, let us prove the conformal
invariance of the Dirichlet energy. Using the Cauchy-Riemann operators:

1
5 (
1 .

Oz = 3 (Opy +104,).

0, = = (03, —10y,)

Therefore, since u is real-valued, we have

dz Ndz dz Ndz
B) = [ (0.l +10:0) TLE < [ 0.up 2
D ? D 7

Therefore, we find that
dz

dz Ndz

d
2 =2 [ 17RO 77

Buo f) =2 [ fo.(wo HEE

dwNd
— [ 1ouuP T3 — B
D 21

First, we need to make sure that minimising the Dirichlet energy is equivalent to minimising the area.
We have the following result of Morrey.

Theorem 5.2.1 (CITE). Letu € W12(D,R*)NC%(D,R"). For alle > 0, there exists a homeomorphism
U : D — D such that ¥ € WH2(D, D) and furthermore, we have

uo ¥ € Wh3(D,R") N C°(D,R")
and

EuoWV)<A(uoV¥)+e=A(u) +e.

Another difficulty of the Plateau problem is that we cannot simply expect that a solution u € W12(DD)
will satisfy u = v on dD. We therefore have to introduce a weaker notion of parametrisation for the
boundary.

Definition 5.2.2. Let I' € R” be a Jordan curve and v : S — R" a continuous parametrisation of T
We say that a map ¢ : ST — I is weakly monotone if there exists an increasing function 7 : [0, 271] — R
such that 7(0) = 0 and 7(27) = 27 such that

P () =~ (e”(‘g)) for all 6 € [0, 27].
The subset of W12(ID, R™) that has the suitable compactness properties is given has follows:
2() =Wh*D,R") N C*(D,R") N {u: upp € C°(OD,T) and u is weakly monotone on 9D} .
We note that by trace theory, a weak limit in the class 2(T") will only be a prior in H/?(9D), and the

Sobolev injection H®(S') < C°(S!) is only verified for s > 1/2. This will be one of the difficulties of
the proof.

5.3 A Proof of the Plateau Problems for Rectifiable Curves

5.3.1 On the Length of Curves

If a curve admits a C! parametrisation, we can define its length as follows.
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Definition 5.3.1. Let I' C R" be a curve that admits a C! parametrisation 7 : [a,b] — T'. Then, the
length of T' is defined by

L(T) = /O I/ (t)]dt. (5.3.1)

For a rectifiable curve (not necessarily C'!), we introduce another definition.

Let .7 = .([a, b]) be the set of subdivisions of [a, b], define a function Ly : . — Ry such that for
every subdivision A = {ag,a1, - ,am—1} € &, we have

£(8)= Y () ~ (a1l

Then, the length of I' is defined by the following formula

Z([) = ASZ%XO(A). (5.3.2)

We now prove the elementary result.

Theorem 5.3.2. Let ' C R"™ be a C' curve. Then, we have

Proof. Let 7 : [a,b] — T be a C! parametrisation of .
Etape 1: Let us first prove that .Z(T") < £(T).

Let A = {ag,a1, -+ ,am—1} € % be a subdivision of [a,b]. Thanks to the fundamental theorem of
calculus, we have for all 1 <i<m — 1:

y(ai) —y(ai-1) = /“1 v (t)dt.

The triangle inequality therefore implies that

[v(ai) —v(ai—1)| =

/ (bt

As a consequence, the linearity of the integral shows that

< / ().

i—

m—1 m—1  .a; b
Z8) =3 e —ai )| < Y / (1) dt = / I (8)]dt = £(T).
i=1 i=1 Y ®i-1 @

As the inequality is satisfied for every subdivision A € ., taking the supremum on the left-hand side
yields the inequality

Z() < £(T) < .

In particular, the left-hand side is a finite quantity!
Etape 2: Let us show now that £(I') < Z(I'). We need only find a sequence of subdivisions
{An}en C 7 such that

L(Ay) — L(T).

m— o0
To simplify the notations, assume that a = 0 et b= 1. Let m > 1 and for all 0 < i < m, define
1

a; = —.
m
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The function ~ is continuously differentiable, which shows that for all 0 < ¢ < m — 1, and for all

t € [, 2], we have
@) (-2 o)
v(i;1>—7<;>=3iv(;>+o<;>.

Summing those inequalities, we get
(@()-45
g to =—
m m

<H)‘7(m)“m¥<; S| ()| o

Here, we give more details on the last step. As v € C!([a,b]), we have C = sup|y/| < co. As a
[a,b]

)+ ()

In particular, we have

m—1

TYL E

1=

consequence, for all i € {0,--- ,m — 1}, we have
1, (i 1 1|, (i
=] +0o— — — =
m m m m m
ANk 1 1|, (i 1
=A== Y= tol—=)=—= — || +ol—],
m2 m m2 m m m

where we used the elementary Taylor expansion

\/1—|—x:1+g—|—0(x2).

2 9

_’_7

a1 (o)

=2

Since the Riemann and Lebesgue integral coincide (in an elementary way) for continuous functions (and
continuous functions are Riemann-integrable), we finally deduce that

m—
>
m “

1=0

1 . 1
y ()\ — [ P
m m—o0 Jq

which implies that
lim % (A,) = L),

m—r oo

and concludes the proof of the theorem. O

Remark 5.3.3. We can also easily show that £ (') = 5#1(T'), where " is the 1-dimensional Hausdorff
measure [12, 2.10.2, 3.2.46|

This definition allows us to introduce the notion of rectifiable curve.

Theorem 5.3.4. We say that a curve I' C R"™ is rectifiable if it admits a continuous parametrisation
and has finite length:

Z([T) < 0.

