Math 429 - Exercise Sheet 10

1. In the previous exercise sheet, you worked out the root decompositions of the complex semisimple
Lie algebras of types A, B, C, D. In each of those cases, write out all the roots as linear combinations
of a fixed choice of simple roots.

Solution. Consider the root system A,1, with the decomposition from Lecture 10
R+:{ei—ej 1<i<j<n} R ={ej—e;|l1<j<i<n}.
The simple roots are a; = e; — e;41 for i = 1,...,n. Then we can write positive roots as
€ —€ =o;+ -+ a5
for every 1 < i < j <n. The decomposition of negative roots follows.

Recall the root system D,, associated to the Lie algebra 09, from excercise sheet 9. The notation
A= (ay...,ap) stands for the 2 x 2 block-diagonal matrices whose kth block is

0 af
oo 1)
for some ap € C. Let b be the toral subalgebra which consists of all matrices A = (ay,...,a,) as
above. A basis for the dual h* is given by the linear maps ay: A = (aq,...,a,) — ag, and we found

the 2n(n — 1) roots
{i(ar £ )} C b (2)

We can see the subset (2)) as a root system by means of the non-degenerate product (A, B) — tr(AB)
on . More precisely, the R-vector space generated by the roots is isometric to the standard
euclidean space R via the identification

) 1
1 = —€k.
2

Thus after rescaling by a factor of 2 we get the root system {#+e; + ¢;} C R®. We make the
following choices of positive roots

Rt ={ex —epepr+e |1<k<l<n} (3)
and of simple roots
Br=er—epr1, k=1,...,n—1, By =-en_1+ey.
Then the positive roots admit the following decomposition

ex—e =P+ + Bi—1,
ep+en = (e —en_1)+ (en—1+en) =Bk + -+ B2+ Bn,
ext+e=(exten)+(eg—en) =0+ +Bn2at+bButfi+-+PBn1,



and the decomposition of negative roots follows.

We proceed as above. The roots of the Lie algebra 09,41 are identified with the root system
(er £ €1, +ey, ‘ 1<k<l<n}cCR" (4)

The positive roots are

RT ={ep —ep,en +ep,ep ‘ 1<k<l<n},
and the simple roots are

Br=e,—ep_1, k=1,....n—1, B, =e,.
Then the positive roots admit the following decomposition

ex —e = Pr+ -+ Bi-1,

er = (e —en) +en =0+ =+ Bno1 + Bn,
exte =0+ -+ B+ B+ + B,

and the decomposition of negative roots follows.

Finally we carry out the same computation for the root system C),, associated to the Lie algebra
5pP,,,. We have the root system

[der £ €1, +2¢; ‘ 1<k<l<n}cCR" (5)
The positive roots are
RT = {ep — e, er + e, 2ep, ‘ 1 <k<l<n},
and the simple roots are
Br=er—ep_1, k=1,...,.n—1, B, =2e,.
Then the positive roots admit the following decomposition
ex —er =P+ + Bi-1,

2er, = (2er, — 2e,) + 25, =20k + -+ + 2Bp—1 + Bn,
er+e =20+ +208p1+ B+ 281+ -+ 281+ B,

and the decomposition of negative roots follows.
2. Show that the following subset of R"

R={%eit2e} _ u{xeit e}

1<i<n 1<i<j<n

determines a non-reduced root system, i.e. satisfies all axioms in Definition 19, except for (136)
(specifically, if a is a root, then we do allow 2 or § to be a root). It is called “type BC),”.

Solution. The set R clearly generates R"”. Moreover most of axioms (137) and (138) in Definition
19 follow from the same statements for the root systems B, and C,. We only have to check that
2(€i72€j) 2(€i72€j)

=46, and e, 0, = oD = 5, ;
(eiye’i) 4,55 Il CQ(aj,eZ (2€j72€j) 7,79

Ce;2e; =



are integers, and that
2€j — Ce¢,2ej €, — 2€j — 45i,j€i, and €; — Cerﬁer = €; — 51'7]'26]'
belong to R. Both claims are obvious.

