
Math 429 - Exercise Sheet 5 Solutions

1 Excercise 1

Express the adjoint representation of sl2,C in terms of the irreducible representations L(n) from the
Lecture (try doing so as explicitly as possible).

Solution. The usual basis

E =

[
0 1
0 0

]
, H =

[
1 0
0 −1

]
, F =

[
0 0
−1 0

]
is a basis of eigenvectors for the adjoint action of H on sl2. In particular, we have

adH(E) = 2E, adH(H) = 0, adH(F ) = −2F.

The adjoint representation is irreducible and thus it is isomorphic to L(2).

2 Excercise 2

Recall the isomorphism sl2,C ∼= so3,C from the previous exercise sheet. Express the standard 3-
dimensional representation of sl3,C in terms of the irreducible representations L(n) from the Lecture
(try doing so as explicitly as possible).

Solution. With the same notations as in the previous excercise sheet, we see that the isomorphisn
sl2,C ∼= so3,C sends H to

−i2A = 2

0 −i 0
i 0 0
0 0 0

 .
This matrix admits a basis of eigenvectors over the complex numbers,

C3 =

1i
0

C⊕

−1
i
0

C⊕

00
1

C.

The first eigenvector has eigenvalue 2, the second one has eigenvalue −2, and the third vector is in
the kernel of H. Furthermore, the isomorphism sl2,C ∼= so3,C sends F to

B + iC =

0 0 −1
0 0 i
1 −i 0

 .
Then we can verify that

F ·

1i
0

 = 2

00
1

 , F ·

00
1

 =

−1
i
0

 , F ·

−1
i
0

 = 0.
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Thus this representation is isomorphic to L(2).

Note, however, that the isomorphism sl2,C ∼= so1,3 of real Lie algebras gives rise to a 4-dimensional
real representation of sl2,C which does not fit into the framework from Lecture, since the latter only
applies to complex representations.

3 Complete reducibility for sl2,C

In what follows, we will show that any finite-dimensional complex representation sl2,C ↷ V is
completely reducible, as long as H acts on V by a diagonalizable matrix (the latter condition holds
due to the Jordan decomposition in semisimple Lie algebras, which we will study in Lecture 8).

Before going through the excercise, we state some concequences of the above assumptions.

Lemma 1. Under our assumptions, E and F act as nilpotent endomorphisms. Moreover, all the
eigenvalues of H are integers.

Proof. Since H is diagonalizable, we have a decomposition of V (as a vector space)

V =
⊕
l∈C

Vl,

where Vl = {v ∈ V |Hv = lv}. The relations of sl2 imply that E(Vl) ⊂ Vl+2 and F (Vl) ⊂ Vl−2.
Since V is finite dimensional, we conclude that E and F are nilpotent.
Let v be an eienvector for H and let l ∈ C be the relative eigenvalue. Let k + 1 be the smallest
integer such that F k+1v = 0, and consider the nonzero vectors

v0 = v, v1 = Fv, . . . , vk = F kv.

Then the relations of sl2 yield

Hvi = (l − 2i)vi and Evi = (l − i+ 1)ivi.

Thus
0 = Evk+1 = (l − (k + 1) + 1)(k + 1)vk

which implies l = k ∈ Z.

3.1 Excercise 3

Show that V is isomorphic (as a representation of sl2,C) to the direct sum of the generalized
eigenspaces of the Casimir operator C

V =
⊕
n≥0

{
v ∈ V

∣∣∣ (C − n(n+ 2)

2
· I

)N

(v) = 0 for some N ≫ 0

}

Solution. We know from linear algebra that V has a decomposition into generalized eigenspaces
for C

V =
⊕
λ∈C

{
v ∈ V

∣∣∣ (C − λ · I)N (v) = 0 for some N ≫ 0
}
.
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Since C commutes with sl2 in End(V ), it is easy to see that these generalized eigenspaces are in
fact subrepresentations of V .
Thus it remains to show that the generalized eigenvalues of C are those prescribed by the statement.
To this regard, suppose that Cv = λv. Since E is nilpotent by Lemma 1, we can take k + 1 to be
the smallest integer such that Ek+1v = 0. Since E commutes with C, the vector v′ = Ekv satisfies
again the eigenvector equation

Cv′ = λv′. (1)

On the other side

Cv′ =

(
2FE +H +

H2

2

)
v′ =

(
H +

H2

2

)
v′. (2)

Combining (1) and (2) we conclude that λ is an eigenvalue for H+ H2

2 . Lemma 1 then implies that

λ =
n(n+ 2)

2
,

where n ∈ Z is the H-eigenvalue associated to v′.