5.3.2 Statement of the Theorem

Theorem 5.3.5 (Douglas, Radd, Courant, Tonelli). Let I' C R™ be a rectifiable curve. Then, there
exists a minimiser u for the Dirichlet energy E in the class Z(I"). Furthermore, any minimiser u of the
problem

inf F
Uélga(l“) <U)
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is a minimiser of the area functional A in P(T'), and satisfies the following system of equations:

Au=10 in D (5.3.3)
(0,u,0,u) =0 in D. e

Finally, we have u € C*(D,R™) N C°(D,R™) and the restriction ugp : OD — R™ is an homeomorphism
of S' into T.

Since harmonic functions are real parts of holomorphic functions in dimension 2, if u(z) = Re (f(z)),
with f holomorphic, then we get

which yields
[Vul? = 4)0.ul* = |f'(2)”.

Therefore, the maximum principle implies that f’ has finitely many zeroes (since u cannot be a constant
function), which shows that u is an immersion outside finitely many points, called branch points. If n > 4,
branch points are unavoidable. For example, if 7 : [0, 27] — C? ~ R*, 0 — (€2 ¢3¥) and T = ([0, 27]),
then the immersion u : D — C2 given by

u(z) = (2%,2%) forall z€D

is a minimal immersion that solves the Plateau problem for I', but it is an isolated (and unique) branch
point at z = 0. However, in dimension 3 (n = 3), Osserman showed that there are no interior branch
points (see also Gulliver-Osserman—Royden). Before establishing existence, let us prove a regularity
result on the weak limits in the class Z(T).

5.3.3 Properties of Minimising Sequences

Proposition 5.3.6. Let u be a weak limit in W2 of a minimising sequence of E in P(I'). Then, u is
a harmonic function, i.e., it satisfies the Laplace equation:

Au=0 in D.

Proof. The proof is an application of the ideas of the Euler-Lagrange equation. Let ¢ € C°(D,R"™) be a
test function. If {uy}, y is a minimising sequence of E in the class P(I"), then, we have uy, +t ¢ € P(T')
for all k € N and ¢ € R. In particular, we have

. _ <l .
Uelg(fF)E(v) kl;r{:O E(ug) < hkrglor.}fE(un +tp)

Now, we have
E(uk +tp) = E(uk) + t/ Vug - Do dz + 2 E(p).
D
Since up > Uso weakly in W2 as k — 0o, we deduce that
/Vu;.C -Vodr — Vu-Vedz.
D k—o0 D
Therefore, we deduce by lower semi-continuity of the Dirichlet energy that for all t € R

2
inf E(v) gE(u)+t/Vu-chdx+t—/ Vi[> da.
veP(I) D 2 Jp

Therefore, we deduce that
/ Vu-Vedr =0,
D

which shows that u solves the Laplace equation in the distributional sense, and concludes the proof of
the proposition. O
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We see that variations in the target give us the first equation in the system (5.3.3). The second
equation will be given by variations in the domain, and this equation corresponds to the stationarity
condition. It can be stated as follows: for all X € C2°(D,R?), we have

d
%E (wo (Id+tX)),—o =0. (5.3.4)

Proposition 5.3.7. A map u : WH2(D,R") satisfies the stationarity condition if and only its Hopf
differential, given by

ho(u) = (Ou, Ou) = (D, u, O.u)dz>
— % (\6xu|2 — |0yul?® — 2i (Dyu, (%u}) dz?,
is holomorphic.
Remark 5.3.8. 1. In particular, the associated equation is given by
Oho(u) =0,
where 9 = 0zdz = 3 (0, +i0,) (dz — idy) is the Cauchy-Riemann operator.

2. The Hopf differential is an example of a holomorphic quadratic differential. Since the underlying
Riemann surface is a disk, it simply corresponds to a holomorphic function on the disk. Alterna-
tively ([11, 11.3 p. 308]), a quadratic differential on a Riemann surface can be described as a section
of a the symmetric holomorphic bundle. Here, we can either see the objects formally, or as a family
(U;, ¢i, fi)ier of injective holomorphic maps ¢; : U; — C and holomorphic functions f; : ¢;(U;) — C
such that for all 4,5 € I such that U; NU; # 0, if 1 = ;0 9; '+ 0i(U; N U;) — ;(U; N U;)

fi(2)0"(2) = fil2). (5.3.5)
Notice that by the definition of Riemann surfaces, the transition map 1 is a holomorphic map.

Proof. Let {4}, be the flow associated to a fixed vector field X € C2°(ID,R?). It satisfies the equation

%zt(o:) = X(z(x)) forall ¢t >0

xo(z) =

A unique solution exists thanks to a standard application of the Cauchy-Lipschitz theorem. The chain
rule shows that

2
Op,u(zy) = Z@Mu(mt)&rixi.
j=1
In particular, we deduce that

/D|V(u(xt))| dx:/D|Vu| d:c+2t/D 3 Ouiu)() - (Oayu) )00, X7+ o).

ij=1

Since X is compactly supported in the disk I, we have for all f € L}(D) and ¢ € C°°(D)
[ teoe@de= [ o e o)
D z¢ (D)
= [ 1) (ota) = 19 X + 0(0) (1 = ¢ div X + o(e))dy

_ —t/ F@) (Ve X + o div X) dy + oft).
D

60



We deduce that

% </D f(”ﬂt)sﬁ(x)dx)tzo = */Df div(p X)dz. (5.3.6)

Therefore, we deduce that

2
d (/ |V(u(a:t))|2dx) = —/ |Vul? div X dz + 2/ Z O, - 8Iju6I,in dz,
dt \Jo [t=0 D D,

ij=1

that we can rewrite (since the equation is verified for all X as above)

d ) o (Ou Ou ,
_9 —— ) =0 forall 1<i<2.
oz, (IVul?) ; o, (8% 8xj) 0 forall 1<i<

Finally, the equation can be rewritten as

B ou 2 o (ou Ou _
a(a )*%(am'am)—o "
B ou 2 o (ou Ou ,

and we recognise the Cauchy-Riemann equations, which concludes the proof of the proposition. O

2

B
8:62

2

ou

Oy

We need to strengthen this result in the case of the Plateau problem since we want to show that the
holomorphic function hg(u) vanishes identically.

