

Series 1: probability spaces

Solutions

Exercise 1

The distribution of X is $\mu_X : \mathcal{E} \rightarrow [0, 1]$ such that for any $B \in \mathcal{E}$,

$$\mu_X(B) = \mathbb{P}[X \in B].$$

We check the defining properties of probability measures. We have $\mu_X(\emptyset) = 0$ and $\mu_X(E) = 1$. Moreover, if $(B_n)_{n \in \mathbb{N}}$ is a sequence of disjoint sets in \mathcal{E} , then

$$\begin{aligned} \mu_X\left(\bigcup_{n \in \mathbb{N}} B_n\right) &= \mathbb{P}\left[X \in \bigcup_{n \in \mathbb{N}} B_n\right] \\ &= \mathbb{P}\left[\bigcup_{n \in \mathbb{N}} \{X \in B_n\}\right]. \end{aligned}$$

Since $(B_n)_{n \in \mathbb{N}}$ are disjoint sets, so are the sets $(\{X \in B_n\})_{n \in \mathbb{N}}$ (recall that

$$\{X \in B_n\} = \{\omega \in \Omega : X(\omega) \in B_n\},$$

and thus

$$\mu_X\left(\bigcup_{n \in \mathbb{N}} B_n\right) = \sum_{n \in \mathbb{N}} \mu_X(B_n),$$

and this finishes the proof.

Exercise 2

Consider the σ -algebras

$$\begin{aligned} (1) \quad \mathcal{F}_1 &= \{\{1\}, \{2, 3, 4\}, \emptyset, \Omega\} \\ (2) \quad \mathcal{F}_2 &= \{\{4\}, \{1, 2, 3\}, \emptyset, \Omega\}, \end{aligned}$$

so that

$$\mathcal{F}_1 \cup \mathcal{F}_2 = \{\{1\}, \{4\}, \{1, 2, 3\}, \{2, 3, 4\}, \emptyset, \Omega\}.$$

$\mathcal{F}_1 \cup \mathcal{F}_2$ is not a σ -algebra because, for instance, $\{1\} \cup \{4\} \notin \mathcal{F}_1 \cup \mathcal{F}_2$.

Exercise 3

It suffices to consider the collection $C = \{\{1, 2\}, \{2, 3\}\}$ and

$$\begin{array}{ll} \mu(\{1\}) = 1/2 & \nu(\{1\}) = 1/4 \\ \mu(\{2\}) = 0 & \nu(\{2\}) = 1/4 \\ \mu(\{3\}) = 1/2 & \nu(\{3\}) = 1/4 \\ \mu(\{4\}) = 0 & \nu(\{4\}) = 1/4. \end{array}$$

Exercise 4

Let us write

$$C = \{(a, b) : a, b \in \mathbb{Q}\}.$$

Clearly, $C \subseteq \{\text{open sets of } \mathbb{R}\}$ so $\sigma(C) \subseteq \mathcal{B}(\mathbb{R})$. On the other hand, if O is an open set of \mathbb{R} , we have

$$O = \bigcup_{\substack{I \subseteq O \\ I \in C}} I.$$

Since C is countable, in particular the union above is countable, and thus $O \in \sigma(C)$. We have shown that any open set belongs to $\sigma(C)$. Since $\sigma(C)$ is a σ -algebra by definition, this implies that $\mathcal{B}(\mathbb{R}) \subseteq \sigma(C)$. In conclusion, we have shown $\mathcal{B}(\mathbb{R}) = \sigma(C)$, with C countable.

For the second part, recall that

$$\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) = \sigma(\{A \times B, A, B \in \mathcal{B}(\mathbb{R})\}).$$

It is easy to check that for any $A \in \mathcal{B}(\mathbb{R})$, one has $A \times \mathbb{R} \in \mathcal{B}(\mathbb{R}^2)$ (check that the set of all such A 's contains the open sets and is a σ -algebra). Similarly, for any $B \in \mathcal{B}(\mathbb{R})$, we have $\mathbb{R} \times B \in \mathcal{B}(\mathbb{R}^2)$. For any $A, B \in \mathcal{B}(\mathbb{R})$, we thus have

$$A \times B = (A \times \mathbb{R}) \cap (\mathbb{R} \times B) \in \mathcal{B}(\mathbb{R}^2).$$

This justifies that $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) \subseteq \mathcal{B}(\mathbb{R}^2)$.

