
Math 429 - Exercise Sheet 10

1. In the previous exercise sheet, you worked out the root decompositions of the complex semisimple
Lie algebras of types A,B,C,D. In each of those cases, write out all the roots as linear combinations
of a fixed choice of simple roots.

Solution. Consider the root system An+1, with the decomposition from Lecture 10

R+ = {ei − ej

∣∣∣1 ≤ i < j ≤ n} R− = {ei − ej

∣∣∣1 ≤ j < i ≤ n}.

The simple roots are αi = ei − ei+1 for i = 1, . . . , n. Then we can write positive roots as

ei − ej = αi + · · ·+ αj−1

for every 1 ≤ i < j ≤ n. The decomposition of negative roots follows.

Recall the root system Dn associated to the Lie algebra o2n from excercise sheet 9. The notation
A = (a1 . . . , an) stands for the 2× 2 block-diagonal matrices whose kth block is[

0 ak
−ak 0

]
, (1)

for some ak ∈ C. Let h be the toral subalgebra which consists of all matrices A = (a1, . . . , an) as
above. A basis for the dual h∗ is given by the linear maps αk : A = (a1, . . . , an) 7→ ak, and we found
the 2n(n− 1) roots

{i(±αk ±′ αl)} ⊂ h∗. (2)

We can see the subset (2) as a root system by means of the non-degenerate product (A,B) 7→ tr(AB)
on h. More precisely, the R-vector space generated by the roots (2) is isometric to the standard
euclidean space Rn via the identification

iαk 7→ 1

2
ek.

Thus after rescaling by a factor of 2 we get the root system {±ek ±‘ el} ⊂ Rn. We make the
following choices of positive roots

R+ = {ek − el, ek + el

∣∣∣ 1 ≤ k < l ≤ n} (3)

and of simple roots

βk = ek − ek+1, k = 1, . . . , n− 1, βn = en−1 + en.

Then the positive roots admit the following decomposition

ek − el = βk + · · ·+ βl−1,

ek + en = (ek − en−1) + (en−1 + en) = βk + · · ·+ βn−2 + βn,

ek + el = (ek + en) + (el − en) = βk + · · ·+ βn−2 + βn + βl + · · ·+ βn−1,
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and the decomposition of negative roots follows.

We proceed as above. The roots of the Lie algebra o2n+1 are identified with the root system

{±ek ±′ el,±ek

∣∣∣ 1 ≤ k < l ≤ n} ⊂ Rn. (4)

The positive roots are

R+ = {ek − el, ek + el, ek

∣∣∣ 1 ≤ k < l ≤ n},

and the simple roots are

βk = ek − ek−1, k = 1, . . . , n− 1, βn = en.

Then the positive roots admit the following decomposition

ek − el = βk + · · ·+ βl−1,

ek = (ek − en) + en = βk + · · ·+ βn−1 + βn,

ek + el = βk + · · ·+ βn + βl + · · ·+ βn,

and the decomposition of negative roots follows.

Finally we carry out the same computation for the root system Cn associated to the Lie algebra
sp2n. We have the root system

{±ek ±‘ el,±2ek

∣∣∣ 1 ≤ k < l ≤ n} ⊂ Rn. (5)

The positive roots are

R+ = {ek − el, ek + el, 2ek

∣∣∣ 1 ≤ k < l ≤ n},

and the simple roots are

βk = ek − ek−1, k = 1, . . . , n− 1, βn = 2en.

Then the positive roots admit the following decomposition

ek − el = βk + · · ·+ βl−1,

2ek = (2ek − 2en) + 2en = 2βk + · · ·+ 2βn−1 + βn,

ek + el = 2βk + · · ·+ 2βn−1 + βn + 2βl + · · ·+ 2βn−1 + βn,

and the decomposition of negative roots follows.

2. Show that the following subset of Rn

R =
{
± ei,±2ei

}
1≤i≤n

⊔
{
± ei ±′ ej

}
1≤i<j≤n

determines a non-reduced root system, i.e. satisfies all axioms in Definition 19, except for (136)
(specifically, if α is a root, then we do allow 2α or α

2 to be a root). It is called “type BCn”.