Proposition 5.3.9. Let u € WH2(D,R") be such that

d
B (o (ld+1X)),_o=0

pour tout X € C(D,R?) such that X (cos(#),sin(0)) - (cos(),sin(0)) = 0 pour tout § € [0,27]. Then,
the Hopf differential vanishes identically, i.e.,

|02, u|? — |Op,u|* — 2i{0p, u, Oy, u) = 0.

Remark 5.3.10. The major difference is that we do not assume that the family of vector-fields has
compact support.

Remark 5.3.11. The boundary condition implies that X preserves D and as a consequence, (5.3.6) still
holds. Therefore, the stationarity condition implies that

2
lim —|Vul?divX +2 ) 0p,u- 0,10, X7 | do=0.

r=1./B(0,r) Q=1

Using complex notations X = X! + 4 X2, the equation becomes

lim Re (ho(u)8X> dx =0,
)

r—1 B(O,’I" 82

0X dz Ndz
li = =0.
Jim Re ( /B(O,T) ho(w) 57 —5; ) 0

Integrating by parts and using the holomorphic of hy (8zho(u) = 0), we have by Stokes theorem

OX dznd: 1 o
how) =0 Z = [ (ho(w)X) dz A d
/]3(0,7-) O(U) o0z 21 2 ~/B(0,7-) oz ( O(U) ) z z

or
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1 1
= — d (ho(u)Xdz) = —,/ ho(u)X dz.
2i JBo,r 20 JaB(o,r)
Finally, we obtain the equation
. 1
lim Re | — ho(u)X dz | =0. (5.3.7)
r—0 2’]'("L aB(O,’I”)

We take X (z) = if(z)z where f is an arbitrary real function that only depends on the angle 6 in a
neighbourhood of dD. Notice that if ¢ : B(0,r) — R? is the standard inclusion, then 1*(dz) =iz df in
polar coordinates z = pe. This follows from the fact that p = r is constant, which shows that

(dz) = d(re?) = ire®®dd =i z db.
Therefore, (5.3.7) becomes
2m

lim Re (1 ” ho(u)(r 2) £(0) r22* d0> = 7lig%)Re (

r—0 271 0

ho(u)(r e £(6) r2e? d0> .

ot )y
Now, recall the Poisson formula: for all harmonic map u : D — R™ such that ugp € C°(9D), we have
R
= — ————u(e"”)d.
u(z) 271'/0 et — Z|2u(e )
Therefore, we fix zg € D and we let f above be given by the Poisson potential
1 — |zo|?
0)= —————.

For all 0 < r < 1, the function function g(z) = ho(u)(2)(2)? is holomorphic, and therefore harmonic,
which implies that

(rzo) = S /27T 1= Izl |20° ho(u)(r e?)r?e? do
g\r 2o o Jo e — 22 0 .
Therefore, Hopf condition (5.3.7) finally gives
I — lim Re (—i lim R 1 1—|ZO|2h 01,2020 39\ — o
m (9(20)) = lim Re (—ig(r z)) = lim Re | —5— Ttz o(u)(re)rie =0.

Since the condition is satisfied for all zy € D, we deduce that the imaginary part of the holomorphic
function g vanishes identically, but by the maximum principle, this implies that g vanishes identically.
In particular, hy vanishes on D\ {0}, and therefore vanishes identically.

5.3.4 Refining the Plateau Class

The next issue is caused by the conformal invariance of the Dirichlet energy. Indeed, recall that the
conformal group of the disk ., (D) (also known as the Mdbius group) is homeomorphic to the non-
compact space D x S'. Explicitly, recall that we can parametrise it by as follows:

g Z—a

fap(z) =€

— la| <1, 0 <6 < 27
1—az

In particular, taking 6 = 0 and choosing a sequence {ay},y C D such that

lim a, =1,
k—o0

the sequence of conformal maps f,, o converges pointwise to a constant map! In particular, if {u}, oy is a
minimising sequence, then up to a subsequence, {uy},y converges weakly to a function u., € Wh2(D).
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Furthermore, up to extracting another subsequence, we can assume that {uy}, y converges almost
everywhere to us. However, the sequence {u o fi} keN converges almost everywhere to a constant
function, which shows that its weak limit cannot solve the Plateau problem. Therefore, we will need to
impose a further restriction that guarantees compactness of the sequence. Such a condition is known
under the name of three-point normalisation.

Why three? The Mo6bius group happens to be 3-transitive, as one can see in the following elementary
lemma.

f
P1
p2
2mik
) = Pk, Pp3
k=1,2,3

Figure 5.1: 3-transitivity of the Mébius group

Lemma 5.3.12 (3-transitivity of the Mobius group). Let p1,pa,ps € OD be three distinct points ordered
in positive trigonometric order. Then, there exists a unique conformal map f € M (D) such that

f(ezﬂ?fk) = pg forall k=1,2,3.

