Math 429 - Exercise Sheet 12

1. Check the Serre relation

for the classical Lie algebras sl,,, 0,,, 5p,,, (where E; denote generators of the simple root spaces).

Solution. The root system associated to the Lie algebra sl, is A,,. We choose the simple roots
{a; = €; — €jq1}i=1,..n—1 with the usual notation. With this convention, the generator of the
simple root space associated to the root «; is the elementary matrix E;; i (again with the usual
notations). Moreover, the associated Cartan matrix is

2 -1 0 0
-1 2 -1 0
0 -1 2 -1 0
~1

0 -1 2 |

Then for j = ¢ 4 1 the Serre relation in the statement reduces to
1—ci
ady 7 (Ej) = [Biit1, [Bii1, Ej ] = 0, (1)

and for other values of j .
ady “(E;) = [Biiv1, Ejj1] = 0. (2)

k3

The root system associated to the Lie algebra sos, is D,,. We make the same choice of simple roots
as in Sheets 10 and 11. We worked out in Sheet 9 that the generators of the root spaces associated
to the simple roots By = e —egy1, k=1,...,n — 1 are the matrices Cl:j,k+1' Recall that C/?,k;+1 is
defined as the 2 x 2 block matrix having

in the (k,k + 1)th block and —(C®)T in the (k + 1, k)th block. Moreover, the generator of the root
space associated to the simple root 3,, = e, _1 + e, is the matrix C(l from Sheet 9, having

n—1,n)
L
¢ = [z —1]

in the (n — 1,n)th block and —(C®)T in the (n,n — 1)th block. Finally recall the Cartan matrix
from Sheet 11. Knowing these data, we can verify Serre relation in the statement. Observe that
for 1 <i,5 <n —1 these relations are the same as those of sl,, in and , modulo substituting

3 3
Eijiv1~ Ciiyy and Ejjq~ Cjyy. (3)



These can be verified by computation. Concerning the last root, we have to verify that
[Cg,k—kla C}L_Ln] =0 for all k #n — 2,

and
3 3 1
[Cn—Q,n—b [Cn—2,n—l7 Cn—l,n“ =0.
We compute the last equation explicitely

0 0 0
0 c? 0| 0 c?oof- 0 0 0 =
(3T 0 0 —(CcHT 0 0 0 0 Ct
L 0 0 o] |L 0 0 0] | 0 —(cHT o]
o T o o
0 c? ool 0 0 0 =
—(CcHT 0 0 0 0 c3ot
L 0 0 0] | 0 (CcHTeHt o ||
" -
0 0 0 =0
0 0 —(cHT o3¢t
! 0 —(CH)T(CcHTe 0

The procedure for the other simple Lie algebras s02,4+1 and sps,, is the same, knowing the generators
for every root space from Sheet 9 and the Cartan matrices from Sheet 11.

2. Check the well-definedness of the action in Proposition 30.

Solution. Let
¢: go — gl(TV)

be the representation from Proposition 30. We check that ¢ is a homomorphism of Lie algebras.
Clearly ¢(H;) and ¢(H;) commute because they are diagonal operators. Now we compute

[9(Ei), o(F)] (v, @ -+ - @ vj,,)

B @)y @ Quj, — S(F) D (Cijoy + o+ i) (05, @ B0, Dy, ® B,
1<s<n s.t. js=i

dij(Cijy + -+ + ¢ij, ) (Vj, @ -+ @ wj, )+
0, ® D (G o+ )0, @ B, ® vy, @ vy, )—

1<s<n s.t. js=1i

—o(F}) > (o )0y © Qv Oy, © - B y,) =

1<s<n s.t. js=t

Oijp(H;) (v, @+ @y, ).



Moreover,

[9(H;), d(E:)](vj, @ - @ vj,) =

S(H) D (g F )0y @ Qv ®vj,, @ Qvy,)—
1<s<n s.t. js=i

(Ej)(cjgn + -+ ¢jn) (0 @+ ®vj,) = —
Z (cijs+1 +oeet Cijn)(cj7j1 t GG T Cje ot chn)(vjl Q- QVj,_ ®Vj @+ B an)
1<s<n s.t. js=1t

+ Y (Gt ) (G ) Wi ® - © vy, B, ® - Q) =
1<s<n s.t. js=t

¢jio(Ei)(vj, @ -+ @ vj,).
Finally, the relation
[0(Hj), o(F3)] = —¢;.ip(F3)

is the easiest to check.

3. Prove the formula )

[Fiadg, ™ (E;)] = 0 (4)
in the Lie algebra g¢, for any 7 # j and k. In other words, show that the Lie brackets above are 0
by using only antisymmetry, the Jacobi identity, and relations (154)-(157). Hint: show that

l—Cij

1—c;; 1- Cij 1—c;—t
oy, () = 3 (-1 (1) Bt )

t=0
in U(gc), and use this to prove in U(go).
Solution. We follow the suggested procedure and prove equation by induction on 1 —¢;; > 1.
The base case c;; = 0 is obvious. For the inductive step, we observe that
EE;—E;E;
1—Cij+1—t

1—c;j—t e S P S 1—cij—t
[E%E;?EjEz‘ “ ]:Ef [EiﬂEj] E; :Ef—i_lEjEi “ _EijEz'

7

Thus, when expanding [E;, adlEjC“ (E;)] via (B]), we get a sum where the coefficient of each term

BB E T s
1—cj 1—cj 1—cy+1
_1t v\ -1 t+1 LY _1t ) .
() e (L) = e (U

This proves equation . In order to prove equation we observe that the only nontrivial cases
are k=1,j. If k = 7, equation and Liebnitz formula give

1—c;j

e 1—ci; P e
Fjsady, @ (By)| = 3 (—1)t< tcw>EijEil T = ady, Y (Hy),
t=0

and the relation of g¢ tell us that the right hand side vanishes. Finally, let k = 4 in . We work
out the case ¢; ; = —1 explicitely. Using we have

[F;,ad%, (E;)] = [Fi, EfE; — 2E;E;E; + E;E7). (6)



We expand the first summand by using relations (154)-(157) and the defining relations of the
universal enveloping algebra. This gives

[F;, E?Ej| = H;E,E; + E;H;E; =
(EZHzEJ — Ci,z‘Ez'Ej) + E,LHZEJ =
2E2Esz - Ci,iEiEj - 2C¢7jEiEj = 2E1E]H,L

Performing analogous computations for each term of (@ gives [Fi, adQEi (EJ)] =0.

4. In the lecture, we showed how to associate to any Dynkin diagram X a complex semisimple
Lie algebra gx. Show that if a Dynkin diagram Y contains another Dynkin diagram X inside it
(by which we mean that X contains as many edges between any two of its vertices as Y did), then
there is an injective homomorphism gx < gy between the corresponding Lie algebras.

Solution. Assume that X is irreducible and let C'x and Cy be the Cartan matrices associated
to X and Y respectively. The hypothesis that X is contained in Y is equivalent to saying that
Cx =

=[] .
In turn, equation tells us that the Lie algebra gy has a subset of generators whose relations
(154) — (159) match those of the generators of gx. Then we have a morphism gx — gy. The
aforementioned morphism is necessarely injective since the Lie algebra gx is simple. If X is not
irreducible, it is enough to run the above proof for all irreducible components of X.

As an example, observe that can be extended to a homomorphism sl,, < 09,.

(*) With the notation from the lecture notes, prove that i is contained in any ideal of gc that has
finite codimension (i.e. g¢ is the largest finite-dimensional quotient of g¢).



