
Math 429 - Exercise Sheet 6

1. Show that a one-dimensional representation of any Lie algebra g is the same as a covector of

g/[g, g]

(i.e. a linear map from the above vector space to the ground field).

Solution. A one dimensional representation of g is a Lie algebra homomorphism ρ : g → K. In particular,
ρ is linear and ρ([x, y]) = [ρ(x), ρ(y)] = 0 for all x, y ∈ g. This means that ρ induces a linear map from
g/[g, g] to the ground field K. Viceversa, consider a covector ψ : g/[g, g] → K. Denoting with [x] the image of
x ∈ g in the quotient g/[g, g], we can define a representation as above by setting ρ(x) = ψ([x]) for all x ∈ g.

2. Use the Poincaré-Birkhoff-Witt theorem to show that the universal enveloping algebra Ug of any Lie
algebra g (over any field) has no zero-divisors.

Solution. Let y, z ∈ Ug such that yz = 0. Denote as y and z the images of y and z in grUg, and write as
y = (y)0+ · · ·+(y)l and z = (z)0+ · · ·+(z)k the associated decompositions with respect to the grading. The
assumption yz = 0 in Ug implies that yz = 0 in grUg, and in particular 0 = (yz)l+k = (y)l(z)k. However
(y)l and (z)k are nonzero, which yields a contraddiction, since the algebra grUg has no zero divisors by the
PBW theorem.

We can solve the excercise without invoking the PBW theorem by writing down explicitely the above
argument. Let y, z ∈ Ug such that yz = 0. With the same notation as in the lecture notes, suppose
z = z1 ⊗ · · · ⊗ zk ∈ Ukg and y = y1 ⊗ · · · ⊗ yl ∈ Ulg, for elements zi, yi ∈ g. One can expand the tensor
products by writing the zi’s and yi’s with respect to a basis (x1, . . . , xn) of g. Then, we apply the proce-
dure in the proof of the PBW theorem, and get the expansion of z and y in the PBW basis associated to
(x1, . . . , xn). Explicitely,

y =
∑

i1+···+in=l

ai1,...,inx
i1
1 ⊗ · · · ⊗ xinn + [terms of order < l],

z =
∑

j1+···+jn=k

bj1,...,jnx
j1
1 ⊗ · · · ⊗ xjnn + [terms of order < k],

(1)

where ai1,...,in , bj1,...,jn ∈ K and we may assume that not all of them are zero. When computing the product
yz, we can perform the same procedure and get

yz =
∑

i1+···+in=l,
j1+···+jn=k

ai1,...,inbj1,...,jnx
i1+j1
1 ⊗ · · · ⊗ xin+jn

n + [terms of order < l + k]. (2)

The assumption yz = 0 implies that the term of highest degree in (2) vanishes, which is a contraddiction. Ob-
serve that the top degree parts in the expansions (1) and (2) correspond to (y)l, (z)k, and (yz)l+krespectively,
and the procedure shows that the product in grUg correspond to the product in Sg.

3. Suppose we have a Lie algebra g over a field of characteristic zero. While the assignment

Sg → Ug, x1 . . . xn → 1

n!

∑
σ∈S(n)

xσ(1) ⊗ · · · ⊗ xσ(n)

is not an algebra homomorphism, show that it is a isomorphism of (infinite-dimensional) representations of
g. First you’ll have to make Sg and Ug into representations of g: use the adjoint representation and equation
(31) in the lecture notes.
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Solution. Let x ∈ g and y = y1 ⊗ · · · ⊗ yl ∈ Tg. According to equation (31) in the lecture notes, the
adjoint action induced by g on Tg is

x · y = [x, y1]⊗ y2 · · · ⊗ yl + y1 ⊗ [x, y2]⊗ · · · ⊗ yl + · · ·+ y1 ⊗ · · · ⊗ [x, yl].

This action descends on both quotients Sg and Ug. Let us fix a basis (x1, . . . , xn) of g, and in the following
we will denote as

1. [xi, xj ] =
∑

k a
i,j
k xk the sturcture constants,

2. x11 . . . xim for i1 ≤ · · · ≤ im the associated basis for Sg,

3. xi1 ⊗ · · · ⊗ xim for i1 ≤ · · · ≤ im the associated PBW basis of Ug, and

4. (xi1 · · ·xim)sym = 1
m!

∑
σ∈S(m) xσ(i1) ⊗ · · · ⊗ xσ(im) the map in the text.

Observe that the bijection between the basis 2. and 3. does not give an isomorphism of g modules (for
example, we may assume that n = 3 and verify that x2 · (x1 ⊗ x2) ̸= x2 · (x1x2), whereas

x2 ·
1

2
(x1 ⊗ x2 + x2 ⊗ x1) = (x2 · x1x2)sym).