The proof will be done in the exercise sessions. Thanks to this lemma, we can define a new class for
the Plateau problem. Let v : [0,27] — T' be a positive parametrisation of I' (namely, whose orientation
coincides with the one taken in the definition of the Plateau class & (T")) and ¢1, 2,93 € I' a monotone
sequence of points (such that gx = v(0x) with 0; < 0 < 0y). If p1,p2, ps are any arbitrary three points
ordered by increasing trigonometric order on 9D (for example, we can take py = ehslk, k=1,23), we
define a subclass of Z(T") as follows:

Z*(T)=220)N{u:ulpr) = qr for allk =1,2,3}.
Lemma 5.3.12 shows that

inf FE(u)= inf FE(u).
ue 2*(T) ue (T

The main goal now is to prove the closure of 22*(I") for the sequential weak topology on W12(ID). This
result is contained in the following theorem.
5.3.5 Weak Closure of the Plateau Class
Theorem 5.3.13. For all
inf B(2*(T")) < C < oo,
the trace on 0D of elements u € P*(T") such that E(u) < C is equicontinuous.

In particular, using the Arzela-Ascoli theorem, we will be able to extract a subsequence converging
strongly on the boundary to a continuous function. In particular, we get the following corollary.
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Corollary 5.3.14. Let {uy}, .y C Z*(I') be a sequence that weakly converges to a map us € wWh2(D)

for the weak topology. Then, the restriction (us)|op € Hz (SY) is a continuous and monotone function,
i.e., (Uso)iop € C°(OD) and there exists an increasing function 7 : [0,27] — R such that 7(0) = 0,

7(27) = 27, and us () = v (6”(9)).

The theorem is based on a fundamental lemma due to Courant, and that has had since a major
influence on the entire field of calculus of variation (the idea of extracting a “good slice” is far-reaching).

Lemma 5.3.15 (Courant-Lebesgue Lemma). Let u € W12(D,R") and let a € OD. Then, for all
0 < § < 1, there exists p € [5,v/3] such that

Vu € L*(0B(a, p) N D)

and furthermore, we have for almost all x,y € 0B(a, p) N D the inequalities

2
4
lu(z) — u(y)|? < Vuld#" | < —— [ |Vu|2da.
1 =
OB(a,p)ND Og(&) D

Proof. The logarithm indicates us how to prove the inequality (notice that the first one follows from the
Sobolev embedding W11 (I) < C°(I) for all interval I C R). We have by the co-area formula

Vs Vs dr
/ |Vu|2dx=/ / |Vul|?d" dr:/ r/ \Vul|?d#" | —
DN B ;5\Bs(a) 5 DN NIB(a,r) 5 DN OB (a,r) r
Ve
d
> / DY inf r/ |Vu|2dA"
5 T ) §<rVs DN OB(a,r)
1 Ly . 2 1
=—log| =) inf [r |Vu|*dst" | .
2 o §<rVs DN dB(a,r)

In particular, there exists p € [6, /9] such that

2
p/ |Vu|?da" < 71/ |Vul|*dz. (5.3.8)
DN IB(a,p) log () DN B 5\Bs(a)

Now, the Cauchy-Schwarz inequality implies that

/ \Vul|dA" < /A1 (DmaB(a,p))\// |Vu|2d A1
DN oB(a,p) DN oB(a,p)

= \/27r\/p/ |Vu|2ds#1. (5.3.9)
DNNIB(a,p)

Thanks to (5.3.8) and (5.3.9), we deduce that

2
4
/ Vuld#t| < ”1/ Vu|2dz
DN OB(a,p) log (5) DN B 5\Bs(a)

4m / 9
< ——— | |Vul“da. (5.3.10)
g (5 o

Finally, the result follows by the Sobolev embedding Wt(I) < C°(I) (for all interval I C R). Indeed,
for all z,y € I, assuming that v € C°°(I), recall that we have

o(z) — v(y) = / by,
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which implies that

o) = o) < [ Wolar

and by density, this inequality holds for all v € W11(I). Therefore, for all p,q € D N dB(0, p)

1
lu(p) — u(g)| g/ L opu| de! g/ Vuldo! (5.3.11)
DNdB(a,p) I T DN oB(a,p)
since
2 2 1 2
|Vul® = |0u|” + r—2|89u| .
The inequality is therefore proven by combining (5.3.10) and (5.3.11). O

We can now move to the proof of Theorem 5.3.13.

Proof. (of Theorem 5.3.13) Define
ZEI) =2*T)N{u: E(u) <C}.

Recall that a family of continuous functions is equicontinuous provided that there exists a uniform
modulus of continuity, namely:

Ve > 0, 3§ > 0 such that Yu € ZE(T), Vp,q € ID, |p—q| <§ = |u(p) —u(q)| < e.

Recall that I' admits a injective, continuous parametrisation v : S — I'. This property will allow us to
show the following reverse equi-continuity that we state as follows.

Lemma 5.3.16. Let I' be a Jordan curve and v : St — T be a continuous, injective parametrisation.
Then, the following property is verified:

Ve >0, d3n >0 such that VO < 61 < 03 < 27,

|’y (ewl) -y (ei92)| <n = min{ sup |7 (ew) - (ei01)| , sup |7 (ew) -y (eml) |} < €.
0€]0,01]U[62,27] 61<60<05

(5.3.12)

Geometrically, this condition can be be understood as follows: for all € > 0 any two points p,q € S*,
if v(p) and ~(q) are contained in a sufficiently small ball, the image of the shortest arc on S! joining p
and ¢ will be included in the ball B(y(p),e) C R™.

P Y

/\ 7(q)

St r

Notice that in this example, n = €.

Due to periodicity, the condition would not be satisfied if we only took the second term in the
minimum, as one can see by taking 6 = 27, 6 = 7 and a sequence {#7}, _; CJ0, 7] such that 6 — 0 as
k — oo.
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Proof. (of Lemma 5.3.16 Notice that the map v :]0,27] — R2,6 — v (ew) is an injective and continuous
map. Assume by contradiction that (5.3.12) is not satisfied. Then, there exists €9 > 0 such that for all
7 > 0, there exists 0 < 07 < 6> < 27 such that

|y (e") — (ei‘g"‘)’ <n and there exists 6 € [61,05] and 6 €]0,61] U [f2,27] such that

|7 (ew) - (ei91)| > €0 and ‘7 (ei(;) - (ewl) > €p.

