

Exercise 1.

Let $(B_t)_{t \geq 0}$ be a standard Brownian motion.

(a) For all $n \geq 1$, define $\tau_n = \inf \left\{ t > 0 : \int_0^t e^{2B_s^4} ds \geq n \right\}$. Show that for all $t > 0$, $\mathbb{P}\{\tau_n \leq t\} > 0$.

(b) Explain how to determine a random variable $\int_0^t e^{B_s^4} dB_s$ from simple predictable process.

Exercise 2.

(a) Show that if \mathcal{F} is a sigma-algebra and if $(X_n)_{n \in \mathbb{N}}$ is a sequence of random variables such that $X_n \xrightarrow[n \rightarrow \infty]{} X$ a.s. and $|X_n| \leq Y \in L^1$, then

$$\mathbb{E}(X_n | \mathcal{F}) \xrightarrow[n \rightarrow \infty]{} \mathbb{E}(X | \mathcal{F}), \text{ in } L^1 \text{ and a.s.}$$

(b) Let $(X_t, t \in \mathbb{R}_+)$ be a continuous local martingale and $T > 0$ such that

$$E \left(\sup_{0 \leq s \leq T} |X_s| \right) < +\infty. \text{ Show that } (X_t, t \in [0, T]) \text{ is a martingale.}$$

Exercise 3.

Let $M = (M_t, t \in \mathbb{R}_+)$ be a bounded continuous martingale. Define

$$S_t^n = \sum_{i=1}^n \left(M_{t_i^{(n)}} - M_{t_{i-1}^{(n)}} \right)^2$$

where $0 = t_0^{(n)} < t_1^{(n)} < \dots < t_n^{(n)} = t$ and $\lim_{n \rightarrow \infty} \max_{1 \leq i \leq n} (t_i^{(n)} - t_{i-1}^{(n)}) = 0$. Show that

$$\lim_{n \rightarrow \infty} S_t^n = M_t^2 - M_0^2 - 2 \int_0^t M_s dM_s = \langle M \rangle_t, \quad \text{in } L^2(\Omega, \mathcal{F}, \mathbb{P}).$$

Exercise 4.

Let $H \in \mathcal{H}_T$. Then $\langle \int_0^t H_s dB_s \rangle_t = \int_0^t H_s^2 ds$.