

# 1 Sheet 2

## 1.1 Excercise 1

Prove (at least for matrix groups) that the exponential

$$\mathfrak{g} \rightarrow G, \quad X \rightarrow \exp(X)$$

is invariant under the adjoint action, i.e.

$$\exp(gXg^{-1}) = g \exp(X)g^{-1} \quad (1)$$

for any  $X \in \mathfrak{gl}_n$  and  $g \in GL_n$ .

**Solution.** Let  $X \in \mathfrak{gl}_n$  and  $g \in GL_n$ . Then

$$\exp(gXg^{-1}) = \sum_{n=0}^{\infty} \frac{(gXg^{-1})^n}{n!} = \sum_{n=0}^{\infty} g \frac{X^n}{n!} g^{-1} = g \exp(X)g^{-1}.$$

## 1.2 Excercise 2

Then prove for any Lie group  $G$  that the abstractly defined exponential  $\exp(X) = \gamma_X(1)$  satisfies

$$\exp(\text{Ad}_g(X)) = \text{Ad}_g(\exp(X)) \quad (2)$$

for any  $g \in G$ ,  $X \in \mathfrak{g}$ .

**Solution.** Let  $X \in \mathfrak{g}$ , and set  $X' = \text{Ad}_{g,*}(X) \in \mathfrak{g}$ , for some  $g \in G$ . Let  $\gamma_X(t)$  and  $\gamma_{X'}(t)$  be the associated one parameter groups given by Exercise 4 in Sheet 1. We prove that the curve  $\text{Ad}_g(\gamma_X(t))$  coincides with  $\gamma_{X'}(t)$ , so that (2) follows from evaluating in  $t = 1$ . By uniqueness, this amounts to verifying that both curves solve the same differential equation

$$\begin{cases} \frac{d}{dt} \gamma(t) = X'_{\gamma(t)} \\ \gamma(0) = e. \end{cases} \quad (3)$$

It is enough to compute the derivative of  $\text{Ad}_g(\gamma_X(t))$ . This is

$$\frac{d}{dt} \text{Ad}_g(\gamma_X(t)) = \frac{d}{ds} \Big|_{s=0} \text{Ad}_g(\gamma_X(t+s)) = \text{Ad}_{g,*}(X_{\gamma_X(t)}), \quad (4)$$

where the first equality holds because  $\gamma_X$  is a one parameter subgroup. The claim then follows from the equality

$$\text{Ad}_{g,*}(X_h) = X'_{ghg^{-1}}$$

between the left-invariant vector fields associated to  $X$  and  $X'$ .

## 1.3 Excercise 3

Let  $F : G \rightarrow G'$  be a Lie group homomorphism, and  $f = F_* : \mathfrak{g} \rightarrow \mathfrak{g}'$  the induced linear map of tangent spaces. Show that we have

$$\boxed{\exp(f(X)) = F(\exp(X))} \quad (5)$$

for all  $X \in \mathfrak{g}$ . Conclude that  $f$  preserves the Lie bracket we defined last week

$$[X, X'] = \frac{\partial}{\partial t} \frac{\partial}{\partial t'} \exp(tX) \exp(t'X') \exp(tX)^{-1} \exp(t'X')^{-1} \Big|_{t=t'=0} \quad (6)$$

in the sense that

$$\boxed{f([X, X']) = [f(X), f(X')]} \quad (7)$$

for all  $X, X' \in \mathfrak{g}$ .

**Solution.** The proof of

$$\exp(f(X)) = F(\exp(X)) \quad (8)$$

is analogous to that of Exercise 2. Namely, one has to prove that

$$F(\gamma_X(t)) = \gamma_{f(X)}(t). \quad (9)$$

Finally, since  $F$  and  $f$  are differentiable morphisms, we get

$$\begin{aligned} F([X, X']) &= \frac{d^2}{dt dt'} \Big|_{t,t'=0} F(\exp(tX)) F(\exp(t'X')) F(\exp(tX))^{-1} F(\exp(t'X'))^{-1} \\ &= \frac{d^2}{dt dt'} \Big|_{t,t'=0} \exp(tf(X)) \exp(t'f(X')) \exp(tf(X))^{-1} \exp(t'f(X'))^{-1} = [f(X), f(X')]. \end{aligned}$$

## 1.4 Exercise 4

Consider the adjoint representation  $G \rightarrow GL(\mathfrak{g})$  and take its derivative

$$\mathfrak{g} \rightarrow \text{End}(\mathfrak{g}), \quad \text{ad}_X : \mathfrak{g} \rightarrow \mathfrak{g} \quad (10)$$

for all  $X \in \mathfrak{g}$ . Then show that the Lie bracket (6) satisfies

$$[X, X'] = \text{ad}_X(X') \quad (11)$$

for all  $X, X' \in \mathfrak{g}$ .

**Solution.** We use the statement of Exercise 3 in the case at hand, that is

$$\exp(\text{ad}_X) = \text{Ad}_{\exp(X),*} \in GL(\mathfrak{g}). \quad (12)$$

We identify  $GL(\mathfrak{g}) \cong GL_n$  and  $\text{End}(\mathfrak{g}) = \mathfrak{gl}_n$  by choosing any basis of  $\mathfrak{g}$  as a vector space. Then for  $t$  small enough we have

$$\exp(\text{ad}_X) = 1 + t \text{ad}_X + \frac{t^2}{2} \text{ad}_X^2 + \dots \quad (13)$$

Evaluating (12) in any  $X' \in \mathfrak{g}$  and taking the derivative in both sides yields

$$\text{ad}_X(X') = \frac{d}{dt} \Big|_{t=0} (\text{Ad}_{\exp(tX),*}(X')) \quad (14)$$

$$= \frac{d}{dt} \Big|_{t=0} \frac{d}{dt'} \Big|_{t'=0} \exp(tX) \exp(t'X') \exp(tX)^{-1} = [X, X'], \quad (15)$$

where we used Exercise 5 in sheet 1.