For simplicity of notations, we write v(6) instead of ~ (ew) from now on. Therefore, we obtain sequences
{65} e {9’“}keNa{9’“}k {65}, e €10,27) such that 6§ < 65 < 65 and 6* €]0,65] U (65, 2x] for all
k € N and

€N

1
v (00) =7 ()< 77 and [ (%) =y (61)[ 2 50 >0

By compactness of the interval [0, 27], we deduce that up to a subsequence, we have

01 o 07 € (0,2, 05 o 05° €00, 27), 0¥ — 6 c0,2r] and 6 — 6= €[0,2n].
—0o0 —00

k—o0 k—o0

Furthermore, we have 67° < 8> < 65° and either 0 < 6> < 0%° or 05° < 9> < 27. Finally, by continuity
of v, we have

[OF) = 7(6) <0 and (%) =A(0F) 220> 0 and |y (67%) = (6)| 20 > 0.

We distinguish two cases: if 65° > 0, by injectivity of v on |0, 27], we deduce that 7° = 65°, but this
implies that 6°° = 6° = 65° and the inequality

[7(0°°) = v(07°)| > €0 >0

is absurd. If 6%° = 0, then we deduce that 67° = 27, which implies that 6> =0 or 6> = 2r. In both
cases, we have y(0%°) = v(05°) = v(0) and once more, the inequality

[7(0°°) = v(07°)| > €0 >0

is absurd. Therefore, the claim is proved. O

We can now return to the proof of the theorem. Recall that we fixed three points p1, p2, p3 € OV and
q1,q2,q3 € I' ordered by positive trigonometric order. Let £ > 0 be such that

2e <min{|g1 — 2|, |1 — g3, |2 — g3} (5.3.13)

and § > 0 (to be fixed later) be such that

2V/6 < min {|p1 — pal, [p1 — psl, [p2 — ps|}- (5.3.14)

For all p,q € D such that |[p — g| < § and @ € ID be the middle point on the (smallest) arc joining p
and ¢ such that |[p —a| = |¢ —a| < 3 Thanks to the Courant-Lesbegue lemma (Lemma 5.3.15), there
exists p € [6,+/9] be such that

47 47 C
sup ule) ()| < gy [ Vulde < [T
z,y€DNIB(a,p) log (5) /o log ()

Since u is continuous up to the boundary, we deduce that if p’ and ¢’ are the two points given by the
intersection of 0D and dB(a, p), then

47 C

lu(p’) —u(q')| < w
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We now fix § > 0 small enough such that

4nC <1
log (5)
which yields
_4mC
0<d<e 7,

then by Lemma 5.3.16, the smallest arc—let us denote it by C—joining u(p’) and u(q’) is contained
in Bgn(u(p'),e). Furthermore, the condition on € > 0 ensures that C' contains at most one point g¢;
(1 < i < 3). Furthermore, D N B(a,V/§) contains at most one point p; (1 < j < 3), so by weak
monotonocity of u on 9D, the arc C' coincides with «(0D N B(a, p), which finally implies that

lu(p) — u(q)| < |u®’) —u(d)| <e.

and this concludes the proof of the theorem. O

We are now able to solve positively the problem of Plateau in the case of rectifiable curves.

Theorem 5.3.17. Let u be a weak limit of a minimising sequence of E in &*(I'). Then, we have
u € C°(D,R").

Proof. Since u is a harmonic function, it is smooth (and even real-analytic) in the interior of D, and con-
tinuous on the boundary 0D thanks to Theorem (5.3.13). It remains to show that u remains continuous
for a sequence of points of D that converge to the boundary 9D (i.e., establish the tangential continuity).

We therefore let {uy}, . be a minimising sequence and assume that up — w in W2 as k — oo.
Now, for all k € N, let vy € W12(D) be the unique solution of the Dirichlet problem

(5.3.15)

Avy =0 in D
V= Up on 0D

Since u, € WH2(D), it admits a trace in H'2 on D and the problem is solvable. Otherwise, since
up € P2*(I), u, € C°(OD), and we also deduce that the equation is uniquely solvable by using the
Poisson kernel. Furthermore, the Dirichlet principle implies that

/\Vvk|2dx§/|Vuk|2da:,
D D

which shows that {vg}, oy is also a minimising sequence. Since {ug}; oy uniformly converges to u on the
boundary 0D, the Poisson formula (say) shows that {vy},.y converges in W12 to v, the unique solution
of

(5.3.16)

Av=0 in D
v=1u on 0D

As u also solves this system, we deduce that u = v, which shows that the minimising sequence {vy}, oy
converges to u strongly in W12, Now, by the maximum principle, we have

vk = villpe0 oy < vk = Villpeo (omy = 1wk — il o0 omy »

and using Theorem (5.3.13), the uniform convergence of {uy}, o towards u in C°(9D) show the uniform
convergence of {v},cy to u on 8D, which implies that v € C°(D,R™). O
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5.3.6 Non-triviality of the Plateau Class

The last step that we have left out in the proof is to show that the class Z(I") is not empty. Experi-
mentally, this is clear, but the proof of this fact will require a rather involved analysis. We will see that
our previous study of Sobolev spaces and trace theory proves crucial in the analysis.

