

Exercise 1. (Extension of the Feynman-Kac Formula)

Let $q, f, \sigma : \mathbb{R} \rightarrow \mathbb{R}$ be bounded Borel functions. Assume that the equation

$$\frac{\partial u}{\partial t}(t, x) = \frac{1}{2}\sigma^2(x)\frac{\partial^2 u}{\partial x^2}(t, x) + \mu(x)\frac{\partial u}{\partial x}(t, x) + q(x)u(t, x), \quad t \in \mathbb{R}_+, x \in \mathbb{R},$$

with the initial condition $u(0, x) = f(x)$, $x \in \mathbb{R}$, admits a unique bounded solution, such that $\frac{\partial u}{\partial x}$ is bounded.

Assume that $\mu : \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz function and therefore there exists a constant $C \in \mathbb{R}_+$ such that for all $x \in \mathbb{R}$,

$$|\mu(x)| \leq C(1 + |x|).$$

Show that

$$u(t, x) = \mathbb{E} \left(f \left(X_t^{(x)} \right) \exp \left(\int_0^t q \left(X_s^{(x)} \right) ds \right) \right),$$

where $(X_t^{(x)})$ is the unique solution of the stochastic differential equation

$$dX_t = \mu(X_t) dt + \sigma(X_t) dB_t, \quad X_0 = x.$$

Exercise 2. (Properties of Brownian motion)

Let B_t be a d -dimensional Brownian motion. Show that:

- (i) In $d = 1$ Brownian motion is *recurrent*, i.e. for any $x \in \mathbb{R}$ there is a (random) increasing sequence $t_n \rightarrow \infty$ such that $B_{t_n} = x$.
- (ii) In $d = 2$ Brownian motion is *neighbourhood recurrent*, i.e. for every $x \in \mathbb{R}^2$ and $\epsilon > 0$, the ball $B(x, \epsilon)$ is visited infinitely often.
- (iii) In $d \geq 3$ Brownian motion is *transient*, i.e. it converges to infinity almost surely.
Hint: consider $A_n = \{|B_t| > \sqrt{n} \quad \forall t \geq T_n\}$ where T_n is the hitting time of $B(0, n)^c$.

Hint: Use the link of Brownian motion and a solution to a Dirichlet problem. In particular, note that:

$$u(x) = \phi(|x|) = \begin{cases} c_1|x| + c_2 & \text{if } d = 1 \\ c_1 \log|x| + c_2 & \text{if } d = 2 \\ c_1|x|^{2-d} + c_2 & \text{if } d \geq 3 \end{cases}$$

solves $\Delta u = 0$ on $\mathbb{R}^d \setminus \{0\}$.