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Series 4: Expectation, independence Solutions

Exercise 1
By Hölder’s inequality,
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from which we obtain
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(The inequality can also be proved using Jensen’s inequality.)

Exercise 2
If ||X||∞ = ∞, then for any A > 0, one has P[|X| > A] > 0, so
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and as a consequence, lim
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Assume now that ||X||∞ < ∞. As |X| ≤ ||X||∞ a.s., one has
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Let ε > 0. By the definition of ||X||∞, one has P[|X| > ||X||∞ − ε] > 0, and thus
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which finishes the proof, as ε > 0 was arbitrary.

Exercise 3

(a) Since for any ω ∈ Ω, we have X(ω) ∈ R, it follows that⋂
n>1

{
ω ∈ Ω : |X(ω)| > n

}
= ∅ .

Therefore, if we denote Zn := X 1{|X|>n} , then Zn(ω) → 0 , ∀ω ∈ Ω . Also, |Zn| 6 X . We can
thus use the dominated convergence theorem to get
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(b) Fix an arbitrary M > 0. We have∣∣∣∣ ∫
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So,
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Letting M ↑ +∞ and using part (a), we obtain
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which in turn implies that
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Exercise 4

(a) The claim follows from estimate
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and dominated convergence theorem.

(b) Using the hint, we can write
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We now verify that this integral is finite. By hypothesis, there exists some N > 0 such that
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where we have used the fact that p − r > 0, in the last estimate.

To prove the identity in the hint, note that, writing µ for the distribution of the positive random variable
Y ,
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where we used Fubini’s theorem.

Exercise 5
For any E ∈ B(R), we have P[ X ∈ E , X ∈ E ] = P[X ∈ E]P[X ∈ E]. So P[X ∈ E] is either equal to
0 or 1. From this, it follows that F(x) = 0 or 1, for each x ∈ R, where F : R → [0, 1] is the cumulative
distribution function of X.
Since lim

x→−∞
F(x) = 0, we know that {x ∈ R : F(x) = 0} is nonempty. Let us define

x0 = sup{x ∈ R : F(x) = 0} .



Since lim
x→+∞

F(x) = 1, we also have that x0 < +∞. The function F being increasing and right-continuous,
we have F(x) = 1 for any x > x0, and F(x) = 0 for any x < x0. Therefore, P[X = x0] = 1.

Exercise 6
Suppose that

(1) P(X1 = x1, . . . , Xn = xn) =

n∏
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Let E1, E2, . . . , En be arbitrary subsets of S 1, . . . , S n. We have to prove that
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The left-hand side in the above equality can be re-written as
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Finally, the proof is completed by using (1).

Exercise 7
(1) We assume that dµXi(x) = fi(x)dx. The independence ensures that

µ(X1,...,Xn) = µX1 ⊗ · · · ⊗ µXn .

Fubini’s theorem gives us that
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which proves the result.
(2) Since the density of (X1, . . . , Xn) is f , we can recover the density of Xi by integrating out the other
variables. More precisely, Xi has a density fi given by
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∫
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which justifies the claim. We now show that there exists Ci > 0 such that fi = Cigi.
Fubini’s theorem and the assumption on f ensure that
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Since gi > 0, this guarantees that Ki :=
∫

gi(x) dx is in (0,+∞) for every i. From (2) and the assumption
of f , we obtain
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so we have indeed fi = Cigi with Ci = K−1
i . Finally, since
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it follows that µ(X1,...,Xn) = µX1 ⊗ · · · ⊗ µXn (by Fubini’s theorem), and hence the random variables
(X1, . . . , Xn) are independent.

Exercise 8
Let ϕ be a positive measurable function onR2. We have
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This proves that the distribution of the pair (X,Y) has density π−1e−(x2+y2). Since this is of product form,
the previous exercise enables us to conclude that X and Y are independent.


