Math 429 - Exercise Sheet 8

1. Calculate the Killing form of sl,,.

Solution. Recall from Excercises 4 and 5 of Sheet 7 that the Killing form of s[,, is 2n times the
trace form. Then it is enough to consider the basis

(Bij)igja<ij<n U (Hi = Eij — Epp)1<i<n—1 (1)

and compute the trace form. We have

1 (k1) =(j,1
tr(EijErp) = tr(1Ei1) = 0jx0i1 = (%4 . G:9)

0 otherwise.
Similar computations yield tr(E; jHy) = 0 for all i # j, k, and

2 i=j
1 i+

In particular, we observe that the Killing form of sl,, is nondegenerate.

tI‘(HZ‘Hj) = {

2. Let p C sly,4y, be the parabolic subalgebra consisting of matrices of the form
A X
0 B
where A and B are traceless m x m and n x n, respectively. Calculate rad(p) and pss = p/rad(p).

Solution. Consider the ideal i consisting of matrices of the form

b o)

Lemma 3 in the lecture notes implies that i is solvable. Moreover, the quotient p/i is isomorphic to
the semisimple Lie algebra sl,, @ sl,,. This implies that i is not properly contained in any solvable
ideal of p.

3. Calculate the Casimir element of 03 and its action on the tautological 3-dimensional represen-
tation of o3.

Solution. The matrices

0 10 00 —1 0 0 O
A=1|-1 0 0|, B=|[0 0 0], C=1]10 0 1
0 0O 10 0 0 -1 0
form a basis of 03, with relations
[A,B]=C, [B,C]=A, [C,A] =B. (2)



In order to find the Casimir element with respect to the basis (A4, B, ('), we need to compute a dual
basiéﬂ with respect to the Killing form. Relations yield

adg = —C, adp = —B, adg = —A,

so one can verify that (—%A, —%B, —%C’) is the dual basis we are looking for. We conclude that
the Casimir alement is given by

1
c= _§(A2 + B%+(C?).

Finally, this Casimir element acts as a scalar matrix in any irreducible representation. Then, the
equality cA = A implies that ¢ acts as the identity in the standard representation of os.

4. If X is a diagonalizable n X n matrix, prove that
adx :g[n — g[n, adX(Y) = [X, Y]
is also diagonalizable.

Solution. After a change of basis, we can assume that X is diagonal. Let (e1,...,e,) be the
standard basis of K", so that Xe; = \;e; for all i. We prove that (E; j)1<i j<n is a basis if eigenvector
for the endomorphism adx. Indeed the computation

adx (E;j)er = XE; je, — E; jXep = X0 rei — Ej j ey =
(A = M)djnei = (A — Ak)(Eijer)
shows that adx (E; ;) = (A\j — A\x)Ej ;.
5. If we assume that a n X n complex matrix X is conjugate to a direct sum of Jordan blocks, then
e explicitly construct a diagonalizable matrix X s and a nilpotent matrix X,, such that

X = XSS + X'n, (3)

e show that X . X,, = X,, X
e show X, and X,, are complex polynomials in X with zero constant term

e show that the decomposition is unique with respect to the properties above.

Solution. Suppose that the characteristic polynomial of X is (t — A1)™ (¢ — X2)™2 -+ (t — Ag)™F,
where Aq, ..., \, are different complex numbers. Then, C" splits as a sum of generalized eigenspaces

Vi={veCs.t.(X - NI,)Yv=0N>>0}.
After a change of basis, we can assume that

Jnl ()‘1)
an ()‘2)

Jnk(/\k)

'Recall that (x;) and (z*) are dual basis for the nondegenerate bilinear form ¢ if ¢(x;, z%) = 6; ;.




where J,,, (A;) is the n; x n; Jordan block

associated to the generalized eigenspace V;. Then it is clear that the matrices

)\1 Inl Jnl (0)
Aaly, JIny(0)

X = ] and X,, =
Aiedp, Iy, (0)

satisfy X = X4 + X, and XX, = X, Xss. We now prove the third point. Since the numbers
AL, ..., A, are different, we can apply the Chinese Reminder Theorem to find a polynomial p € CJ[t]

such that
{p(t) =0 mod ¢

4
p(t) = Aimod (t — A\;)™  for all 1. )

This conditions imply that p(¢) has zero constant term and that p(X) = Ailp, for all ¢, hence

p(X) = Xss. Moreover, the polynomial ¢(t) = ¢ — p(t) has zero constant term and satisfies
Finally we prove uniqueness. Suppose that we have another decomposition X = S+ N satisfying the
first three points of the statement. In particular, the second point implies that every endomorphism
Xss, Xpn, S, N commutes with eachother. In particular Xgs — .S is a sum of commuting semisimple
operators, and hence it is a semisimple operator. Similarly N — X, is nilpotent. Thus, the equality
X — S = N — X, forces both sides to be 0.

(*) Prove the following analogue of the claim at the beginning of the proof of Theorem 17. For
any Lie algebra g, consider its Lie algebra of derivations

Der(g) C End(g)

as in Subsection 8.7. Show that the semisimple and nilpotent part of any ¢ € Der(g) (calculated
as linear transformations of g) also lie in Der(g).



