

Series 3: random variables and expectation

Solutions

Exercise 1

First, we note that (prove it!)

$$\sigma(C) = \left\{ \bigcup_{i \in I} A_i, I \subseteq \{1, \dots, \kappa\} \right\}.$$

In particular, for any $i \in \{1, \dots, \kappa\}$ and any $E \in \sigma(C)$,

$$(1) \quad \text{if } E \subseteq A_i \text{ then } E = \emptyset \text{ or } E = A_i.$$

Fix an arbitrary $A \in C$. Suppose that there exist two points $\omega_1, \omega_2 \in A$ such that $Y(\omega_1) \neq Y(\omega_2)$. Then,

$$\{\omega \in \Omega : Y(\omega) = Y(\omega_1)\} \cap A \in \sigma(C)$$

and

$$\{\omega \in \Omega : Y(\omega) = Y(\omega_2)\} \cap A \in \sigma(C)$$

are two nonempty disjoint subsets of A , but this contradicts (1).

Exercise 2

(a) For any $E \in \mathcal{B}(\mathbb{R})$, $(f \circ X)^{-1}(E) = X^{-1}(f^{-1}(E))$. Since $f^{-1}(E) \in \mathcal{B}(\mathbb{R})$, we have $X^{-1}(f^{-1}(E)) \in \sigma(X)$ by definition of $\sigma(X)$.

(b1) As first step, we suppose that $Y : \Omega \rightarrow \mathbb{R}$ is simple. Then, there exists a partition $\Omega = \cup_{i=1}^n E_i$ and values $y_1, y_2, \dots, y_n \in \mathbb{R}$ such that

$$Y(\omega) = \begin{cases} y_1 & \text{if } \omega \in E_1 \\ y_2 & \text{if } \omega \in E_2 \\ \vdots & \vdots \\ y_n & \text{if } \omega \in E_n \end{cases}$$

Furthermore, each E_i belongs to $\sigma(X)$ by the assumption on Y . By the definition of $\sigma(X)$, there exist n pairwise disjoint sets $B_i \in \mathcal{B}(\mathbb{R})$, $i = 1, 2, \dots, n$, such that $X^{-1}(B_i) = E_i$, $\forall i = 1, \dots, n$. Actually, the sets (B_1, \dots, B_n) form a partition of \mathbb{R} . Therefore, the function $f : \mathbb{R} \rightarrow \mathbb{R}$,

$$f(x) = \begin{cases} y_1 & \text{if } x \in B_1 \\ y_2 & \text{if } x \in B_2 \\ \vdots & \vdots \\ y_n & \text{if } x \in B_n \end{cases}$$

is well-defined, measurable and $Y = f \circ X$.

(b2) Now, let Y be a $\sigma(X)$ -measurable function. We shall use the fact that there exists a sequence $(Y_n)_{n \geq 1}$ of $\sigma(X)$ -measurable simple functions, such that $\lim_{n \rightarrow \infty} Y_n(\omega) = Y(\omega)$, $\forall \omega \in \Omega$. For it, it suffices define $Y_n := H_n(Y)$ where $H_n : \mathbb{R} \rightarrow \mathbb{R}$ is defined as

$$H_n(x) = \sum_{i=-n^2+1}^{n^2} \mathbf{1}_{(\frac{i-1}{n}, \frac{i}{n}]}(x), \quad x \in \mathbb{R},$$

for every $n \geq 1$.

In view of item (b1), there exists a sequence $(f_n)_{n \geq 1}$ of measurable functions satisfying $Y_n = f_n \circ X$. Therefore, for any $\omega \in \Omega$, we have

$$f_n(X(\omega)) \rightarrow Y(\omega) \quad \text{as } n \rightarrow \infty.$$

But this does not imply that $\lim_{n \rightarrow \infty} f_n(a)$ exists for any $a \in \mathbb{R}$. For this reason, we define

$$f(x) = \begin{cases} \lim_{n \rightarrow \infty} f_n(x) & \text{if } x \in E \\ 0 & \text{if } x \in E^c \end{cases}$$

where $E = \{x \in \mathbb{R} : \lim_{n \rightarrow \infty} f_n(x) \text{ exists}\}$. It is easy to verify that, with this choice, f is measurable and $Y = f \circ X$.

Exercise 3

Let us write μ_X for the law of the random variable X . By definition,

$$F_X(x) = \mathbb{P}[X \leq x] = \mu_X [(-\infty, x_1] \times \cdots \times (-\infty, x_d)],$$

so it is clear that if $\mu_X = \mu_Y$, then $F_X = F_Y$. Reciprocally, assume that $F_X = F_Y$. Writing

$$C = \{(-\infty, x_1] \times \cdots \times (-\infty, x_d), x_1, \dots, x_d \in \mathbb{R}^d\},$$

we observe that

$$\sigma(C) = \mathcal{B}(\mathbb{R}^d).$$

Since μ_X and μ_Y coincide on C and C is stable under finite intersections, we obtain that μ_X and μ_Y coincide on $\sigma(C) = \mathcal{B}(\mathbb{R}^d)$, and this finishes the proof.

Exercise 4

The “ \Leftarrow ” is clear. For the converse, a computation shows that

$$\mathbb{E}[(X - \mathbb{E}[X])^2] = 0,$$

so $(X - \mathbb{E}[X])^2$ is a positive random variable with zero expectation. This implies that

$$\mathbb{P}[(X - \mathbb{E}[X])^2 = 0] = 1.$$

Letting $c = \mathbb{E}[X]$, we obtain the result.

Exercise 5

(a) Since $A_n \subseteq A_{n+1}$, $\forall n \geq 1$, then $|X| \mathbf{1}_{A_n}(\omega) \uparrow |X| \mathbf{1}_{\cup_{n \geq 1} A_n}(\omega)$ for every $\omega \in \Omega$. Thus, by monotone convergence theorem we obtain

$$\lim_{n \rightarrow \infty} \int_{A_n} |X| d\mathbb{P} = \lim_{n \rightarrow \infty} \mathbb{E}[|X| \mathbf{1}_{A_n}] = \mathbb{E}[|X| \mathbf{1}_{\cup_{n \geq 1} A_n}] = \int_{\cup_{n \geq 1} A_n} |X| d\mathbb{P}.$$

(b) It is enough to consider the sequence of functions

$$X_n(\omega) := \begin{cases} X(\omega), & \text{if } |X(\omega)| \leq \log(n) \\ 0, & \text{otherwise.} \end{cases}$$

Since $|X_n| \leq |X|$ for all $n \geq 1$ and $X_n(\omega) \rightarrow X(\omega)$, $\forall \omega \in \Omega$, we have $\mathbb{E}[X_n] \rightarrow \mathbb{E}[X]$ by dominated convergence theorem (recall that X is assumed integrable).

Exercise 6

Apply Fatou's lemma on $f + f_n - |f - f_n|$.