

Series 4: Expectation, independence

Solutions

Exercise 1

By Hölder's inequality,

$$\mathbb{E}[|X|^p] = \mathbb{E}[|X|^p \times 1] \leq \mathbb{E}[|X|^q]^{p/q} \mathbb{E}[1^{p/(q-p)}]^{(q-p)/p} = \mathbb{E}[|X|^q]^{p/q},$$

from which we obtain

$$\mathbb{E}[|X|^p]^{1/p} \leq \mathbb{E}[|X|^q]^{1/q}.$$

(The inequality can also be proved using Jensen's inequality.)

Exercise 2

If $\|X\|_\infty = \infty$, then for any $A > 0$, one has $\mathbb{P}[|X| > A] > 0$, so

$$\liminf_{p \rightarrow \infty} \|X\|_p = \liminf_{p \rightarrow \infty} \left(\int |X|^p d\mathbb{P} \right)^{1/p} \geq \liminf_{p \rightarrow \infty} \left(\int_{|X| > A} |X|^p d\mathbb{P} \right)^{1/p} \geq A \liminf_{p \rightarrow \infty} (\mathbb{P}[|X| > A])^{1/p} = A,$$

and as a consequence, $\lim_{p \rightarrow \infty} \|X\|_p = \infty$.

Assume now that $\|X\|_\infty < \infty$. As $|X| \leq \|X\|_\infty$ a.s., one has

$$\limsup_{p \rightarrow \infty} \|X\|_p = \limsup_{p \rightarrow \infty} \left(\int |X|^p d\mathbb{P} \right)^{1/p} \leq \limsup_{p \rightarrow \infty} (\|X\|_\infty^p)^{1/p} = \|X\|_\infty.$$

Let $\epsilon > 0$. By the definition of $\|X\|_\infty$, one has $\mathbb{P}[|X| > \|X\|_\infty - \epsilon] > 0$, and thus

$$\begin{aligned} \liminf_{p \rightarrow \infty} \|X\|_p &= \liminf_{p \rightarrow \infty} \left(\int |X|^p d\mathbb{P} \right)^{1/p} \geq \liminf_{p \rightarrow \infty} \left(\int_{|X| > \|X\|_\infty - \epsilon} |X|^p d\mathbb{P} \right)^{1/p} \\ &\geq (\|X\|_\infty - \epsilon) \liminf_{p \rightarrow \infty} (\mathbb{P}[|X| > \|X\|_\infty - \epsilon])^{1/p} = \|X\|_\infty - \epsilon, \end{aligned}$$

which finishes the proof, as $\epsilon > 0$ was arbitrary.

Exercise 3

(a) Since for any $\omega \in \Omega$, we have $X(\omega) \in \mathbb{R}$, it follows that

$$\bigcap_{n \geq 1} \{\omega \in \Omega : |X(\omega)| > n\} = \emptyset.$$

Therefore, if we denote $Z_n := X \mathbf{1}_{\{|X| > n\}}$, then $Z_n(\omega) \rightarrow 0$, $\forall \omega \in \Omega$. Also, $|Z_n| \leq X$. We can thus use the dominated convergence theorem to get

$$\lim_{n \rightarrow \infty} \int_{|X| > n} X d\mathbb{P} = \lim_{n \rightarrow \infty} \mathbb{E}[Z_n] = 0.$$

(b) Fix an arbitrary $M > 0$. We have

$$\begin{aligned} \left| \int_{A_n} X d\mathbb{P} \right| &\leq \int_{A_n} |X| d\mathbb{P} \\ &\leq \int_{A_n \cap \{|X| > M\}} |X| d\mathbb{P} + \int_{A_n \cap \{|X| \leq M\}} |X| d\mathbb{P} \\ &\leq \int_{|X| > M} |X| d\mathbb{P} + M \mathbb{P}[A_n]. \end{aligned}$$

So,

$$\limsup_{n \rightarrow \infty} \left| \int_{A_n} X d\mathbb{P} \right| \leq \int_{|X| > M} |X| d\mathbb{P}.$$

Letting $M \uparrow +\infty$ and using part (a), we obtain

$$\limsup_{n \rightarrow \infty} \left| \int_{A_n} X d\mathbb{P} \right| = 0,$$

which in turn implies that $\int_{A_n} X d\mathbb{P} \rightarrow 0$.

Exercise 4

(a) The claim follows from estimate

$$t^p \mathbb{P}[|X| \geq t] = \int_{|X| \geq t} t^p d\mathbb{P} \leq \int_{|X| \geq t} |X|^p d\mathbb{P},$$

and dominated convergence theorem.

(b) Using the hint, we can write

$$\mathbb{E}[|X|^r] = \int_0^{+\infty} \mathbb{P}[|X|^r \geq s] ds = \int_0^{+\infty} rt^{r-1} \mathbb{P}[|X| \geq t] dt.$$

We now verify that this integral is finite. By hypothesis, there exists some $N > 0$ such that

$$t^p \mathbb{P}[|X| \geq t] \leq 1, \quad \forall t \geq N.$$

Finally,

$$\begin{aligned} \int_0^{+\infty} rt^{r-1} \mathbb{P}[|X| \geq t] dt &= \int_0^N rt^{r-1} \mathbb{P}[|X| \geq t] dt + \int_N^{+\infty} rt^{r-1} \mathbb{P}[|X| \geq t] dt \\ &\leq \int_0^N rt^{r-1} dt + r \int_N^{+\infty} t^p \mathbb{P}[|X| \geq t] \left(\frac{1}{t^{1+p-r}} \right) dt \\ &\leq N^r + r \int_N^{+\infty} \frac{1}{t^{1+p-r}} dt \\ &< +\infty, \end{aligned}$$

where we have used the fact that $p - r > 0$, in the last estimate.

