1 Sheet 2

1.1 Excercise 1

Prove (at least for matrix groups) that the exponential
g— G, X — exp(X)
is invariant under the adjoint action, i.e.
exp(9Xg™") = gexp(X)g (1)
for any X € gl,, and g € GL,,.

Solution. Let X € gl,, and g € GL,,. Then

X -1\ __ (ng 1 - -1 __ X —1
exp(9Xg™") = Z Zg - Dyt = gexp(X)g.
n=0

1.2 Excercise 2

Then prove for any Lie group G that the abstractly defined exponential exp(X) = vx (1) satisfies
exp(Ady (X)) = Adg(exp(X)) (2)
forany g € G, X € g.

Solution. Let X € g, and set X’ = Ad, .(X) € g, for some g € G. Let yx(t) and yx/(t) be the associated
one parameter groups given by Excercice 4 in Sheet 1. We prove that the curve Ady(yx(¢t)) coincides with
vx-(t), so that follows from evaluating in ¢ = 1. By uniqueness, this amounts to verifying that both curves

solve the same differential equation
d

%’Y(t) =X\ (3)
~7(0) =e.

It is enough to compute the derivative of Ady(yx(¢)). This is

d d

A (1) = | Ady(x(t +5) = Ady o (Xya0), (4)

where the first equality holds because vx is a one parameter subgroup. The claim then follows from the equality

Ady.(Xp) = X!

ghg=1

between the left-invariant vector fields associated to X and X'.

1.3 Excercise 3

Let F: G — G’ be a Lie group homomorphism, and f = F, : g — g’ the induced linear map of tangent

spaces. Show that we have

[exp(f(X)) = Flexp(X)) | (5)




for all X € g. Conclude that f preserves the Lie bracket we defined last week

1

0 0 1 _
n_ v v Iyt Iy
(X, X'] = 5 Bt exp(tX) exp(t' X") exp(tX) " exp(t'X’) o (6)
in the sense that
LF(X, X)) = [f(X), F(X))]] (7)
for all X, X' € g.
Solution. The proof of
exp(f(X)) = F(exp(X)) (8)
is analogous to that of Excercise 2. Namely, one has to prove that
F(yx(t) = v (D). (9)
Finally, since F' and f are differentiable morphisms, we get
4 d2 -1 -1
FX, X)) = | F(ep(tX) Flexp(tX)) F(exp(tX) ™ Flesp(tX))
d? _ _
= | e (X)) explt F(X) exp(tf (X)) explt F(X)) 7 = [£(X), FX)
1.4 Excercise 4
Consider the adjoint representaton G — GL(g) and take its derivative
g — End(g), adx :g— g (10)
for all X € g. Then show that the Lie bracket @ satisfies
(X, X'] = adx (X') (11)
for all X, X’ € g.
Solution. We use the statement of Excercise 3 in the case at hand, that is
exp(adX) = Adcxp(X),* € GL(Q) (12)

We identify GL(g) = GL,, and End(g) = gl,, by choosing any basis of g as a vector space. Then for ¢ small

enough we have

t2
exp(adx) =1+ tadx —l—? ad?x+... (13)
Evaluating in any X’ € g and taking the derivative in both sides yields

d
adX(X/) = %

oo exp(tX) exp(t’ X ) exp(tX) ™! = [X, X'], (15)

o (Adegyux) (X)) (14)

d d
- %’t:o@

where we used Excercise 5 in sheet 1.



1.5 Excercise 5

The following famous result of Baker-Campbell-Hausdorff shows how to reconstruct the multiplication in a
Lie group G from the Lie bracket of Lie(G), at least in a neighborhood of the identity element.

If G is a Lie group, and X,Y € Lie(G) are close enough to 0, then

[e’e] _ i+b;>0,Vi
(—1)n—1 ¢ XX YL LXK XYL Y
X Y)= D 16
exp(X) exp(Y) = exp z:l n -0 (a1 4+ an+b1+--+by)ar!l...a,lby!. .. b,! (16)
n= A1,y..50n 2
b1,..sbn, >0
where the inner sum involves the iterated Lie bracket of a; copies of X, followed by b, copies of Y, ..., followed

by a, copies of X, followed by b,, copies of Y.

Reverse engineer formula as follows: suppose you're working in G = GL,, and you want to find Z such that
exp(X)exp(Y) = exp(Z), and Z is given by linear combinations of commutators of X and Y. Find the parts

of Z which are linear, then quadratic, then cubic ... in X, Y (do so explicitly up to whatever order you can).

Solution. If g € GL, is sufficiently close to the identity matrix 1, the series

(9-1)72  (g—1)°
g

log(g) = (9 —1) - (17)
converges in gl,,. This tells us that the exponential map is invertible near the identityﬂ Then, after rescaling,

Z = log(exp(X) exp(Y) (18)

will be well defined as an element of gl,,. We then compute

X2 v? X% Xy? YX? Y3
5 5 )+ — +..

exp(X)exp(Y)1+(X+Y)+<+XY+ ?4’ 5t +§

and we substitute in (L7)). Then, our matrix 7 is

X? y? X3 XY? YvYXx? Y3
X+Y — + XY + — —t —t—+ = 1
(+)+<2+ +2>+(3!+2+2+3!)+ (19)
X +Y)? X2 Y2
—()—<(X+Y)(+XY+ )— (20)
2 2 2
X+Y)3
_}.g (21)
3
(22)
where we find the terms of the same degree in the same coloumn. Summing along the coloumns,
1 1 1
Z=(X+Y)+ 35X V] + = [X Y]+ SV [V, X] £ .. (23)

1.6 Excercise 6

If the Baker-Campbell-Hausdorff formula was too much fun for you, then consider the following formula
due to Campbell If G is a Lie group, and X,Y € Lie(G), then

XY I DY)
2! 3!
L Actually, this yields a diffeomorphism between a neighborhood of 0 € g and a neighborhood of e € G. See [I].

Adexp(X) (Y) =Y+ [Xv Y] +




and prove it for G = GL,,.
Solution. We need to compute

X2y X3 X2 X3
exp(X)Yexp(X)—<Y+XY+ 5 + 30 Jr) <1X+23|+...).

As before we organize the terms of the same degree in coloumns

2 3
Y—YX+YX RE.SO
2 3!
2
XYfXYXJrXYX -
X2Y7X2YX
2 2
X3y
3l +...

Summing along the coloumns we get the claim.

Alternativly, one can use the equation

Adcxp(X) (Y) = eXpadX (Y)
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