As a consequence, we henceforth restrict attention to proving the complete reducibility of a repre-
sentation sl2,C ↷ V on which C has a single generalized eigenvalue, say n(n+2)

2 .

Again, this assumption has an immediate consequence.

Lemma 2. Under the above assumption, let 0 ̸= v ∈ V be a vector such that Ev = 0. Then
Hv = nv, and the subrepresentation of V generated by v is isomorphic to L(n).

Proof. Reasoning as in the proof of Lemma 1, we see that

Ker(E) =
⊕
l′∈Z

Vl = Vn, (3)

where the direct sum is performed over the eigenvalues l′ of H such that Vl′ ̸= 0 and Vl′+2 = 0. We

see from the proof of Excercise 3 that for every such integer, l′(l′+2)
2 is an eigenvalue for C, and the

second equality in (3) follows.
Let ⟨v⟩ be the subrepresentation of V generated by v. Elements in ⟨v⟩ are of the form

x · v

where x is a polyniomial in E,F,H with complex coefficients. Since Ev = 0 and Hv = nv, such
expression can be simplified to a complex linear combination of v, Fv, . . . , Fnv, where n is the
least integer such that Fn+1v = 0 because v ∈ Vn. Then ⟨v⟩ = Span(v, Fv, . . . , Fnv) is naturally
isomorphic (as a representation) to L(n).

3.2 Excercise 4

Show that any irreducible sub or quotient representation of V as above is isomorphic to L(n), hence
the eigenvalues of H (which we assume to be diagonalizable) are n, n− 2, . . . , 2− n,−n.

Solution. An irreducible subrepresentationW od V is isomorphic to L(m) wherem+1 = dimW .
Let 0 ̸= w ∈ W be such that Ev = 0. Then Hw = mw by the definition of L(m), and Ew = nw
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by Lemma 2, thus m = n.
Similarly, let V/W ∼= L(m) be an irreducible quotient representation of V . The action of C on this

quotient has the same generalized eigenvalue n(n+2)
2 as the action on V . Reasoning as above, this

gives m = n.

3.3 Excercise 5

Show that V is completely reducible by induction on dimV and the following statement: any
surjective sl2,C intertwiner g : V ↠ L(n) splits, i.e. ∃ψ : L(n) → V such that g ◦ ψ = Id.

Hint: note that Ker g ∼= L(n)⊕k for some k. It suffices to pick some eigenvector of H in V \Ker g
with eigenvalue n, and to show that it generates a subrepresentation of V isomorphic to L(n).

Solution. Observe that a surjective morphism g : V ↠ L(n) exists. Indeed, if V is not
irreducible, we can take a maximal proper subrepresentation {0} ≠ W ⊂ V . Then the quotient
V/W is irreducible and thus it is isomorphic to L(n) by Excercise 4. By the inductive hypothesis
W = Ker(g) is completely reducible, and Excercise 4 tells us that W ∼= L(n)⊕k for some integer k.
Then we get an exact sequence of representations

0 → L(n)⊕k → V → L(n) → 0. (4)

Finally, take a nonzero vector v ∈ V−W such that Ev = 0, which exists since E is nilpotent. Lemma
2 implies that ⟨v⟩ ∼= L(n). Moreover, ⟨v⟩ ∩W = {0} since the intersection of subrepresentations is
a subrepresentation, and ⟨v⟩ is irreducible. This proves that the exact sequence (4) splits, and the
splitting lemma concludes.
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