Lemma 5.3.18. Let u € WH2(D,R?) N C°(D,R?) be a harmonic function that is weakly monotone on
OD (recall Definition 5.2.2). Then, for all0 <r <1, if T, = w(0D(0,r)) we have

X(FT):/O ’ gg‘(r,e)’dag;ﬂ(r)
and
lim Z(T,) = £(T). (5.3.17)

r—1

Proof. Recall (exercise) that the Laplacian is given in polar coordinates in R? by
1 1
A=02+ ~0r + ﬁag.
Therefore, if u is expanded in Fourier series as

u(r,0) = Z Uy (1)

neZ

the equation Au = 0 shows that for all n € Z, we have
up(r) + —up, (r) = —zun(r) = 0. (5.3.18)

Write u, (1) = Y, (log(r)). Then, we have

1
up(r) = ;Yﬁ
() = -5 (V) ~ V7).
Therefore, the equation (5.3.18) becomes
and we therefore obtain the elementary equation
Y —n%Y, =0. (5.3.19)

The associated characteristic polynomial is given by X2 —n? = (X + n)(X — n), which shows that for
n # 0, the solutions of (5.3.19) are given by

Yo(t) = an ™ + Bpe™ o, Bn € R.
For n = 0, the equation shows that Y,, is linear, which yields
Yo(t) =ao+ ot ao,fo €R.

Finally, we see that u, admits the following expansion

u = ag + PBolog(r) + Z (™ + Br™™) €.
ner*
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We will use the fact that u € W%(D) to show that most coefficients vanish. First, we have

Bo

r

Opu =

1
and since W ¢ L*(D), we deduce that 3y = 0. Then, using Parseval’s identity and polar coordinates,
x

we deduce that

/ 2dx—27roz0/ rdr—|—27r/ Z ’anr + BT n‘ rdrdf
D 0

nez*

= mad + 21 Z / |04n|2 ntl 1 9Re (nBr) T+ |Bn | *Q"H) dr.
nez*

Therefore, we see that for n > 0, we have 3, = 0, and for n < 0, we have «,, = 0, which finally shows
that

[eS)
u=agy+ § an r"e 1n9_|_§ ﬁ nrne—lnG
n=1

Furthermore, u is a real-valued function, which implies that S_,, = @, and we finally get

o0
u=ag+ 2Re (Za r’e ma> =ap+ 2Re (Zanz">,

n=1 n=1

so we recover the fact that u is the real part of a holomorphic function. For simplicity of notation, we
will write 5_, = a_, so that

9) — E an,r|n\ein0.

nez

Now, if

_ E T|n|6zn97

neE”Z
we have for all zy = roe’e € D the identity
1 27 In|
L -~ n| _in(6o—6) 6
o= | K(ro,00 — 6)u(1, 6)d8 / S llein@0-0) 3™ o, i g
nez meZ
= Z anr(l)nlemeo = u(rg,00) = u(zp).
neZ
On the other hand, we have
1 1 “N—zP+1-z+1-2
0)=-1 " zZh=-1 =
) D E Tt TESE
neN neN
_ —(1—2Re(2)+[z]*) +2—-2Re(z) 1—|z]?
- 11— 22 I

Therefore, the Poisson formula is finally established: for all z € D, we have

27 _ 2
u(z) = i/ &uam(ﬁ)d&
0

21 et — 2|2

Since wu is smooth, for all 0 < r < 1, we have

2= [ -
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Now, as u is weakly monotone on 9D and Z(I") < oo, we deduce that Theorem 5.3.2 applies and that

2(T) = /0 Qﬂ

where this formula has to be understood in terms of Radon measures. Now, we deduce by the Poisson
formula that

ou
00

2, 9)’d9

ou 1 (%9 G
G0 =5 [ g0 —eutone =~ [ LK G0.0 - pultp
1 [ 8u

where the last line is to be understood in the sense of distributions. Since

1 2m
o K(’I“07 )dgﬁ = 1a
27
we deduce by Fubini’s theorem that
2m 811, 1 27 27 au
2= [7| G| < g/ ( [ K0 - )| o) a
au 2T
= — K(r,0 — d
), [op 9| ([ r0=)as
2m au ‘
= — (1, p)|dp =Z(T).
| |5eae (n)
Therefore, we deduce that
limsup Z(I',) < .Z(T). (5.3.20)
r—1

On the other hand, for all € > 0, if A = {ag, a1, -+ ,am-1} € L([0,27]) is a subdivision of [0, 27] (recall
Definition 5.3.2) such that

XO(U(L )7A) > g(r) - &

we have
m—1
liminf .Z(T;) > liminf % (u(r, - ), Ag) = lim inf Z lu(r, a;) — u(r, a;—1)]
r—1 r—1 r—1 =1

m—1

Z\ulal —u(l,a;-1)|

1=

() -

Y

where we used that u € C°(ID, R"™). Since the result is valid for all £ > 0, we deduce that

liminf Z(T,) > .2(T). (5.3.21)

r—0

Combining (5.3.20) and (5.3.21), the identity (5.3.17) is finally established.

The monotony of r — £(T',) can be proven with similar methods, but we will not need it in the rest
of the proof and we omit its proof. O

For all f € HY/?(S), let fve W12(D,R") be its harmonic extension, i.e., the unique function solving
the equation

U=1u on OD.

{Aﬂ:o in D
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By the Douglas formula, we have

) 27 27r )‘2
[iwitae=g [ 71 40 dp = | fllyose s
4 8in? )

If u € WH2(D,R™) is a harmonic function, we define d,u € H~/2(S') by the formula

2m au

Vf e HY?(SY), /0 5.1 9)f(9)d9:/DVu~Vfda:. (5.3.22)

We now establish a Pohozaev-type identity for boundary values of minimisers of E in Z(T").