The association xi1 . . . xin 7→ (xi1 · · ·xim)sym is a bijection between basis of two vector spaces and, so it
extendes to a linear isomorphism. In order to prove that such linear isomorphism is an isomorphism of g
modules, we verify that

xj · (xi1 . . . xim)sym = (xj · xi1 . . . xim)sym. (3)

The left hand side in (3) is

xj ·

 1

m!

∑
σ∈S(m)

xσ(i1) ⊗ · · · ⊗ xσ(im)

 = (4)

1

m!

∑
σ∈S(m)

[xj , xσ(i1)]⊗ · · · ⊗ xσ(im) + · · ·+ xσ(i1) ⊗ · · · ⊗ [xj , xσ(im)].

The right hand side in (3) is

([xj , xi1 ]xi2 . . . xim)sym + · · ·+ (xi1xi2 . . . [xj , xim ])sym. (5)

Let us expand the kth term in the above sum

(xi1 . . . [xj , xik ] . . . xim)sym =

(
xi1 . . .

(
n∑

l=1

aj,ikl xl

)
. . . xim

)sym

=

∑
l

aj,ikl (xi1 . . . xl . . . xim)sym =
∑
l

aj,ikl

1

m!

∑
σ∈S(m)

xi1 ⊗ · · · ⊗ xl︸︷︷︸
σ(ik)th spot

⊗ · · ·xσ(im).

We switch the sums in l and σ in the above expression. For every σ, we find xl in a fixed spot of the tensor
product, and the above is equal to

1

m!

∑
σ∈S(m)

∑
l

xσ(i1) ⊗ · · · ⊗
(
aj,ikl xl

)
⊗ · · · ⊗ xσ(im) =

1

m!

∑
σ∈S(m)

xσ(i1) ⊗ · · · ⊗

σ(ik)th spot︷ ︸︸ ︷
[xj , xik ] ⊗ · · · ⊗ xσ(im).

The sum of these terms over all k and all σ in (5) equals the left hand side (4), hence we get our claim (3).

4. Show that given abelian Lie algebras h and h′, there is a one-to-one correspondence between Lie algebras
g such that

z(g) ∼= h and g/z(g) ∼= h′
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(such g are called 2-step nilpotent) and non-degenerate anti-symmetric bilinear forms

h′ × h′ → h

Solution. Let us consider a Lie algebra g such that z(g) ∼= h and g/z(g) ∼= h′. For every x ∈ g, denote as
x the image in g/z(g). Then,

[x, y] = [x, y] = 0

for all x, y ∈ g, since h′ is abelian. This implies that [g, g] ⊂ z(g), and the Lie bracket [·, ·] : g × g → g
induces to a bilinear, non-degenerate, anti-symmetric form h′ × h′ → h. Viceversa, let ϕ : h′ × h′ → h be a
non-degenerate anti-symmetric bilinear form. Then endow the vector space g = h′ ⊕ h with the Lie bracket

[(x1, y1), (x2, y2)] = (0, ϕ(x1, x2)).

It is clear that h ⊂ z(g), and the other inclusion follows from the fact that ϕ is non-degenerate. Finally, the
isomorphism g/z(g) ∼= h′ is obvious.

5. Consider any matrix Lie algebra g ⊂ gln (for some n large enough). Show that

h = g ∩
{
diagonal n× n matrices

}
n = g ∩

{
strictly upper triangular n× n matrices

}
b = g ∩

{
upper triangular n× n matrices

}
are abelian, nilpotent, solvable Lie subalgebras of g (respectively).

Solution. By Proposition 11 in the Lecture notes, we have to verify that

hn =
{
diagonal n× n matrices

}
nn =

{
strictly upper triangular n× n matrices

}
bn =

{
upper triangular n× n matrices

}
are abelian, nilpotent, solvable Lie subalgebras of gln respectively. The claim is trivial for hn. Let us consider
n, whose elements are strictly upper triangular matrices. Then, very matrix in [nn, nn] has zeros on the main
diagonal and on the secondary diagonal 

0 0 ∗ . . . ∗
0 0 0 ∗ . . . ∗
... . . .

. . .
. . .

...
0 0 . . . . . . 0
0 0 . . . . . . 0
.


Iterating, this shows that eventually the series nn ⊇ [nn, nn] ⊇ . . . is zero. Finally, we observe that

[bn, bn] ⊂ nn.

Then, the fact thet nn is nilpotent implies that bn is solvable.
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