3. Consider the root system of type Dg with simple roots ar; = e; — e, g = €3 — ez, a3 = e3 — ey,
a4 = eq4 —e5, a5 = €5 — €5, ag = e5 + eg, and consider the following decomposition

R® = Span(oé4 — pag, g — a1, a3 — 80065-) @ Span<90044 + a2, o + a1, pas + 045)

where ¢ = 1+—2‘/5 Show that the three-dimensional subspaces in the right-hand side are orthogonal.
If we let m : RS — R? denote the orthogonal projection onto the second subspace, show that

(60 roots of Dg) = RU pR (6)

for some R C R? of cardinality 30. This set R determines a non-crystallographic root system,
i.e. satisfies all axioms in Definition 19 except for (137). It is called “type Hs” and it is related to
symmetries of a regular icosahedron.

Solution. In order to prove that the two given subspaces are orthogonal it is enough to check
the scalar products of the generators. For instance

<O[4—QOO[2,QOO[6+OZ1>:§0_§0:0,

and the other relations are analogous. We now turn to the second claim. An easy computation
shows that

m(og) = ¢ <¢2 (o + a2)> = pm(0).

Similarly 7(ag) = ¢m(aq), and w(as) = ¢@m(as). One can list all the 30 positive roots from
Exercise 1 and verify that they split into two disjoint subsets, according to @ Finally, R inherits
the properties of a non-crystallographic root system from Dg.

4. The length of an element w in the Weyl group W (of a root system R with a given set of simple
roots I) is defined as

lw) = min{k: > 0’32’1,...,z‘k elst.w=s, .. -Sik}
Show that ¢ : W — Zx> is a length function, i.e.
le)=0
U(w™") = £(w)
{(wrws) < £(wr) + €(w2)

Show that there exists a unique element of W of maximal length (how does it act on roots and on
Weyl chambers?) What is the length function for the type A,_; root system, for which W = S,,?

Solution. Showing that ¢ : W — Z>o is a length function is immediate. Indeed observing
w = 8, ...s; if and only if w™! = s;, ...s;, shows that £(w™!) = £(w). Similarly, if wy = s;, ... s,
and wy = Si - S then wijwy = sy, ... 85,8 - 8jt 5 8O that £(wiws) < (wy) + L(ws).

Since the Weyl group is finite, we only have to prove that the element of maximal length is unique.
The following is proven in Humphreys‘book.

(31



Theorem 1. The length of an element w € W can be expressed as
(w) = number of positive roots a such that w(«) is negative.

As a corollary, we find that the length function attains its maximum only in the element wg € W
which changes sign to every root
wo = H Sa-

« simple root

As a remark we observe that Theorem [If can be rephrased as follows. According to the proof of
Proposition 25 in the Lecture Notes, a decomposition of an element w € W into simple reflections

W = 84y ...84,
is equivalent to a sequence of Weyl chambers Cqg = C™,Cy,...,C; such that
Cl = Si; ... 84 (C+)

Then, the longest element in the Weyl group has to be the one which sends the positive chamber
C™T to the negative chamber.

For the root system A,_1, the isomorphism W = S,, depends on the choice of an ordering on
the set of simple roots I, and sends the ith simple root to the transposition (i,7 + 1). Hence, this
isomorphism identifies the length function in W with the function on S,, which counts the minimum
number of transpositions.

(*) If g is a (not necessarily semisimple) Lie algebra over a field of characteristic 0, a subalgebra
h C g is called a Cartan subalgebra if it is nilpotent and self-normalizing:

{wea|lev ch} =0

Prove that any Cartan subalgebra is a maximal nilpotent subalgebra (the converse fails in general,
though, think about the subalgebra n @ CI,, of gl,,).