To prove the identity in the hint, note that, writing μ for the distribution of the positive random variable Y ,

$$\mathbb{E}[Y] = \int y d\mu(y) = \int \int_0^y dx d\mu(y) = \int_{x,y \geq 0} \mathbb{1}_{x \leq y} dx d\mu(y) = \int_{x \geq 0} \mathbb{P}[Y \geq x] dx,$$

where we used Fubini's theorem.

Exercise 5

For any $E \in \mathcal{B}(\mathbb{R})$, we have $\mathbb{P}[X \in E, X \in E] = \mathbb{P}[X \in E] \mathbb{P}[X \in E]$. So $\mathbb{P}[X \in E]$ is either equal to 0 or 1. From this, it follows that $F(x) = 0$ or 1, for each $x \in \mathbb{R}$, where $F : \mathbb{R} \rightarrow [0, 1]$ is the cumulative distribution function of X .

Since $\lim_{x \rightarrow -\infty} F(x) = 0$, we know that $\{x \in \mathbb{R} : F(x) = 0\}$ is nonempty. Let us define

$$x_0 = \sup\{x \in \mathbb{R} : F(x) = 0\}.$$

Since $\lim_{x \rightarrow +\infty} F(x) = 1$, we also have that $x_0 < +\infty$. The function F being increasing and right-continuous, we have $F(x) = 1$ for any $x \geq x_0$, and $F(x) = 0$ for any $x < x_0$. Therefore, $\mathbb{P}[X = x_0] = 1$.

Exercise 6

Suppose that

$$(1) \quad \mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n \mathbb{P}(X_i = x_i) \quad \text{for } x_i \in S_i.$$

Let E_1, E_2, \dots, E_n be arbitrary subsets of S_1, \dots, S_n . We have to prove that

$$\mathbb{P}[X_1 \in E_1, X_2 \in E_2, \dots, X_n \in E_n] = \mathbb{P}[X_1 \in E_1] \mathbb{P}[X_2 \in E_2] \dots \mathbb{P}[X_n \in E_n].$$

The left-hand side in the above equality can be re-written as

$$\mathbb{P}\left[\bigcup_{x_1 \in E_1, \dots, x_n \in E_n} \{X_1 = x_1, X_2 = x_2, \dots, X_n = x_n\}\right]$$

which in turn is equal to

$$\sum_{x_1 \in E_1, \dots, x_n \in E_n} \mathbb{P}[X_1 = x_1, X_2 = x_2, \dots, X_n = x_n].$$

Finally, the proof is completed by using (1).

Exercise 7

(1) We assume that $d\mu_{X_i}(x) = f_i(x)dx$. The independence ensures that

$$\mu_{(X_1, \dots, X_n)} = \mu_{X_1} \otimes \dots \otimes \mu_{X_n}.$$

Fubini's theorem gives us that

$$d(\mu_{X_1} \otimes \dots \otimes \mu_{X_n})(x_1, \dots, x_n) = \left(\prod_{i=1}^n p_i(x_i) \right) dx_1 \dots dx_n,$$

which proves the result.

(2) Since the density of (X_1, \dots, X_n) is f , we can recover the density of X_i by integrating out the other variables. More precisely, X_i has a density f_i given by

$$(2) \quad f_i(x) = \int f(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n.$$

Indeed, for any positive measurable function φ , we have, by Fubini's theorem

$$\begin{aligned} \mathbb{E}[\varphi(X_i)] &= \int \varphi(x_i) f(x_1, \dots, x_n) dx_1 \dots dx_n \\ &= \int \varphi(x_i) \left(\int f(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n \right) dx_i, \end{aligned}$$

which justifies the claim. We now show that there exists $C_i > 0$ such that $f_i = C_i g_i$. Fubini's theorem and the assumption on f ensure that

$$1 = \int f(x_1, \dots, x_n) dx_1 \dots dx_n = \prod_{i=1}^n \int g_i(x) dx.$$

Since $g_i \geq 0$, this guarantees that $K_i := \int g_i(x) dx$ is in $(0, +\infty)$ for every i . From (2) and the assumption of f , we obtain

$$f_i(x) = \int f(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_n = \left(\prod_{j \neq i} K_j \right) g_i(x) = K_i^{-1} g_i(x),$$

so we have indeed $f_i = C_i g_i$ with $C_i = K_i^{-1}$. Finally, since

$$f(x_1, \dots, x_n) = \prod_{i=1}^n g_i(x_i) = \prod_{i=1}^n f_i(x_i),$$

it follows that $\mu_{(X_1, \dots, X_n)} = \mu_{X_1} \otimes \cdots \otimes \mu_{X_n}$ (by Fubini's theorem), and hence the random variables (X_1, \dots, X_n) are independent.

Exercise 8

Let φ be a positive measurable function on \mathbb{R}^2 . We have

$$\begin{aligned} \mathbb{E}[\varphi(X, Y)] &= \int_0^{+\infty} \int_0^1 \varphi(\sqrt{u} \cos(2\pi v), \sqrt{u} \sin(2\pi v)) e^{-u} du dv \\ &= \pi^{-1} \int_0^{+\infty} \int_0^{2\pi} \varphi(r \cos(\theta), r \sin(\theta)) r e^{-r^2} dr d\theta \\ &= \pi^{-1} \int_{\mathbb{R}^2} \varphi(x, y) e^{-(x^2+y^2)} dx dy. \end{aligned}$$

This proves that the distribution of the pair (X, Y) has density $\pi^{-1} e^{-(x^2+y^2)}$. Since this is of product form, the previous exercise enables us to conclude that X and Y are independent.