
Math 429 - Exercise Sheet 12

1. Check the Serre relation
ad

1−cij
Ei

(Ej) = 0

for the classical Lie algebras sln, on, sp2n (where Ei denote generators of the simple root spaces).

Solution. The root system associated to the Lie algebra sln is An. We choose the simple roots
{αi = ei − ei+1}i=1,...,n−1 with the usual notation. With this convention, the generator of the
simple root space associated to the root αi is the elementary matrix Ei,i+1 (again with the usual
notations). Moreover, the associated Cartan matrix is

2 −1 0 . . . . . . 0
−1 2 −1 . . . . . . 0
0 −1 2 −1 . . . 0

. . . −1
0 . . . . . . . . . −1 2

 .

Then for j = i± 1 the Serre relation in the statement reduces to

ad
1−cij
Ei

(Ej) = [Ei,i+1, [Ei,i+1, Ej,j+1]] = 0, (1)

and for other values of j
ad

1−cij
Ei

(Ej) = [Ei,i+1, Ej,j+1] = 0. (2)

The root system associated to the Lie algebra so2n is Dn. We make the same choice of simple roots
as in Sheets 10 and 11. We worked out in Sheet 9 that the generators of the root spaces associated
to the simple roots βk = ek − ek+1, k = 1, . . . , n− 1 are the matrices C3

k,k+1. Recall that C
3
k,k+1 is

defined as the 2× 2 block matrix having

C3 =

[
1 −i
i 1

]
in the (k, k+1)th block and −(C3)T in the (k+1, k)th block. Moreover, the generator of the root
space associated to the simple root βn = en−1 + en is the matrix C1

(n−1,n) from Sheet 9, having

C1 =

[
1 i
i −1

]
in the (n − 1, n)th block and −(C3)T in the (n, n − 1)th block. Finally recall the Cartan matrix
from Sheet 11. Knowing these data, we can verify Serre relation in the statement. Observe that
for 1 ≤ i, j ≤ n− 1 these relations are the same as those of sln in (1) and (2), modulo substituting

Ei,i+1 ⇝ C3
i,i+1 and Ej,j+1 ⇝ C3

j,j+1. (3)
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These can be verified by computation. Concerning the last root, we have to verify that

[C3
k,k+1, C

1
n−1,n] = 0 for all k ̸= n− 2,

and
[C3

n−2,n−1, [C
3
n−2,n−1, C

1
n−1,n]] = 0.

We compute the last equation explicitely


0

. . .

0 C3 0
−(C3)T 0 0

0 0 0

 ,




0

. . .

0 C3 0
−(C3)T 0 0

0 0 0

 ,


0

. . .

0 0 0
0 0 C1

0 −(C1)T 0





 =




0

. . .

0 C3 0
−(C3)T 0 0

0 0 0

 ,


0

. . .

0 0 0
0 0 C3C1

0 (C1)T (C3)T 0



 =


0

. . .

0 0 0
0 0 −(C3)TC3C1

0 −(C1)T (C3)TC3 0

 = 0.

The procedure for the other simple Lie algebras so2n+1 and sp2n is the same, knowing the generators
for every root space from Sheet 9 and the Cartan matrices from Sheet 11.

2. Check the well-definedness of the action in Proposition 30.

Solution. Let
ϕ : g̃C −→ gl(TV )

be the representation from Proposition 30. We check that ϕ is a homomorphism of Lie algebras.
Clearly ϕ(Hi) and ϕ(Hj) commute because they are diagonal operators. Now we compute

[ϕ(Ei), ϕ(Fj)](vj1 ⊗ · · · ⊗ vjn) =

ϕ(Ei)vj ⊗ vj1 ⊗ · · · ⊗ vjn − ϕ(Fj)
∑

1≤s≤n s.t. js=i

(cijs+1 + · · ·+ cijn)(vj1 ⊗ · · · ⊗ vjs−1 ⊗ vjs+1 ⊗ · · · ⊗ vjn) =

δij(cij1 + · · ·+ cijn)(vj1 ⊗ · · · ⊗ vjn)+

+vj ⊗
∑

1≤s≤n s.t. js=i

(cijs+1 + · · ·+ cijn)(vj1 ⊗ · · · ⊗ vjs−1 ⊗ vjs+1 ⊗ · · · ⊗ vjn)−

−ϕ(Fj)
∑

1≤s≤n s.t. js=i

(cijs+1 + · · ·+ cijn)(vj1 ⊗ · · · ⊗ vjs−1 ⊗ vjs+1 ⊗ · · · ⊗ vjn) =

δijϕ(Hi)(vj1 ⊗ · · · ⊗ vjn).
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Moreover,

