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Series 6: Borel-Cantelli lemma Solutions

Exercise 1
We first check that, since F is right-continuous,

F−1(u) 6 y iff u 6 F(y).

Then, we compute
P[Y 6 y] = P[F−1(U) 6 y] = P[U 6 F(y)] = F(y).

So the c.d.f. of Y is that of X. Since we know that a c.d.f. characterizes the law of a random variable, this
finishes the proof.

Exercise 2
For each n ≥ 1 we have

lim
t→∞

P
[
Xn > t

]
= 0 .

Then, for each n > 1 we can choose a constant cn > 0 such that

P
[

Xn >
cn

n
]
≤ 2−n .

In this way, we get
+∞∑
n

P
[ Xn

cn
> 1/n

]
< +∞ .

By Borel-Cantelli, we have
P
[

c−1
n Xn > 1/n i.o.

]
= 0 .

Observe that {
ω ∈ Ω : c−1

n Xn(ω) > 1/n i.o.
}c
⊆

{
ω ∈ Ω : c−1

n Xn(ω)→ 0
}
.

Then P
[
c−1

n Xn → 0
]

= 1.

Exercise 3
By the Borel-Cantelli lemma and independence, for all positive A we have

(1)
∑

n

P{Xn > A} = ∞ ⇔ lim sup Xn > A a.s..

Suppose there exists A∗ > 0 such that
∑

n P{Xn > A∗} < ∞. Then, by (??), we must have lim sup Xn ≤

A∗ < ∞ almost surely, so sup
n

Xn < ∞ almost surely. Now suppose
∑

n P{Xn > A} = ∞ for all positive A.

Then, by (??), we must have P(sup
n

Xn > A) ≥ P(lim sup Xn > A) = 1, for all positive A, and in particular

P(sup Xn = ∞) = P

 ∞⋂
i=1

{
sup

n
Xn > i

} = lim
i→∞
P

(
sup

n
Xn > i

)
= 1.

Exercise 4
(1) A simple caculation provides P

[
Xn > c log(n)

]
= 1

nc , so using the Borell-Cantelli lemma, the
probability is 1 if c 6 1, and 0 otherwise.



(2) If (un) is a (deterministic) sequence of real numbers, one can show that

un > c for infinitely many n’s⇒ lim sup
n→+∞

un > c,

and conversely, that
lim sup

n→+∞
un > c⇒ un > c for infinitely many n’s.

Using these two facts and part (1), we obtain that

lim sup
n→+∞

Xn

log(n)
= 1 a.s.

Exercise 5
(i.) We have

P{An i.o.} = lim
m→∞

P{∪∞n=mAn} 6 lim sup
m→∞

(P{Am} +

∞∑
n=m+1

P{Ac
n−1 ∩ An}) = 0.

(ii.) We take Ω = [0, 1],F = borelians, P = Lebesegue measure. Define An = [0, 1/n]. So,
∑∞

n=1 P(An) =

∞, then we cannot use Borel-Cantelli. However, the two hypothesis of part (i.) are satisfied.

Exercise 6
We have b2xc − 2bxc ∈ {0, 1} (note that as a function of x, it is 1-periodic), so indeed Xn(ω) ∈ {0, 1}.
Moreover, one can show by induction that for every n and every ω,

0 6 ω −
n∑

k=1

Xk(ω)2−k < 2−n,

which ensures that

ω =

+∞∑
k=1

Xk(ω)2−k.

For every sequence i1, . . . , in ∈ {0, 1}, we see that

{X1 = i1, . . . , Xp = in} =

 n∑
k=1

ik2−k,

n∑
k=1

ik2−k + 2−n

 ,
so

P [X1 = i1, . . . , Xn = in] = 2−n.

By summing over all i1, . . . , in−1 ∈ {0, 1}, we thus get that

P [Xn = in] = 1/2,

for in ∈ {0, 1}. This shows that Xn is distributed as a Bernoulli random variable with parameter 1/2.
Moreover, since

P [X1 = i1, . . . , Xn = in] = 2−n =

n∏
k=1

P [Xk = ik] ,

we have that (Xk)k∈N∗ are independent random variables. To conclude, we show that the sequence
(i1, . . . , in) apears infinitely often in the sequence (Xk(ω))k∈N∗ . To see this, note that for every k,

P[X1+kn = i1, . . . , Xn+kn = in] = 2−n,



and moreover, the events
({X1+kn = i1, . . . , Xn+kn = in})k∈N∗

are independent (recall that “grouping” preserves independence). By the Borel-Cantelli lemma, we thus
obtain that for almost every ω,

X1+kn = i1, . . . , Xn+kn = in for infinitely many k’s.

This shows that every given finite sequence of 0’s and 1’s appears almost surely infinitely many times in
the sequence (Xk)k∈N∗ . Since the set of finite sequences of 0’s and 1’s is countable, we actually have that
almost surely, every finite sequence of 0’s and 1’s appears infinitely many times in the sequence (Xk)k∈N∗ .

Exercise 7
For the first part, apply the Borel-Cantelli lemma with the events

Aq =

{
x ∈ [0, 1] : ∃p ∈ N

∣∣∣∣∣x − p
q

∣∣∣∣∣ < 1
q2+ε

}
.

All rational numbers satisfy the condition. Indeed, let a/b be a rational in [0, 1], with a ∧ b = 1, and
assume that for q > b, one has ∣∣∣∣∣ab − p

q

∣∣∣∣∣ < 1
q2+ε

.

It follows that |aq − bp| < 1, and thus we have aq = bp, and a/b = p/q. With q > b, it cannot be that p
and q are relatively prime numbers.
In fact, all algebraic numbers satisfy this property, but the proof is worth a Fields medal (it is the Thue-
Siegel-Roth theorem). Because algebraic numbers form a set of null measure, there are also transcen-
dantal numbers with this property.
Both these observations were completely inaccessible to Liouville in 1844. He wanted to know whether
transcendantal numbers existed or not, and proofs of transcendance for e or π were not known at that
time either. He first proved a weaker version of the Thue-Siegel-Roth theorem, and then came with a
number (in fact, many numbers) that could be approached very closely by rationals. One example is

+∞∑
n=1

10−n!.