## 1.5 Excercise 5

The following famous result of Baker-Campbell-Hausdorff shows how to reconstruct the multiplication in a Lie group  $G$  from the Lie bracket of  $\text{Lie}(G)$ , at least in a neighborhood of the identity element.

If  $G$  is a Lie group, and  $X, Y \in \text{Lie}(G)$  are close enough to 0, then

$$\exp(X) \exp(Y) = \exp \left( \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sum_{\substack{a_1, \dots, a_n \geq 0 \\ b_1, \dots, b_n \geq 0}} \frac{[X, \dots, [X, [Y, \dots, [Y, \dots, [X, \dots, [X, [Y, \dots, Y] \dots]]]]]}{(a_1 + \dots + a_n + b_1 + \dots + b_n) a_1! \dots a_n! b_1! \dots b_n!} \right) \quad (16)$$

where the inner sum involves the iterated Lie bracket of  $a_1$  copies of  $X$ , followed by  $b_1$  copies of  $Y, \dots$ , followed by  $a_n$  copies of  $X$ , followed by  $b_n$  copies of  $Y$ .

Reverse engineer formula (16) as follows: suppose you're working in  $G = GL_n$  and you want to find  $Z$  such that  $\exp(X) \exp(Y) = \exp(Z)$ , and  $Z$  is given by linear combinations of commutators of  $X$  and  $Y$ . Find the parts of  $Z$  which are linear, then quadratic, then cubic ... in  $X, Y$  (do so explicitly up to whatever order you can).

**Solution.** If  $g \in GL_n$  is sufficiently close to the identity matrix 1, the series

$$\log(g) = (g - 1) - \frac{(g - 1)^2}{2} + \frac{(g - 1)^3}{3} - \dots \quad (17)$$

converges in  $\mathfrak{gl}_n$ . This tells us that the exponential map is invertible near the identity<sup>1</sup>. Then, after rescaling,

$$Z = \log(\exp(X) \exp(Y)) \quad (18)$$

will be well defined as an element of  $\mathfrak{gl}_n$ . We then compute

$$\exp(X) \exp(Y) = 1 + (X + Y) + \left( \frac{X^2}{2} + XY + \frac{Y^2}{2} \right) + \left( \frac{X^3}{3!} + \frac{XY^2}{2} + \frac{YX^2}{2} + \frac{Y^3}{3!} \right) + \dots$$

and we substitute in (17). Then, our matrix  $Z$  is

$$(X + Y) + \left( \frac{X^2}{2} + XY + \frac{Y^2}{2} \right) + \left( \frac{X^3}{3!} + \frac{XY^2}{2} + \frac{YX^2}{2} + \frac{Y^3}{3!} \right) + \dots \quad (19)$$

$$- \frac{(X + Y)^2}{2} - \left( (X + Y) \left( \frac{X^2}{2} + XY + \frac{Y^2}{2} \right) \right) - \dots \quad (20)$$

$$+ \frac{(X + Y)^3}{3} + \dots \quad (21)$$

$$\dots \quad (22)$$

where we find the terms of the same degree in the same column. Summing along the columns,

$$Z = (X + Y) + \frac{1}{2}[X, Y] \pm \frac{1}{12}[X, [X, Y]] \pm \frac{1}{12}[Y, [Y, X]] \pm \dots \quad (23)$$

## 1.6 Excercise 6

If the Baker-Campbell-Hausdorff formula was too much fun for you, then consider the following formula due to Campbell If  $G$  is a Lie group, and  $X, Y \in \text{Lie}(G)$ , then

$$\text{Ad}_{\exp(X)}(Y) = Y + [X, Y] + \frac{[X, [X, Y]]}{2!} + \frac{[X, [X, [X, Y]]]}{3!} + \dots$$

<sup>1</sup>Actually, this yields a diffeomorphism between a neighborhood of  $0 \in \mathfrak{g}$  and a neighborhood of  $e \in G$ . See [1].

and prove it for  $G = GL_n$ .

**Solution.** We need to compute

$$\exp(X)Y\exp(-X) = \left(Y + XY + \frac{X^2Y}{2} + \frac{X^3Y}{3!} + \dots\right) \left(1 - X + \frac{X^2}{2} - \frac{X^3}{3!} + \dots\right).$$

As before we organize the terms of the same degree in columns

$$\begin{aligned} Y - YX + \frac{YX^2}{2} - \frac{YX^3}{3!} + \dots \\ XY - XYX + \frac{XYX^2}{2} - + \dots \\ \frac{X^2Y}{2} - \frac{X^2YX}{2} + \dots \\ \frac{X^3Y}{3!} + \dots \end{aligned}$$

Summing along the columns we get the claim.

Alternatively, one can use the equation

$$\text{Ad}_{\exp(X)}(Y) = \exp^{\text{ad}X}(Y).$$

## References

- [1] Brian C. Hall. Lie groups, lie algebras, and representations: An elementary introduction. 2004.