[ϕ(Hj), ϕ(Ei)](vj1 ⊗ · · · ⊗ vjn) =

ϕ(Hj)
∑

1≤s≤n s.t. js=i

(cijs+1 + · · ·+ cijn)(vj1 ⊗ · · · ⊗ vjs−1 ⊗ vjs+1 ⊗ · · · ⊗ vjn)−

ϕ(Ej)(cj,j1 + · · ·+ cj,jn)(vj1 ⊗ · · · ⊗ vjn) = −∑
1≤s≤n s.t. js=i

(cijs+1 + · · ·+ cijn)(cj,j1 + · · ·+ cj,js−1 + cj,js+1 + · · ·+ cj,jn)(vj1 ⊗ · · · ⊗ vjs−1 ⊗ vjs+1 ⊗ · · · ⊗ vjn)

+
∑

1≤s≤n s.t. js=i

(cijs+1 + · · ·+ cijn)(cj,j1 + · · ·+ cj,jn)(vj1 ⊗ · · · ⊗ vjs−1 ⊗ vjs+1 ⊗ · · · ⊗ vjn) =

cj,iϕ(Ei)(vj1 ⊗ · · · ⊗ vjn).

Finally, the relation
[ϕ(Hj), ϕ(Fi)] = −cj,iϕ(Fi)

is the easiest to check.

3. Prove the formula
[Fk, ad

1−cij
Ei

(Ej)] = 0 (4)

in the Lie algebra g̃C , for any i ̸= j and k. In other words, show that the Lie brackets above are 0
by using only antisymmetry, the Jacobi identity, and relations (154)-(157). Hint: show that

ad
1−cij
Ei

(Ej) =

1−cij∑
t=0

(−1)t
(
1− cij

t

)
Et

iEjE
1−cij−t
i (5)

in U(g̃C), and use this to prove (4) in U(g̃C).

Solution. We follow the suggested procedure and prove equation (5) by induction on 1− cij ≥ 1.
The base case cij = 0 is obvious. For the inductive step, we observe that

[Ei, E
t
iEjE

1−cij−t
i ] = Et

i

EiEj−EjEi︷ ︸︸ ︷
[Ei, Ej ] E

1−cij−t
i = Et+1

i EjE
1−cij−t
i − Et

iEjE
1−cij+1−t
i .

Thus, when expanding [Ei, ad
1−cij
Ei

(Ej)] via (5), we get a sum where the coefficient of each term

Et+1
i EjE

1−cij−t
i is

(−1)t
(
1− cij

t

)
− (−1)t+1

(
1− cij
t+ 1

)
= (−1)t

(
1− cij + 1

t

)
.

This proves equation (5). In order to prove equation (4) we observe that the only nontrivial cases
are k = i, j. If k = j, equation(5) and Liebnitz formula give

[
Fj , ad

1−cij
Ei

(Ej)
]
=

1−cij∑
t=0

(−1)t
(
1− cij

t

)
Et

iHjE
1−cij−t
i = ad

1−cij
Ei

(Hj),

and the relation of g̃C tell us that the right hand side vanishes. Finally, let k = i in (4). We work
out the case ci,j = −1 explicitely. Using (5) we have[

Fi, ad
2
Ei
(Ej)

]
= [Fi, E

2
i Ej − 2EiEjEi + EjE

2
i ]. (6)
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We expand the first summand by using relations (154)-(157) and the defining relations of the
universal enveloping algebra. This gives

[Fi, E
2
i Ej ] = HiEiEj + EiHiEj =

(EiHiEj − ci,iEiEj) + EiHiEj =

2EiEjHi − ci,iEiEj − 2ci,jEiEj = 2EiEjHi.

Performing analogous computations for each term of (6) gives
[
Fi, ad

2
Ei
(Ej)

]
= 0.

4. In the lecture, we showed how to associate to any Dynkin diagram X a complex semisimple
Lie algebra gX . Show that if a Dynkin diagram Y contains another Dynkin diagram X inside it
(by which we mean that X contains as many edges between any two of its vertices as Y did), then
there is an injective homomorphism gX ↪→ gY between the corresponding Lie algebras.

Solution. Assume that X is irreducible and let CX and CY be the Cartan matrices associated
to X and Y respectively. The hypothesis that X is contained in Y is equivalent to saying that

CY =

[
CX ∗
∗ ∗

]
. (7)

In turn, equation (7) tells us that the Lie algebra gY has a subset of generators whose relations
(154) − (159) match those of the generators of gX . Then we have a morphism gX → gY . The
aforementioned morphism is necessarely injective since the Lie algebra gX is simple. If X is not
irreducible, it is enough to run the above proof for all irreducible components of X.
As an example, observe that (3) can be extended to a homomorphism sln ↪→ o2n.

(*) With the notation from the lecture notes, prove that i is contained in any ideal of g̃C that has
finite codimension (i.e. gC is the largest finite-dimensional quotient of g̃C).
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