

Exercise 5

19/3/2024

Exercise 1.

Let (X, Y) be a Gaussian vector on \mathbb{R}^2 such that $\mathbb{E}(X) = \mathbb{E}(Y) = 0$ and $\mathbb{E}(Y^2) > 0$. Show that $\mathbb{E}(X|Y) = \frac{\mathbb{E}(XY)}{\mathbb{E}(Y^2)}Y$.

Exercise 2.

1) Let $(M_t, t \in \mathbb{R}_+)$ be a square integrable continuous martingale. Prove that (M_t) is an orthogonal increments process, that is, it satisfies the following property:

$$\mathbb{E}((M_t - M_s) M_s) = 0, \quad \forall t > s \geq 0.$$

Deduce that $\text{Cov}(M_t, M_s)$ is a function of $t \wedge s$.

2) Let $(X_t, t \in \mathbb{R}_+)$ be a centered Gaussian process satisfying the Markov property and

$$\mathbb{E}((X_t - X_s) X_s) = 0, \quad \forall t > s \geq 0.$$

Show that (X_t) is a martingale respect to its natural filtration (\mathcal{F}_t^X) .

Exercise 3.

1) Let $(\mathcal{F}_t)_t$ be a filtration. Let $s < t$ and $A \in \mathcal{F}_s$. Prove that the r.v. τ defined as

$$\tau(\omega) = \begin{cases} s & \text{if } \omega \in A \\ t & \text{if } \omega \in A^c \end{cases}$$

is a stopping time.

2) Prove that an integrable continuous process $(X_t)_t$ adapted to $(\mathcal{F}_t)_t$ is a martingale if and only if, for every bounded $(\mathcal{F}_t)_t$ -stopping time τ , $\mathbb{E}(X_\tau) = \mathbb{E}(X_0)$.

Exercise 4. (Stochastic integral of a simple predictable process with respect to a martingale)

Let $(M_t, t \in \mathbb{R}_+)$ be a continuous martingale such that $\mathbb{E}(M_t^2) < +\infty$, for all $t \in \mathbb{R}_+$. Given a simple predictable process $(H_t, t \in \mathbb{R}_+)$ such that

$$H_t = \sum_{i=1}^n X_i \mathbf{1}_{[t_{i-1}, t_i]}(t),$$

where $0 = t_0 < t_1 < \dots < t_n = T$ and X_i is $\mathcal{F}_{t_{i-1}}$ -mesurable and bounded for all $i = 1, \dots, n$. We denote

$$(H \cdot M)_T = \sum_{i=1}^n X_i (M_{t_i} - M_{t_{i-1}}).$$

(a) Show that $H \mapsto (H \cdot M)_T$ is linear.

(b) Show that $\mathbb{E}((H \cdot M)_T) = 0$.

(c) Let $(\langle M \rangle_t, t \in \mathbb{R}_+)$ be the quadratic variation of (M_t) . Show that

$$\mathbb{E}((H \cdot M)_T^2) = \mathbb{E}\left(\int_0^T H_s^2 d\langle M \rangle_s\right).$$