
Math 429 - Exercise Sheet 8

1. Calculate the Killing form of sln.

Solution. Recall from Excercises 4 and 5 of Sheet 7 that the Killing form of sln is 2n times the
trace form. Then it is enough to consider the basis

(Ei,j)i ̸=j,1≤i,j≤n ∪ (Hi = Ei,i − Enn)1≤i≤n−1 (1)

and compute the trace form. We have

tr(Ei,jEk,l) = tr(δj,kEi,l) = δj,kδi,l =

{
1 (k, l) = (j, i)

0 otherwise.

Similar computations yield tr(Ei,jHk) = 0 for all i ̸= j, k, and

tr(HiHj) =

{
2 i = j

1 i ̸= j.

In particular, we observe that the Killing form of sln is nondegenerate.

2. Let p ⊂ slm+n be the parabolic subalgebra consisting of matrices of the form(
A X
0 B

)
where A and B are traceless m×m and n× n, respectively. Calculate rad(p) and pss = p/rad(p).

Solution. Consider the ideal i consisting of matrices of the form(
0 X
0 0

)
.

Lemma 3 in the lecture notes implies that i is solvable. Moreover, the quotient p/i is isomorphic to
the semisimple Lie algebra sln ⊕ slm. This implies that i is not properly contained in any solvable
ideal of p.

3. Calculate the Casimir element of o3 and its action on the tautological 3-dimensional represen-
tation of o3.

Solution. The matrices

A =

 0 1 0
−1 0 0
0 0 0

 , B =

0 0 −1
0 0 0
1 0 0

 , C =

0 0 0
0 0 1
0 −1 0


form a basis of o3, with relations

[A,B] = C, [B,C] = A, [C,A] = B. (2)
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In order to find the Casimir element with respect to the basis (A,B,C), we need to compute a dual
basis1 with respect to the Killing form. Relations (2) yield

adA = −C, adB = −B, adC = −A,

so one can verify that (−1
2A,−

1
2B,−1

2C) is the dual basis we are looking for. We conclude that
the Casimir alement is given by

c = −1

2
(A2 +B2 + C2).

Finally, this Casimir element acts as a scalar matrix in any irreducible representation. Then, the
equality cA = A implies that c acts as the identity in the standard representation of o3.

4. If X is a diagonalizable n× n matrix, prove that

adX : gln → gln, adX(Y ) = [X,Y ]

is also diagonalizable.

Solution. After a change of basis, we can assume that X is diagonal. Let (e1, . . . , en) be the
standard basis of Kn, so thatXei = λiei for all i. We prove that (Ei,j)1≤i,j≤n is a basis if eigenvector
for the endomorphism adX . Indeed the computation

adX(Ei,j)ek = XEi,jek − Ei,jXek = Xδj,kei − Ei,jλkek =

(λj − λk)δj,kei = (λj − λk)(Ei,jek)

shows that adX(Ei,j) = (λj − λk)Ei,j .

5. If we assume that a n×n complex matrix X is conjugate to a direct sum of Jordan blocks, then

• explicitly construct a diagonalizable matrix Xss and a nilpotent matrix Xn such that

X = Xss +Xn (3)

• show that XssXn = XnXss

• show Xss and Xn are complex polynomials in X with zero constant term

• show that the decomposition (3) is unique with respect to the properties above.

Solution. Suppose that the characteristic polynomial of X is (t− λ1)
n1(t− λ2)

n2 · · · (t− λk)
nk ,

where λ1, . . . , λk are different complex numbers. Then, Cn splits as a sum of generalized eigenspaces

Vi = {v ∈ Cns.t.(X − λiIn)
Nv = 0, N >> 0}.

After a change of basis, we can assume that

X =


Jn1(λ1)

Jn2(λ2)
. . .

Jnk
(λk)

 ,

1Recall that (xi) and (xi) are dual basis for the nondegenerate bilinear form ϕ if ϕ(xi, x
j) = δi,j .
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where Jni(λi) is the ni × ni Jordan block
λi 1

λi 1
. . .

. . .

λi 1
λi


associated to the generalized eigenspace Vi. Then it is clear that the matrices

Xss =


λ1In1

λ2In2

. . .

λkInk

 and Xn =


Jn1(0)

Jn2(0)
. . .

Jnk
(0)


satisfy X = Xss + Xn and XssXn = XnXss. We now prove the third point. Since the numbers
λ1, . . . , λk are different, we can apply the Chinese Reminder Theorem to find a polynomial p ∈ C[t]
such that {

p(t) ≡ 0 mod t

p(t) ≡ λimod (t− λi)
ni for all i.

(4)

This conditions imply that p(t) has zero constant term and that p(X)
∣∣∣
Vi

= λiIni for all i, hence

p(X) = Xss. Moreover, the polynomial q(t) = t − p(t) has zero constant term and satisfies
q(X) = Xn.
Finally we prove uniqueness. Suppose that we have another decompositionX = S+N satisfying the
first three points of the statement. In particular, the second point implies that every endomorphism
Xss, Xn, S,N commutes with eachother. In particular Xss − S is a sum of commuting semisimple
operators, and hence it is a semisimple operator. Similarly N −Xn is nilpotent. Thus, the equality
Xss − S = N −Xn forces both sides to be 0.

(*) Prove the following analogue of the claim at the beginning of the proof of Theorem 17. For
any Lie algebra g, consider its Lie algebra of derivations

Der(g) ⊆ End(g)

as in Subsection 8.7. Show that the semisimple and nilpotent part of any ζ ∈ Der(g) (calculated
as linear transformations of g) also lie in Der(g).
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