
Series 4: Expectation, independence

Exercise 1

Let X be a real random variable, and $1 \leq p \leq q \leq +\infty$. Show that $\|X\|_p \leq \|X\|_q$.

Exercise 2

Let X be a real random variable. Show that $\|X\|_\infty = \lim_{p \rightarrow \infty} \|X\|_p$.

Exercise 3

Let X be an integrable random variable defined on (Ω, \mathcal{F}, P) , and let $(A_n)_{n \geq 1}$ be a sequence of measurable sets.

(a) Show that

$$\lim_{n \rightarrow \infty} \int_{|X| > n} X d\mathbb{P} = 0.$$

(b) Show that if $\mathbb{P}[A_n] \rightarrow 0$, then

$$\lim_{n \rightarrow \infty} \int_{A_n} X d\mathbb{P} = 0.$$

Exercise 4

Let X be a real random variable, and $p > 0$.

(a) Show that if $\mathbb{E}[|X|^p] < \infty$, then

$$\lim_{t \rightarrow +\infty} t^p \mathbb{P}[|X| \geq t] = 0.$$

(b) Show that if $\lim_{t \rightarrow +\infty} t^p \mathbb{P}[|X| \geq t] = 0$, then

$$\mathbb{E}[|X|^r] < \infty \quad \text{for all } r \in (0, p).$$

Hint: (prove and) use the fact that if Y is a positive random variable, then $\mathbb{E}[Y] = \int_0^{+\infty} \mathbb{P}[Y \geq t] dt$.

Exercise 5

Let $X : \Omega \rightarrow \mathbb{R}$ be a real random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that X is independent of X , i.e.

$$\forall E_1, E_2 \in \mathcal{B}(\mathbb{R}), \quad \mathbb{P}[X \in E_1 \text{ et } X \in E_2] = \mathbb{P}[X \in E_1] \mathbb{P}[X \in E_2].$$

Show that X is almost surely constant, i.e. there exists $a \in \mathbb{R}$ such that $\mathbb{P}[X = a] = 1$.

Exercise 6

Let X_1, \dots, X_n be random variables taking values in countable sets S_1, \dots, S_n . Show that, for X_1, \dots, X_n to be independent, it is sufficient that

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n \mathbb{P}(X_i = x_i) \quad \text{for all } x_i \in S_i.$$

Exercise 7

Let X_1, \dots, X_n be n real random variables.

(1) Assume that for every $i \in \{1, \dots, n\}$, the distribution of X_i has density f_i , and that X_1, \dots, X_n are independent random variables. Show that (X_1, \dots, X_n) has a density given by

$$f(x_1, \dots, x_n) = \prod_{i=1}^n f_i(x_i).$$

(2) Reciprocally, assume that the distribution of (X_1, \dots, X_n) has density of the form

$$f(x_1, \dots, x_n) = \prod_{i=1}^n g_i(x_i),$$

for some positive measurable functions g_i . Show that the random variables X_1, \dots, X_n are independent and that for every i , the distribution of X_i has a density f_i which can be written as $f_i = C_i g_i$ for some constant $C_i > 0$. (*Hint: a convenient way to determine the distribution of a random variable Z is to compute $\mathbb{E}[\varphi(Z)]$ for nice functions φ .*)

Exercise 8

Let U be an exponential random variable of parameter 1, and V be a uniform random variable on $[0, 1]$. We assume that U and V are independent, and define

$$X = \sqrt{U} \cos(2\pi V), \quad Y = \sqrt{U} \sin(2\pi V).$$

Show that the random variables X and Y are independent.