Solution. The set R clearly generates Rn. Moreover most of axioms (137) and (138) in Definition
19 follow from the same statements for the root systems Bn and Cn. We only have to check that

cei,2ej =
2(ei, 2ej)

(ei, ei)
= 4δi,j , and c2ej ,ei =

2(ei, 2ej)

(2ej , 2ej)
= δi,j ,
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are integers, and that

2ej − cei,2ejei = 2ej − 4δi,jei, and ei − c2ej ,ei2ej = ei − δi,j2ej

belong to R. Both claims are obvious.

3. Consider the root system of type D6 with simple roots α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4,
α4 = e4 − e5, α5 = e5 − e6, α6 = e5 + e6, and consider the following decomposition

R6 = span
(
α4 − φα2, α6 − φα1, α3 − φα5.

)
⊕ span

(
φα4 + α2, φα6 + α1, φα3 + α5

)
where φ = 1+

√
5

2 . Show that the three-dimensional subspaces in the right-hand side are orthogonal.
If we let π : R6 → R3 denote the orthogonal projection onto the second subspace, show that

π(60 roots of D6) = R ⊔ φR (6)

for some R ⊂ R3 of cardinality 30. This set R determines a non-crystallographic root system,
i.e. satisfies all axioms in Definition 19 except for (137). It is called “type H3” and it is related to
symmetries of a regular icosahedron.

Solution. In order to prove that the two given subspaces are orthogonal it is enough to check
the scalar products of the generators. For instance

⟨α4 − φα2, φα6 + α1⟩ = φ− φ = 0,

and the other relations are analogous. We now turn to the second claim. An easy computation
shows that

π(α4) = φ

(
1

φ2 + 1
(φα4 + α2)

)
= φπ(α2).

Similarly π(α6) = φπ(α1), and π(α3) = φπ(α5). One can list all the 30 positive roots (3) from
Exercise 1 and verify that they split into two disjoint subsets, according to (6). Finally, R inherits
the properties of a non-crystallographic root system from D6.

4. The length of an element w in the Weyl group W (of a root system R with a given set of simple
roots I) is defined as

ℓ(w) = min
{
k ≥ 0

∣∣∣∃i1, . . . , ik ∈ I s.t. w = si1 . . . sik

}
Show that ℓ : W → Z≥0 is a length function, i.e.

ℓ(e) = 0

ℓ(w−1) = ℓ(w)

ℓ(w1w2) ≤ ℓ(w1) + ℓ(w2)

Show that there exists a unique element of W of maximal length (how does it act on roots and on
Weyl chambers?) What is the length function for the type An−1 root system, for which W = Sn?

Solution. Showing that ℓ : W → Z≥0 is a length function is immediate. Indeed observing
w = si1 . . . sik if and only if w−1 = sik . . . si1 shows that ℓ(w−1) = ℓ(w). Similarly, if w1 = si1 . . . sik
and w2 = si‘1

. . . si‘k
, then w1w2 = si1 . . . siksi‘1

. . . si‘k
, so that ℓ(w1w2) ≤ ℓ(w1) + ℓ(w2).

Since the Weyl group is finite, we only have to prove that the element of maximal length is unique.
The following is proven in Humphreys‘book.
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Theorem 1. The length of an element w ∈ W can be expressed as

ℓ(w) = number of positive roots α such that w(α) is negative.

As a corollary, we find that the length function attains its maximum only in the element w0 ∈ W
which changes sign to every root

w0 =
∏

α simple root

sα.

As a remark we observe that Theorem 1 can be rephrased as follows. According to the proof of
Proposition 25 in the Lecture Notes, a decomposition of an element w ∈ W into simple reflections

w = si1 . . . sik

is equivalent to a sequence of Weyl chambers C0 = C+, C1, . . . , Ck such that

Cl = si1 . . . sil(C
+).

Then, the longest element in the Weyl group has to be the one which sends the positive chamber
C+ to the negative chamber.
For the root system An−1, the isomorphism W = Sn depends on the choice of an ordering on
the set of simple roots I, and sends the ith simple root to the transposition (i, i+ 1). Hence, this
isomorphism identifies the length function in W with the function on Sn which counts the minimum
number of transpositions.

(*) If g is a (not necessarily semisimple) Lie algebra over a field of characteristic 0, a subalgebra
h ⊂ g is called a Cartan subalgebra if it is nilpotent and self-normalizing:{

x ∈ g
∣∣∣[x, h] ⊆ h

}
= h

Prove that any Cartan subalgebra is a maximal nilpotent subalgebra (the converse fails in general,
though, think about the subalgebra n⊕ CIn of gln).
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