
Exercise sheet 1

19/2/2025

Exercise 1.

Let $(B_t)_{t \in [0,1]}$ be a Brownian motion. Define the Brownian bridge $(X_t)_{t \in [0,1]}$ by

$$X_t = B_t - tB_1.$$

Show that the probability density function of X_t at fixed $t \in (0, 1)$ is given by

$$f_{X_t}(x) = \frac{1}{\sqrt{2\pi t(1-t)}} \exp\left(-\frac{x^2}{2t(1-t)}\right).$$

Are the increments of $(X_t)_{t \in [0,1]}$ independent, that is, are X_s and $X_t - X_s$ independent for $0 \leq s < t \leq 1$.

Exercise 2.

Let $(X_n)_{n \geq 0}$ be an i.i.d sequence of $\mathcal{N}(0, 1)$ random variables. For $l, p \in \mathbb{N}$ with $l < p$, define

$$T_{l,p} = \sup_{t \in [0, \pi]} \left| \sum_{n=l}^{p-1} X_n \frac{\sin(nt)}{n} \right|.$$

Show that

$$\mathbb{E}((T_{l,p})^2) \leq \frac{p-l}{l^2} + 2 \frac{(p-l)^{\frac{3}{2}}}{l^2}.$$

Exercise 3.

Let $(B_t)_{t \in [0,1]}$ be a Brownian motion with initial point x and $p(t, x, \cdot)$ be its density. Show that

$$\frac{\partial p}{\partial t} = \frac{1}{2} \frac{\partial^2 p}{\partial x^2}.$$

Exercise 4.

Let $(B_t, t \geq 0)$ be a Brownian motion. Fix $s > 0$ and define

$$X_t = B_{s \wedge t} - (B_t - B_{s \wedge t}) = \begin{cases} B_t, & t \leq s \\ 2B_s - B_t, & t > s. \end{cases}$$

Draw a picture of the processes $(B_t, t \geq 0)$ and $(X_t, t \geq 0)$ and show that $(X_t, t \geq 0)$ is again a Brownian motion.