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Series 5: weak law of large numbers Solutions
Exercise 1

Since Var(X,) — 0 then, for any € > 0,

Var(X,)
_)

P[|Xn - E[Xn]| > €] < ——

0.

€

P
We have just proved that (X, — E[X,,]) — 0. By hypothesis, E[X,,] — «, and so,
Xp = (X — E[Xu]) + E[X)] > 04 a = a

P

(one can use the triangle inequality to check that for any real random variables X,,, X, Y,, Y, if X, —» X
P P

andY, - Y,then X,,+ Y, > X+ 7).

Exercise 2
Given € > 0,

P(X1+"'+X" >€)<Var(x1+...+x,,)< (- '}=1E(Xin)< iy 2oy i =

n nZe? - n2e? - n2e?
nr(0) + 2n(r()+ ...+ r(n)) r(0) 2(r(1)+...+rn)
< =—+ -0
nZe? ne? ne?
asn — oo,
Exercise 3

(i.) Fix € > 0; we have
P{Y,/n > €} = P{Y; > ne} — 0.

(ii.) For € > 0 and n € N, define A;, = {|Y,|/n > €}. We have

(=0l = () fmswi])

m=1

so Y,/n — 0 almost surely if and only if P {lim sup A,ll/ m} = 0 for each m > 1. By independence and

n
Borel-Cantelli, this is the same as

Vm, > PY,l/n > 1/m) < oo.
n=1
Since all variables have the same law as Y7, this is equivalent to

(o)

Vm,ZP{|Y1|/n > 1/m) < 00 &

Vm,ZP{lell >} < 00 &



Vm,E(m|Y1]) < 00 &

E(Y1]) < co.

Exercise 4
Let C be such that for every n, 4, < C. A consequence of the fact that X,, follows an exponential
distribution is that

Var[X,] = A2,

Var[$ Zﬁ cZak

We write s, = 37, Ax. By assumption, s, — oo as n tends to infinity. For every 6 > 0, we thus have

Hence,

Var[.S,] < C

1 P IS, —ES,l > 6ES,] < <
(D [l | ] GES.)? < &5

This shows that S ,,/IE[S ;] tends to 1 in probability, but we need to show almost sure convergence. Let
m=infln:s, > k%, Tp=S,

(well defined for every k since s, tends to infinity). Since s, — s,-1 = 4, < C (and ET} = s,,), we have

2 K <ET, <k +C.

By (1), we have

P [|Tk - ETk| > 5ETk] < W’

which is summable. By the Borel-Cantelli lemma, we obtain that

Pl |- sia] 0
and since 6 > 0 was arbitrary, this implies that

T a.s.

— — 1.

ETy k-

For n such that n; < n < ng41, we have

Ty < Sn <Tk+l.
ETiiq ES, ET;

3

Note that
Ty Tk ETy

ETiv1  ETiETk
The first fraction converges to 1 almost surely, while the second one is deterministic and converges to 1
because of (2), so the product converges to 1 almost surely. A similar analysis can be performed for the
right-hand side of (3), and we thus obtain the result.

Exercise 5
As x> #g(x) is decreasing on [1, co),we have
E(X;) =
(%D kZ:; k21 ogk) Z klog(k)

o0 1 Rl |
> Cf dx = Cf —du = oo
> xlog(x) log(2) U



where u = log(x). On the other hand

[Se]

€ . S C [l €
S k2log(k) ~ log(n+ 1) L k2 " logn+1)J, x2 nlog(n + 1)

thus, for | x| = n,

n+1)
nlog(n + 1) n—eo

AP(X | >x) <+ DP(X;|=(m+1) <C

Enfin, posant u, = [E(X;1x,<.), we have

M = EXilx<n) = Z( ) (k)

which converges to 4 < oo by the alternating series criterion The weak law of large numbers does the
rest

Exercise 6

a) We note that ——— k(k+]) = % - k+1, and so 3,7 12 pr = 1. Thus we prove

E() = -po+ Y 2p= Y p=1-1=0,

k=1 k=1

b) PutZ; = X; + 1. We have Z; = Owith probability py and 2% with probability pi. We follow the

approach ofexample[?, ex 5.7, p 44].
To apply the lwek law for triangular arrays, we must verify that



LR ) IP(|Zn,k| > b,) — 0 and
n—-oo
2. b';z ZZ:] E(Zik) n_)_oo> 0,

for a seuence (b, : n > 1) and random variables Z, ; and Zn,k to be fixed.
To prove (1) choose Z, ;. = Z for all n and note that

- 27k = 27k 2-m 1 2-m
Pz > 2™ = <2 < — — =2—.
Z1>27) kz;lk(kﬂ)‘ kzz;(m+k)(m+k+l)_m2 ;% 2

It suffices then to choose b, = 2™ so that n/ (2m"+1m,21) — 0 quand n — oo to have nlP(|Z{| > b,) — 0
quand n — oo. We choose m,, = min{m: 27"m™® < n~'Mor 0 < @ < 2. We then have b, > 0, b, — o
quand n — oo and

n 2Mmy 2

< = 0.
=1 m2 2my=1 mrzz m%—af n—00

To prove (2) put Zn,k = Zi 1z, <p, and uy = k(k +1) .We then have

My My

E(Z2,) = Z 2% = Z .

k=0 k=1

But, for k > 3,

Uy k+2 1 2 1 2y 5
=—=—(1+—)§—(1+—):—.
Ukt 2k 2 k)2 6

Consequently for 3 < k < m,

m—1
uj

=k U1

Furthermore as us = 2°/30 > 1, we deduce from the following that u,, > 1 for all m > 5. Therefore for

m>5

m 2 m [Se] _

Zuk: § Z Z <2+6ums8um.

k=1 k=3 k=3
And so,

p 1E(Z 9d,,, In
<n =
b,zl B b,% 2" my(my + 1)

which tends to 0 when n — oo sin < 2™ mj, with @ < 2.
We can then calculate

n my my, 1 my, 1 | "
= E(Z = 2k — — S — n .
ap ; Zn1) n; Dk nk:1 D n;(k k+1) nmn+1

The weak law for triangular arrays yields

n my my
Dp=1Zk =gy Satn(l = 50e)
2ny - 2my

— 0 en probabilité.

It suffcies now to show AN, so that

n(l — )

2 < n > Ny and that el
10g2(”) n/log,(n)
to show 2200 _, g i probability and thus that —Su__ 5 _1in probability.

n/log,(n) n/log,(n)



First note that 2" ~1(m, — 1)®* < n < 2™m2by definition (minimality) of m, and that log(n) < m, +
alog(m,). We have thus m > 2" (m, — 1D/ (my, + alog(my)) = 2" if

(my — D = 2my, + 2alog(m,),
which is true for all n > Ny if @ > 1 and Nj is sufficiently large.Secondly

n(l - %) _ loga(n) <Mt a log(my,) .

= 1.
n/log,(n) m,+1 — my,

We have thus shown that the weak law for pour 1 triangular arrays permits to prove the desired result by
choosing m,, = min{m: 27"m" < n~ 1} with 1 < @ < 2, that is with @ = 3/2 for example.

Exercise 7
See Example 2.3.2 page 69-70 in the textbook (it is Example 6.2 page 52-53 in the second edition).



