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Series 5: weak law of large numbers Solutions

Exercise 1
Since Var(Xn)→ 0 then, for any ε > 0,

P
[
|Xn − E[Xn] | > ε

]
6

Var(Xn)
ε2 → 0 .

We have just proved that
(
Xn − E[Xn]

) P
−→ 0 . By hypothesis, E[Xn]→ α, and so,

Xn =
(

Xn − E[Xn]
)

+ E[Xn]
P
−→ 0 + α = α

(one can use the triangle inequality to check that for any real random variables Xn, X,Yn,Y , if Xn
P
−→ X

and Yn
P
−→ Y , then Xn + Yn

P
−→ X + Y).

Exercise 2
Given ε > 0,

P
(∣∣∣∣∣X1 + . . . + Xn

n

∣∣∣∣∣ > ε) ≤ Var(X1 + . . . + Xn)
n2ε2 ≤

∑n
i=1

∑n
j=1 E(XiX j)

n2ε2 ≤

∑n
i=1

∑n
j=1 r(|i − j|)

n2ε2

≤
nr(0) + 2n(r(1) + . . . + r(n))

n2ε2 =
r(0)
nε2 +

2(r(1) + . . . + r(n))
nε2 → 0

as n→ ∞.

Exercise 3
(i.) Fix ε > 0; we have

P{Yn/n > ε} = P{Y1 > nε}
n→∞
−→ 0.

(ii.) For ε > 0 and n ∈ N, define Aεn = {|Yn|/n > ε}. We have{Yn

n
→ 0

}
=

∞⋂
m=1

((
lim sup

n
A1/m

n

)c)
,

so Yn/n → 0 almost surely if and only if P
{

lim sup
n

A1/m
n

}
= 0 for each m ≥ 1. By independence and

Borel-Cantelli, this is the same as

∀m,
∞∑

n=1

P{|Yn|/n > 1/m} < ∞.

Since all variables have the same law as Y1, this is equivalent to

∀m,
∞∑

n=1

P{|Y1|/n > 1/m} < ∞ ⇔

∀m,
∞∑

n=1

P{m|Y1| > n} < ∞ ⇔



∀m,E(m|Y1|) < ∞ ⇔

E(|Y1|) < ∞.

Exercise 4
Let C be such that for every n, λn 6 C. A consequence of the fact that Xn follows an exponential
distribution is that

Var[Xn] = λ2
n.

Hence,

Var[S n] =

n∑
k=1

λ2
k 6 C

n∑
k=1

λk.

We write sn =
∑n

k=1 λk. By assumption, sn → ∞ as n tends to infinity. For every δ > 0, we thus have

(1) P [|S n −ES n| > δES n] 6
Var[S n]
(δES n)2 6

C
δ2sn

.

This shows that S n/E[S n] tends to 1 in probability, but we need to show almost sure convergence. Let

nk = inf{n : sn > k2}, Tk = S nk

(well defined for every k since sn tends to infinity). Since sn − sn−1 = λn 6 C (and ETk = snk ), we have

(2) k2 6 ETk 6 k2 + C.

By (1), we have

P [|Tk −ETk| > δETk] 6
C
δ2k2 ,

which is summable. By the Borel-Cantelli lemma, we obtain that

P

[∣∣∣∣∣ Tk

ETk
− 1

∣∣∣∣∣ > δ i.o.
]

= 0,

and since δ > 0 was arbitrary, this implies that

Tk

ETk

a.s.
−−−−→
k→∞

1.

For n such that nk 6 n < nk+1, we have

(3)
Tk

ETk+1
6

S n

ES n
6

Tk+1

ETk
.

Note that
Tk

ETk+1
=

Tk

ETk

ETk

ETk+1
.

The first fraction converges to 1 almost surely, while the second one is deterministic and converges to 1
because of (2), so the product converges to 1 almost surely. A similar analysis can be performed for the
right-hand side of (3), and we thus obtain the result.

Exercise 5
As x 7→ 1

x log(x) is decreasing on [1,∞),we have

E(|Xi|) =

∞∑
k=2

k
C

k2 log(k)
= C

∞∑
k=2

1
k log(k)

≥ C
∫ ∞

2

1
x log(x)

dx = C
∫ ∞

log(2)

1
u

du = ∞



where u = log(x). On the other hand

∞∑
k=n+1

C
k2 log(k)

≤
C

log(n + 1)

∞∑
k=n+1

1
k2 ≤

C
log(n + 1)

∫ ∞

n

1
x2 dx =

C
n log(n + 1)

,

thus, for bxc = n,

xP(|Xi| > x) ≤ (n + 1)P(|Xi| ≥ (n + 1)) ≤ C
(n + 1)

n log(n + 1)
−−−−→
n→∞

0.