Lemma 5.3.19. Let u € WH2(D,R") be a minimum of the Dirichlet energy E in the Plateau class
P (). Then, we have g—ﬁ € LY(SY), and furthermore, we have

g:(l 0)‘ ZZ(I 9)‘ >0 for ' almost every 0 € [0,27]
and
%(1,9) 29(1 0) =0 for L' almost every 6§ € [0, 27].
-

Proof. Since u is harmonic, we have Au = div(Vu) = 0 in D, which shows by Poincaré’s lemma that
there exists v € W12(D, R") such that

Vu = Vto,

where V+ = (9,,, —0,, ). Furthermore, v satisfies the following system of equations

Av=0 in D
Ov| _1|0u| _|Ou| 1]0v D (5.3.23)

or| ~rloe| " |or| " rloe| T

We first establish the following inequality
1
ov ou

sup / r,0)| dr / , @ ‘d(p. 5.3.24
6elo,2n] Jo 57"( ) 0 690( ) ( )

Since u is harmonic, the Poisson formula yields

27
u(r,0) = 5 K(r,0 — o)u(l, p)dep.
Introduce
P
h(’l‘,’(/)):/ K(r,o)do
0
we get
1 [*" oh
U(’I“, ) % 0 %(7‘79 (p)U(LgO)ng
1 [?™ 9
2, %(h(W—s@))U(l,@)dw
1 27\'

— (h(r,0 — 27) — h(r,0)) u(L, ).



Now, we have

0—2m 2m
h(r,0 — 2m) — h(r,p) = %/9 K(r,o)do = — K(r,)dy = —2m,
0

which yields

1 [ ou
u(r0) = u(1,0) = 5= [ b8 = Q)5 (L)

Therefore, we deduce that

ou 1 (% oh ou
5(7“,9)—5 ; g(ﬁe—sﬁ)%(l»@)d%

Now, we have

hroap) = /Ow Zrm\eme — o+ Z nl <ein;bn 1) '

nez nez*

Therefore, we have

oh ‘ ‘
5 () = > Tlnl_lg (e —1) = % > rl sign(n)e? = % (Z -y z")

ner* nez* neN* neN*
1 2 2 1 21m (z)
— n =n — 71 n — 71 — .
) (ZZ ZZ) rm(Zz) rm(l—z) r|l — z|?
neN neN neN

Therefore, we have

%(T,1/})>0<:>0<1/1<7T.

This allows us to estimate

ou 1 (™% ohn ou 1 (20 9 ou
- < R — - _ - _ -
6r(r,9)‘ /9 87~(T’9 w)’aw(l,w)’dw o /He 8r(r79 ®) 90

— de.
S5 P

Therefore, we get

L ou 1 [t ou
i < = — o) —h(1.0 — el
/O 5, (10)| dr < 27r/9 (h(0,0 — @) — h(1,0 — ) o, dyp
1 2746 '(%“
+ — h(1,0 —¢) — h(0,0 — — | dep.
5 [, (10— = h0.0- ) |5 g

Now, for all ¥ € [0, 27], we have

2m
< K(1,0)do = 2,
0

P
(1, ) — h(0, )] = / (K(L,0) - K(0,0)) do

and the inequality (5.3.24) is established.
Now, since v € C*°(D) and
1
sup /
0e[0,27] Jo

the function v(r,#) converges to a limit v*(f) for £! almost all § € [0,27]. Now, we claim that
v* = (1, -), where v(1, -) is the trace of v in H'/2(S%).

1)

o dr < 0o,

72



For all subdivision A = {ag, - ,am—1} € ([0, 27]), we have

m—1 o o
Z [o(r, a;) —v(r,ai—1)|] < / @(n 9)’d9 :/
i=1 o |00 0

Therefore, we have

ou
50 (r,&)‘ df < Z(T)

o
o6

2m
sup /
0<r<1Jo

Since {v(r, - }g<,; is bounded in BV, there exists a sequence {ry}, .y C (0,1) such that ry v 0
—o0

(r,e)‘ o < 2(I).

and {v(ry, - },cy strongly converges in L' ([0, 27]). Since {v(ry,0)}, oy converges to v*(6) for £* almost
every 0, the lower-semi continuity of the BV functions, we deduce that

2m ov*
0)|do < £ ().
[ |G @) an < 2
By unicity of the limt, we deduce that
27
lim |v(r,0) —v*(0)] = 0.

r—1 0

Now, let f € C*°(S'). The previous convergence implies in particular that
2

2T
lim [ o(r,0)f(0)do = /0 v*(0) £(6)d6.

r—1 0

By the property of the trace of W12 functions, we also have
2

lim v(r,@)f(@)d@z/o 7r1}(1,9)(,0((9)d6.

r—1 0

Therefore, both functions v* and v(1, -) coincide.

Now, we establish the regularity v(1, - ) € W11(S!). Notice that Lemma 5.3.18 and the conformality
of u show that

limsup/ |Vuld#' <2.2(T) < . (5.3.25)
oD(0,r)

r—1
Introduce the holomorphic function f = u —i¢v. We have
' (2)]? = [Vul?,
so (5.3.25) translates to
2 )
limsup/ | £/ (re?)| 0 < 0.
r—1 0

This condition shows that the function f’ belongs to the Hardy space H(S'). Therefore, a Theorem of
F. Riesz ([20]; see also [17, Theorem 3.8 p. 98] implies that there exists g € L'(S') such that

27
lim |/ (re') — g(0)] = 0.
r—1 0
Now, we have
0 . _ 0 W0y _ .. 00 pry B
%(u zv)—% (re’) =ire” f'(re'),
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which shows that

27
}1—% ; ge(u—iv)(r,ﬂ)—ieieg(ﬂ)‘ =0
which implies in turn that
27 "
}1_>m1 ; %v(r, ) —Im (ie g(9))‘ =0.
Therefore, we have
%(1,9) = —Im (ie"g(0)) € L*(SY).
Likewise, we have
ou B 0 _Ov 1sal
E(rv 0) = Re (6 9(9)) - 80(179) €L (S )

Recall that by definition, we have

2m
9U (1 0)(0)do = / Vu-Vfde = / Vio-Vide= [ 2U01,0)(0)d0,
o Or D D op 00
and we finally deduce that
%(1, ) = %(17 0) Z' almost everywhere.

