

Exercise 8

9/4/2024

Exercise 1.

Let $\mathcal{M}_{T,\text{loc}}$ be the set of continuous local martingales $M = (M_t)_{t \in [0, T]}$. For all $M \in \mathcal{M}_{T,\text{loc}}$ there exists a unique (up to indistinguishability) process $\langle M \rangle = (\langle M \rangle_t)_{t \in [0, T]}$ with continuous, non-decreasing paths such that $\langle M \rangle_0 = 0$ and $(M_t^2 - \langle M \rangle_t)_{t \geq 0} \in \mathcal{M}_{T,\text{loc}}$. For $M, N \in \mathcal{M}_{T,\text{loc}}$ we set

$$\langle M, N \rangle := \frac{1}{4} \langle M + N \rangle - \frac{1}{4} \langle M - N \rangle.$$

One shows that $\langle M, N \rangle$ is the unique process on $[0, T]$ with continuous paths of bounded variation such that $\langle M, N \rangle_0 = 0$ and $MN - \langle M, N \rangle$ is a local martingale (see Exercise 3, Sheet 6).

Prove that for all $M, N \in \mathcal{M}_{T,\text{loc}}$:

- (a) $\langle M, M \rangle = \langle M \rangle = \langle -M \rangle$.
- (b) $\langle M, N \rangle = \langle N, M \rangle$.
- (c) $\langle M - M_0, N \rangle = \langle M, N - N_0 \rangle = \langle M - M_0, N - N_0 \rangle = \langle M, N \rangle$.
- (d) $\langle M^\tau, N^\tau \rangle = \langle M, N \rangle^\tau$ for every stopping time τ .
- (e) $(N, M) \mapsto \langle M, N \rangle$ is a bilinear map.
- (f) Integration by parts for local martingales:

$$M_t N_t = M_0 N_0 + \int_0^t M_s dN_s + \int_0^t N_s dM_s + \langle M, N \rangle_t.$$

- (g) If $H \in \mathcal{H}_{T,\text{loc}}(M)$ and $G \in \mathcal{H}_{T,\text{loc}}(N)$, then

$$\left\langle \int H_s dM_s, \int G_s dN_s \right\rangle = \int H_s G_s d\langle M, N \rangle_s.$$

Exercise 2.

Let $M \in \mathcal{M}_{T,\text{loc}}$ and $f : \mathbb{R} \rightarrow \mathbb{R}$ be a polynomial. Using the integration by parts and substitution formulas prove the following identity

$$f(M_t) = f(M_0) + \int_0^t f'(M_s) dM_s + \frac{1}{2} \int_0^t f''(M_s) d\langle M \rangle_s$$

known as the Ito formula (actually, the identity is true for all $f \in C^2(\mathbb{R})$).

Exercise 3.

Let $(B_t, t \in \mathbb{R}_+)$ be a standard Brownian motion.

(a) Using Ito formula to show that $(B_t^2 - t, t \in \mathbb{R}_+)$ is a martingale (cf. Exercise 3, Sheet 2).

(b) Using Ito formula to show that

$$X_t = B_t^4 - 6 \int_0^t B_s^2 ds$$

is a martingale.