Enfin, posant µn = E(Xi1|Xi |≤n), we have

µn = E(Xi1|Xi |≤n) =

n∑
k=2

(−1)k C
k log(k)

,

which converges to µ < ∞ by the alternating series criterion The weak law of large numbers does the
rest

Exercise 6

a) We note that 1
k(k+1) = 1

k −
1

k+1 , and so
∑∞

k=1 2k pk = 1. Thus we prove

E(Xn) = −p0 +

∞∑
k=1

2k pk −

∞∑
k=1

pk = 1 − 1 = 0.

b) Put Zk = Xk + 1. We have Zk = 0with probability p0 and 2k with probability pk. We follow the
approach ofexample[?, ex 5.7, p 44].
To apply the lwek law for triangular arrays, we must verify that



1.
∑n

k=1P(
∣∣∣Zn,k

∣∣∣ > bn) −−−−→
n→∞

0 and

2. b−2
n

∑n
k=1E(Z̄2

n,k) −−−−→
n→∞

0,

for a seuence (bn : n ≥ 1) and random variables Zn,k and Z̄n,k to be fixed.
To prove (1) choose Zn,k = Zk for all n and note that

P(Z1 > 2m) =

∞∑
k=m+1

2−k

k(k + 1)
≤ 2−m

∞∑
k=1

2−k

(m + k)(m + k + 1)
≤

2−m

m2

∞∑
k=1

1
2k = 2

2−m

m2 .

It suffices then to choose bn = 2mn so that n/(2mn+1m2
n) → 0 quand n → ∞ to have nP(|Z1| > bn) → 0

quand n → ∞. We choose mn = min{m : 2−mm−α ≤ n−1}for 0 < α < 2. We then have bn > 0, bn → ∞

quand n→ ∞ and
n

2mn−1m2
n
≤

2mnmα
n

2mn−1m2
n

=
2

m2−α
n
−−−−→
n→∞

0.

To prove (2) put Z̄n,k = Zk1|Zk |≤bn and uk = 2k

k(k+1) .We then have

E(Z̄2
n,k) =

mn∑
k=0

22k pk =

mn∑
k=1

uk.

But, for k ≥ 3,
uk

uk+1
=

k + 2
2k

=
1
2

(
1 +

2
k

)
≤

1
2

(
1 +

2
3

)
=

5
6
.

Consequently for 3 ≤ k ≤ m,
uk

um
=

m−1∏
l=k

ul

ul+1
≤

(5
6

)m−k
.

Furthermore as u5 = 25/30 ≥ 1, we deduce from the following that um ≥ 1 for all m ≥ 5. Therefore for
m ≥ 5

m∑
k=1

uk = 1 +
2
3

+

m∑
k=3

dk ≤ 2 + um

∞∑
k=3

(5
6

)m−k
≤ 2 + 6um ≤ 8um.

And so, ∑n
k=1E(Z̄2

n,k)

b2
n

≤ n
9dmn

b2
n

=
9n

2mn mn(mn + 1)

which tends to 0 when n→ ∞ si n ≤ 2mnmα
n with α < 2.

We can then calculate

an =

n∑
k=1

E(Z̄n,k) = n
mn∑
k=0

2k pk = n
mn∑
k=1

1
k(k + 1)

= n
mn∑
k=1

(
1
k
−

1
k + 1

)
= n

mn

mn + 1
.

The weak law for triangular arrays yields∑n
k=1 Zk − n mn

mn+1

2mn
=

S n + n(1 − mn
mn+1 )

2mn
→ 0 en probabilité.

It suffcies now to show ∃N0 so that

2mn ≤
n

log2(n)
, ∀n ≥ N0 and that

n(1 − mn
mn+1 )

n/log2(n)
→ 1

to show S n−n/ log2(n)
n/ log2(n) → 0 in probability and thus that S n

n/ log2(n) → −1 in probability.



First note that 2mn−1(mn − 1)α ≤ n ≤ 2mnmα
n by definition (minimality) of mn and that log(n) ≤ mn +

α log(mn). We have thus n
log2(n) ≥ 2mn−1(mn − 1)α/(mn + α log(mn)) ≥ 2mn if

(mn − 1)α ≥ 2mn + 2α log(mn),

which is true for all n ≥ N0 if α > 1 and N0 is sufficiently large.Secondly

n(1 − mn
mn+1 )

n/log2(n)
=

log2(n)
mn + 1

≤
mn + α log(mn)

mn
→ 1.

We have thus shown that the weak law for pour l triangular arrays permits to prove the desired result by
choosing mn = min{m : 2−mmα ≤ n−1} with 1 < α < 2, that is with α = 3/2 for example.

Exercise 7
See Example 2.3.2 page 69-70 in the textbook (it is Example 6.2 page 52-53 in the second edition).


