Math 429 - Exercise Sheet 5 Solutions

1 Excercise 1

Express the adjoint representation of sly ¢ in terms of the irreducible representations L(n) from the
Lecture (try doing so as explicitly as possible).

Solution. The usual basis
01 1 0 0 O
el o=l A= ]
is a basis of eigenvectors for the adjoint action of H on sls. In particular, we have
adH(E) = 2E, adH(H) == 0, adH(F) = —2F.

The adjoint representation is irreducible and thus it is isomorphic to L(2).

2 Excercise 2

Recall the isomorphism sl ¢ = so3 ¢ from the previous exercise sheet. Express the standard 3-
dimensional representation of sl3 ¢ in terms of the irreducible representations L(n) from the Lecture
(try doing so as explicitly as possible).

Solution. With the same notations as in the previous excercise sheet, we see that the isomorphisn
sly c = s03,c sends H to

0 —7 O
—2A =217 0 O
0 0 0
This matrix admits a basis of eigenvectors over the complex numbers,
1 [—1 0
Cc*=l|i|Ca|i|Cao |0|C.
0 | 0 1

The first eigenvector has eigenvalue 2, the second one has eigenvalue —2, and the third vector is in
the kernel of H. Furthermore, the isomorphism sly ¢ = s03 ¢ sends F' to

0 0 -1
B+iC=1(0 0 i
1 — 0
Then we can verify that
1 0 0 -1 -1
F-lil=2|0(,F-|0|=|3¢]|,F-|i]|=0
1 1 0 0



Thus this representation is isomorphic to L(2).

Note, however, that the isomorphism sly c = s01 3 of real Lie algebras gives rise to a 4-dimensional
real representation of sly c which does not fit into the framework from Lecture, since the latter only
applies to complex representations.

3 Complete reducibility for sl; ¢

In what follows, we will show that any finite-dimensional complex representation sloc ~ V is
completely reducible, as long as H acts on V' by a diagonalizable matrix (the latter condition holds
due to the Jordan decomposition in semisimple Lie algebras, which we will study in Lecture 8).

Before going through the excercise, we state some concequences of the above assumptions.

Lemma 1. Under our assumptions, E and F act as nilpotent endomorphisms. Moreover, all the
etgenvalues of H are integers.

Proof. Since H is diagonalizable, we have a decomposition of V' (as a vector space)
V=@
leC

where V; = {v € V|Hv = lv}. The relations of sly imply that E(V}) C Vj4o and F(V)) C V_s.
Since V is finite dimensional, we conclude that £ and F' are nilpotent.

Let v be an eienvector for H and let [ € C be the relative eigenvalue. Let k + 1 be the smallest
integer such that F**1y = 0, and consider the nonzero vectors

vo=v, v, = Fu,...,v = FFo.
Then the relations of sly yield
Hv; = (I —2i)v; and Ewv; = (I —1i+ 1)iv;.

Thus
O0=Fvgp1=0—(k+1)+1)(k+ 1)y

which implies [ = k € Z. O

3.1 Excercise 3

Show that V' is isomorphic (as a representation of slyc) to the direct sum of the generalized
eigenspaces of the Casimir operator C'

V:@{UEV‘ (C—n(n—i_z)-I)N(U):OforsomeN>>0}

2
n>0

Solution. We know from linear algebra that V has a decomposition into generalized eigenspaces
for C
V:@{UGV’(C—)\‘I)N(U):0f0rsomeN>>O}.
AeC



Since C' commutes with sly in End(V), it is easy to see that these generalized eigenspaces are in
fact subrepresentations of V.

Thus it remains to show that the generalized eigenvalues of C' are those prescribed by the statement.
To this regard, suppose that Cv = Av. Since F is nilpotent by Lemma [I} we can take k + 1 to be
the smallest integer such that E*¥*1y = 0. Since E commutes with C, the vector v/ = E*v satisfies
again the eigenvector equation

Cv' =M. (1)
On the other side
H? H?
Cv'=(2FE+H+ — v =H+—/ ). (2)
2 2
Combining and we conclude that X is an eigenvalue for H + HTQ Lemmathen implies that

n(n + 2)

A= 5

where n € Z is the H-eigenvalue associated to v’.

As a consequence, we henceforth restrict attention to proving the complete reducibility of a repre-
sentation sly c ~ V' on which C has a single generalized eigenvalue, say 771(”;2)

Again, this assumption has an immediate consequence.

Lemma 2. Under the above assumption, let 0 % v € V be a vector such that Fv = 0. Then
Hv = nv, and the subrepresentation of V' generated by v is isomorphic to L(n).

Proof. Reasoning as in the proof of Lemma [I} we see that
Ker(E) = PV =V, (3)
ez
where the direct sum is performed over the eigenvalues I’ of H such that Vs # 0 and Vj/, 5 = 0. We

see from the proof of Excercise 3 that for every such integer, WTH) is an eigenvalue for C, and the

second equality in follows.
Let (v) be the subrepresentation of V' generated by v. Elements in (v) are of the form

T v

where x is a polyniomial in F, F, H with complex coefficients. Since Fv = 0 and Hv = nwv, such

expression can be simplified to a complex linear combination of v, Fv,..., F™v, where n is the
least integer such that F"*lv = 0 because v € V,,. Then (v) = Span(v, Fv, ..., F™) is naturally
isomorphic (as a representation) to L(n). O

3.2 Excercise 4

Show that any irreducible sub or quotient representation of V' as above is isomorphic to L(n), hence
the eigenvalues of H (which we assume to be diagonalizable) are n,n —2,...,2 —n, —n.

Solution. An irreducible subrepresentation W od V' is isomorphic to L(m) where m+1 = dim W.
Let 0 # w € W be such that EFv = 0. Then Hw = mw by the definition of L(m), and EFw = nw



by Lemma [2| thus m = n.
Similarly, let V/W = L(m) be an irreducible quotient representation of V. The action of C' on this
quotient has the same generalized eigenvalue w as the action on V. Reasoning as above, this

gives m = n.

3.3 Excercise 5

Show that V is completely reducible by induction on dimV and the following statement: any
surjective sly ¢ intertwiner g : V' — L(n) splits, i.e. 3¢ : L(n) — V such that g oy =Id.

Hint: note that Ker g = L(n)®* for some k. It suffices to pick some eigenvector of H in V\Ker g
with eigenvalue n, and to show that it generates a subrepresentation of V' isomorphic to L(n).

Solution. Observe that a surjective morphism g : V. — L(n) exists. Indeed, if V is not
irreducible, we can take a maximal proper subrepresentation {0} # W C V. Then the quotient
V/W is irreducible and thus it is isomorphic to L(n) by Excercise 4. By the inductive hypothesis
W = Ker(g) is completely reducible, and Excercise 4 tells us that W =2 L(n)®* for some integer k.
Then we get an exact sequence of representations

0— L(n)®* -V = L(n) - 0. (4)

Finally, take a nonzero vector v € V—W such that Ev = 0, which exists since F is nilpotent. Lemma
implies that (v) = L(n). Moreover, (v) N W = {0} since the intersection of subrepresentations is
a subrepresentation, and (v) is irreducible. This proves that the exact sequence splits, and the
splitting lemma concludes.
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