
1 Sheet 2

1.1 Excercise 1

Prove (at least for matrix groups) that the exponential

g → G, X → exp(X)

is invariant under the adjoint action, i.e.

exp
(
gXg−1

)
= g exp(X)g−1 (1)

for any X ∈ gln and g ∈ GLn.

Solution. Let X ∈ gln and g ∈ GLn. Then

exp(gXg−1) =

∞∑
n=0

(gXg−1)n

n!
=

∞∑
n=0

g
Xn

n!
g−1 = g exp(X)g−1.

1.2 Excercise 2

Then prove for any Lie group G that the abstractly defined exponential exp(X) = γX(1) satisfies

exp(Adg(X)) = Adg(exp(X)) (2)

for any g ∈ G, X ∈ g.

Solution. Let X ∈ g, and set X ′ = Adg,∗(X) ∈ g, for some g ∈ G. Let γX(t) and γX′(t) be the associated
one parameter groups given by Excercice 4 in Sheet 1. We prove that the curve Adg(γX(t)) coincides with
γX′(t), so that (2) follows from evaluating in t = 1. By uniqueness, this amounts to verifying that both curves
solve the same differential equation 

d

dt
γ(t) = X ′

γ(t)

γ(0) = e.

(3)

It is enough to compute the derivative of Adg(γX(t)). This is

d

dt
Adg(γX(t)) =

d

ds

∣∣∣
s=0

Adg(γX(t+ s)) = Adg,∗(XγX(t)), (4)

where the first equality holds because γX is a one parameter subgroup. The claim then follows from the equality

Adg,∗(Xh) = X ′
ghg−1

between the left-invariant vector fields associated to X and X ′.

1.3 Excercise 3

Let F : G → G′ be a Lie group homomorphism, and f = F∗ : g → g′ the induced linear map of tangent
spaces. Show that we have

exp(f(X)) = F (exp(X)) (5)
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for all X ∈ g. Conclude that f preserves the Lie bracket we defined last week

[X,X ′] =
∂

∂t

∂

∂t′
exp(tX) exp(t′X ′) exp(tX)

−1
exp(t′X ′)

−1
∣∣∣
t=t′=0

(6)

in the sense that
f([X,X ′]) = [f(X), f(X ′)] (7)

for all X,X ′ ∈ g.

Solution. The proof of
exp(f(X)) = F (exp(X)) (8)

is analogous to that of Excercise 2. Namely, one has to prove that

F (γX(t)) = γf(X)(t). (9)

Finally, since F and f are differentiable morphisms, we get

F ([X,X ′]) =
d2

dtdt′

∣∣∣
t,t′=0

F (exp(tX))F (exp(t’X’))F (exp(tX))
−1

F (exp(t’X’))
−1

=
d2

dtdt′

∣∣∣
t,t′=0

exp(tf(X)) exp(t′f(X ′)) exp(tf(X))−1 exp(t′f(X ′))−1 = [f(X), f(X ′)].

1.4 Excercise 4

Consider the adjoint representaton G → GL(g) and take its derivative

g → End(g), adX : g → g (10)

for all X ∈ g. Then show that the Lie bracket (6) satisfies

[X,X ′] = adX(X ′) (11)

for all X,X ′ ∈ g.
Solution. We use the statement of Excercise 3 in the case at hand, that is

exp(adX) = Adexp(X),∗ ∈ GL(g). (12)

We identify GL(g) ∼= GLn and End(g) = gln by choosing any basis of g as a vector space. Then for t small
enough we have

exp(adX) = 1 + t adX +
t2

2
ad2X + . . . (13)

Evaluating (12) in any X ′ ∈ g and taking the derivative in both sides yields

adX(X ′) =
d

dt

∣∣∣
t=0

(
Adexp(tX).∗(X

′)
)

(14)

=
d

dt

∣∣∣
t=0

d

dt′

∣∣∣
t′=0

exp(tX) exp(t′X ′) exp(tX)−1 = [X,X ′], (15)

where we used Excercise 5 in sheet 1.
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1.5 Excercise 5

The following famous result of Baker-Campbell-Hausdorff shows how to reconstruct the multiplication in a
Lie group G from the Lie bracket of Lie(G), at least in a neighborhood of the identity element.

If G is a Lie group, and X,Y ∈ Lie(G) are close enough to 0, then

exp(X) exp(Y ) = exp

 ∞∑
n=1

(−1)n−1

n

ai+bi>0,∀i∑
a1,...,an≥0

b1,...,bn≥0

[X, . . . , [X, [Y, . . . , [Y, . . . , [X, . . . , [X, [Y, . . . , Y ] . . . ]

(a1 + · · ·+ an + b1 + · · ·+ bn)a1! . . . an!b1! . . . bn!

 (16)

where the inner sum involves the iterated Lie bracket of a1 copies of X, followed by b1 copies of Y , . . . , followed
by an copies of X, followed by bn copies of Y .

Reverse engineer formula (16) as follows: suppose you’re working in G = GLn and you want to find Z such that
exp(X) exp(Y ) = exp(Z), and Z is given by linear combinations of commutators of X and Y . Find the parts
of Z which are linear, then quadratic, then cubic ... in X,Y (do so explicitly up to whatever order you can).

Solution. If g ∈ GLn is sufficiently close to the identity matrix 1, the series

log(g) = (g − 1)− (g − 1)2

2
+

(g − 1)3

3
− . . . (17)

converges in gln. This tells us that the exponential map is invertible near the identity1. Then, after rescaling,

Z = log(exp(X) exp(Y )) (18)

will be well defined as an element of gln. We then compute

exp(X) exp(Y ) = 1 + (X + Y ) +

(
X2

2
+XY +

Y 2

2

)
+

(
X3

3!
+

XY 2

2
+

Y X2

2
+

Y 3

3!

)
+ . . .

and we substitute in (17). Then, our matrix Z is

(X + Y ) +

(
X2

2
+XY +

Y 2

2

)
+

(
X3

3!
+

XY 2

2
+

Y X2

2
+

Y 3

3!

)
+ . . . (19)

− (X + Y )2

2
−

(
(X + Y )

(
X2

2
+XY +

Y 2

2

))
− . . . (20)

+
(X + Y )3

3
+ . . . (21)

. . . (22)

where we find the terms of the same degree in the same coloumn. Summing along the coloumns,

Z = (X + Y ) +
1

2
[X,Y ]± 1

12
[X, [X,Y ]]± 1

12
[Y, [Y,X]]± . . . (23)

1.6 Excercise 6

If the Baker-Campbell-Hausdorff formula was too much fun for you, then consider the following formula
due to Campbell If G is a Lie group, and X,Y ∈ Lie(G), then

Adexp(X)(Y ) = Y + [X,Y ] +
[X, [X,Y ]]

2!
+

[X, [X, [X,Y ]]]

3!
+ . . .

1Actually, this yields a diffeomorphism between a neighborhood of 0 ∈ g and a neighborhood of e ∈ G. See [1].
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and prove it for G = GLn.
Solution. We need to compute

exp(X)Y exp(−X) =

(
Y +XY +

X2Y

2
+

X3Y

3!
+ . . .

)(
1−X +

X2

2
− X3

3!
+ . . .

)
.

As before we organize the terms of the same degree in coloumns

Y − Y X +
Y X2

2
− Y X3

3!
+ . . . . . .

XY −XYX +
XYX2

2
−+ . . .

X2Y

2
− X2Y X

2
+ . . .

X3Y

3!
+ . . .

Summing along the coloumns we get the claim.
Alternativly, one can use the equation

Adexp(X)(Y ) = expadX (Y ).
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