Finally, another theorem of F. Riesz shows that either ¢ = 0 identically, or |g| > 0 almost everywhere.
Finally, the second equation of (5.3.23) shows that

ou lg®)]
.0 =112

so the first claim of the lemma is entirely established. Furthermore, we have for all 0 < r < 1

Ou Ou
or 00
so the second identity follows from the afore-proved convergence. O

We can finally establish the non-emptiness of the Plateau class.

Theorem 5.3.20. Let T be a rectifiable Jordan curve in R™. Then the Plateau class Z(T') is non-empty.

We start by en elementary isoperimetric inequality.

Lemma 5.3.21. Let u be a minimiser of the Dirichlet energy in Z(I"). Then, we have

1
B(u) < Zzz(r).

Proof. Since u is harmonic, we have by an immediate integration by parts (using the definition of the
integral on S for H'/? functions)

/D|Vu|2dx:/0 W%(w) (u(1,0) — u(1,0)) do.

The previous Lemma 5.3.19 shows that

%(1,9) cLY(S))  and

ou ou

5o (1,0) = =2 (1.6).
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Therefore, we get

9u1 )

27
2 <
/D|Vu| 7/0 5

Ju(L; ) = u(0, )l (g1 4O

27
ou
= ||lu(l, - ) —u(0, - )| o / 179’d9.
fu(t, ) =0, iy | (5500
On the other hand, we have by Theorem 5.3.2
2m
ou
—|df = Z(T).
|G (n)
Now, we trivially have
. 1
lu(l, -) = u(0, e (s1) < diam(T) < 5.2(T)

and the inequality is proven by combining (5.3.26) and (5.3.27):

E(u) = %/D|Vu|2dx < % X %g(r) x L) = i.z?(r).

Remark 5.3.22. The inequality is not optimal and we actually have
L
B(u) < —Z3(T),
47

but this refinement is not needed in the proof.

(5.3.26)

(5.3.27)

We can finally complete the proof of the existence of a solution of the Plateau problem by proving

Theorem 5.3.20.
Proof. (of Theorem 5.3.20) Let v : S — T' be a parametrisation such that
2
| enas < 20 <o
0

Let ¢ € C (R4, R4) such that

p=1 on [0,1]
supp() C [0,2].

Let oo = e tp(e71(+)) and define its 27-periodisation by

Ve(t) = Z ©e(2mk +1).

keZ

Since . has compact support, the series has only finitely many non-zero terms and therefore converges

uniformly. Now, define a regularisation 7. : S' — R"*2 of v : S! — R" by the following formula

Ve (0) = ( i ’ Ve (0 — e)y(p)de, e e“’)

the second component is added to ensure that . is an injective immersion for all ¢ > 0. Furthermore, a

result from measure theory on the convergence of convolutions shows that

Ve 2 strongly in - Wh1(S') nCO(sh).
E—

(0]



As 7. is smooth, its harmonic extension u. = 7 : D — R"*? is an element of £ (T.), where I'. = ~.(S!).
Now, thanks to Lemma 5.3.21, and noticing that the strong convergence of {7.},., towards v (as ¢ — 0)
ensures the convergence of length, we deduce that

1 1
limsup/ |Vue|? < limsup 532(1’5) = 5,,ZQ(I’E) < 00.
D

e—0 e—0

Furthermore, if we fix three distinct points p1, ps, p3 in growing trigonometric order on S' choose three
sequences of points {qf}€>0 (i =1,2,3), up to composing u. with a conformal map on the disk D, we
can ensure that u.(p;) = ¢5. We therefore define as previously

P*Te) = P(T)N{u:u(p;) =q; foral i =1,2,3},
and
PET) = P2*(T)N{u: E(u) < C}

for any fixed £?(T")/4 < C < oo. Now, for all ¢ > 0, we introduce the following class

7= ) zur.

0<e<eq

For g9 > 0 small enough, the proof of Theorem 5.3.13 applies mutadis mutandis and we deduce that P
is an equi-continuous sub-space of C%(9D, R"*?). Therefore, we find a sequence {e;}, .y C (0,£0) and
u € WH2(D,R™ x {(0,0)}) N C°(OD, R™ x {(0,0)}) such that

U, — U in Wh?(D,R"?)

k—o0

: 0 n+2
uak‘BD k;:>>ou in C (D,R )

Furthermore, the harmonicity of u., shows that the convergence is strong in D and we finally deduce
that u is a harmonic and conformal map and that u € C°(D,R™ x {(0,0)}). As a consequence, u is an
element of &(T"), which shows the non-triviality of the Plateau class, and in fact, u is also a solution to
the problem of Plateau, which concludes the chapter. O

5.4 What Next?

After solving the Plateau problem, we can ask several natural questions: what is the regularity of the
solution? Are there multiple solutions? When is the solution unique? What about the existence of
minimal surfaces of higher genus spanning a given contour? Those questions are generally technical (and
more suitable for graduate courses) and the optimal answer is not always known, but if the boundary
curve is smooth, the solution is also smooth up to the boundary (there are more precise results for curves
in C* due to Hildebrandt and Nitsche).

Another natural question is to try to generalise the Plateau problem in higher dimension. In this
case, the so-called parametric approach does not work and we have to use new tools: either functions of
bounded variations (BV') and sets of finite perimeter for codimension 1 problems, and geometric measure
theory (the theory of currents or varifolds) in general (see [12] for the best introduction to the former
theory).
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