Conversely, let us define the countable collection

$$C = \{(a, b) \times (c, d), a, b, c, d \in \mathbb{Q}\}.$$

Let O be an open set of \mathbb{R}^2 . We can write it as

$$O = \bigcup_{\substack{I \subseteq O \\ I \in C}} I,$$

and the union is over a countable index set. Moreover, it is clear that any $I \in C$ belongs to $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$, so we have proved that O belongs to $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$. As a consequence, $\mathcal{B}(\mathbb{R}^2) \subseteq \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$, and this concludes the proof.

Exercise 5

We first show that $\mathcal{F} = \{A \text{ such that } A \text{ or } A^c \text{ is countable}\}$ is a σ -algebra.

It is clear that $\Omega \in \mathcal{F}$ and that if $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$. Now suppose that $A_n \in \mathcal{F}, n \geq 1$. If every A_n is countable, $\cup_{n \geq 1} A_n$ will also be countable. On the other hand, if A_m^c is countable for at least one m , then $(\cup_{n \geq 1} A_n)^c = \cap_{n \geq 1} A_n^c \subseteq A_m^c$ will be countable.

We now show that P is σ -additive. Indeed, suppose that the A_n are two by two disjoint. If every A_n is countable, $\cup_{n \geq 1} A_n$ will also be countable. So $P(\cup_{n \geq 1} A_n) = 0 = \sum_{n \geq 1} P(A_n)$. On the other hand, if A_m^c is not countable for at least one m , then, since the A_n are disjoint, $A_n \subseteq A_m^c$ for each $n \neq m$. Thus, $P(A_n) = 0$ for each $n \neq m$ and we then have $P(\cup_{n \geq 1} A_n) = \sum_{n \geq 1} P(A_n) = P(A_m) = 1$.

Exercise 6

We define

$$E_k = \{i \in \mathbb{N} : 2^{2k-1} < i \leq 2^{2k}\} \quad \text{and} \quad F_k = \{i \in \mathbb{N} : 2^{2k} < i \leq 2^{2k+1}\} \quad \text{for } k \geq 1.$$

Observe that $\#E_k = 2^{2k-1}$ and $\#F_k = 2^{2k}$ for every $k \geq 1$.

1. For (a) consider the set $A = \cup_{k \geq 1} E_k$. For $n = 2^{2m}$ we have

$$\frac{\#(A \cap \{1, 2, \dots, 2^{2m}\})}{2^{2m}} = \frac{\sum_{k=1}^m \#E_k}{2^{2m}} = \left(\frac{2}{3}\right) \left(\frac{2^{2m} - 1}{2^{2m}}\right)$$

and so

$$\lim_{m \rightarrow \infty} \frac{\#(A \cap \{1, 2, \dots, 2^{2m}\})}{2^{2m}} = \frac{2}{3}.$$

A similar computation gives

$$\lim_{m \rightarrow \infty} \frac{\#(A \cap \{1, 2, \dots, 2^{2m+1}\})}{2^{2m+1}} = \frac{1}{3}.$$

From this, we conclude that the whole sequence does not converge.

2. \mathcal{A} is not an algebra and, consequently, it is not a σ -algebra. Indeed, let P and I be the set of even and odd numbers, respectively. We can consider the subsets

$$B = \left(\cup_{k \geq 1} (E_k \cap P) \right) \bigcup \left(\cup_{k \geq 1} (F_k \cap I) \right).$$

It is not difficult to see that

$$\lim_{n \rightarrow +\infty} \frac{\#(P \cap \{1, 2, \dots, n\})}{n} = \frac{1}{2} \quad \text{and} \quad \lim_{n \rightarrow +\infty} \frac{\#(B \cap \{1, 2, \dots, n\})}{n} = \frac{1}{2}$$

and then B and P belong to \mathcal{A} . On the other hand, $B \cap P = \left(\cup_{k \geq 1} E_k \right) \cap P = A \cap P$ and so $B \cap P \notin \mathcal{A}$ by a similar argument to the previous item.