

Exercise 1.

Assume that we already know how to construct a process $(B_t^{(1)}, t \in [0, 1])$ satisfying conditions (a) and (b) of standard Brownian motion such that $t \mapsto B_t^{(1)}(\omega)$ is continuous on $[0, 1]$. Construct a process $(B_t, t \geq 0)$ which is a standard Brownian motion such that $t \mapsto B_t(\omega)$ is a continuous function on \mathbb{R}^+ .

Exercise 2.

Let X, Y, Z be random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G}, \mathcal{H} are sub-algebra of \mathcal{F} . Please prove the following results:

- (a) If $\alpha, \beta \in \mathbb{R}$, then $\mathbb{E}[\alpha X + \beta Y | \mathcal{G}] = \alpha \mathbb{E}[X | \mathcal{G}] + \beta \mathbb{E}[Y | \mathcal{G}]$ a.s.
- (b) If $X \leq Y$ a.s., $\mathbb{E}[X | \mathcal{G}] \leq \mathbb{E}[Y | \mathcal{G}]$ a.s.
- (c) If $X_n \geq 0$ and $X_n \uparrow X$ a.s., then $\mathbb{E}[X_n | \mathcal{G}] \uparrow \mathbb{E}[X | \mathcal{G}]$ a.s.

Exercise 3. (Following Exercise 2)

- (d) If $\phi : \mathbb{R} \rightarrow \mathbb{R}$ is convex and $\mathbb{E}[|\phi(X)|] < \infty$, show that $\phi(\mathbb{E}[X | \mathcal{G}]) \leq \mathbb{E}[\phi(X) | \mathcal{G}]$ a.s.
- (e) $\mathbb{E}[\mathbb{E}[X | \mathcal{G}]] = \mathbb{E}[X]$.
- (f) If $\mathcal{G} \subset \mathcal{H}$, $\mathbb{E}[\mathbb{E}[X | \mathcal{H}] | \mathcal{G}] = \mathbb{E}[X | \mathcal{G}]$ a.s.
- (g) If Z is \mathcal{G} -mesurable and $\mathbb{E}[|XZ|] < \infty$, then $\mathbb{E}[XZ | \mathcal{G}] = Z \mathbb{E}[X | \mathcal{G}]$ a.s. Specifically, $\mathbb{E}[Z | \mathcal{G}] = Z$ a.s.
- (h) If X is independent with \mathcal{G} , then $\mathbb{E}[X | \mathcal{G}] = \mathbb{E}[X]$ a.s.

Exercise 4.

Let $(B_t, t \geq 0)$ be a standard Brownian motion. Show that

$$\lim_{t \rightarrow \infty} \frac{B_t}{t} = 0 \quad \text{a.s.}$$

