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CHAPTER 1

Basic on sumsets

Additive combinatorics aims at studying the following kind of very basic

Question. Given (G,+) a commutative group noted additively and A,B ⊂ G two non-
empty subsets, how big is the subset

A+B = {a+ b, a ∈ A, b ∈ B}

in terms of |A| and |B| ?

Definition 1.1. A subset of the shape

A+B = {a+ b, a ∈ A, b ∈ B}

for ∅ ∕= A,B ⊂ G two non-empty subsets is called a sumset of G.

We have the following basic bounds

(1.1) max(|A|, |B|) 󰃑 |A+B| 󰃑 |A||B|.

The upper bound is obvious and the lower bound follow from the fact that for any a ∈
A, b ∈ B

A+ b, a+B ⊂ A+B and |A+ b| = |A|, |a+B| = |B|;
we would like to know whether these bounds are sharp and what can be said if |A + B| is
very small or very large (”large” or ”small” would have to be made more precise if A or B
are infinite sets).

The following notations will be useful:

– (k)A = {a1 + · · ·+ ak, a1, · · · , ak ∈ A} ⊂ G.
– k ⋄A = {k.a = a · · ·+ a (k times), a ∈ A} ⊂ (k)A
– A+ b = A+ {b}.
– A−B = A+ (−B), −B = {−b, b ∈ B}
– If G is a ring with multiplication noted . and ξ ∈ G we will write

ξ.A = {ξ.a, a ∈ A}.

1.1. Examples from number theory

For G = Z examples of sumset problems come from number theory:

Waring’s type problems.

Theorem (Lagrange 4−□ Theorem).

4.□(Z) = 4{n2, n ∈ Z} = Z󰃍0.

ie. every non-negative integer is the sum of at most four squares.
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6 1. BASIC ON SUMSETS

For k 󰃍 2 let g(k) ∈ N defined by the property

g(k) = min(g 󰃍 1 such that Z󰃍0 = g{nk, n ∈ N}).

ie. every non-negative integer is the sum of at most g k-th powers of integers: due to the
efforts of many people we we know that g(k) < ∞ for anyk 󰃍 2 and that

g(2) = 4, g(3) = 9, g(4) = 19, g(5) = 37.

Goldbach’s type problems. Let P be the set of prime numbers

Theorem (Schnirelman). There exists G 󰃍 1 such that

G(P ∪ {0}) = Z󰃍0

ie. every non-negative integer is the sum of at most G primes.

Theorem (Vinogradov-Helfgott). We have G 󰃑 4

Conjecture (Goldbach). We have G 󰃑 3.

1.2. Sumsets in R

Proposition 1.2. For G = R; suppose A and B finite. We have

|A+B| 󰃍 |A|+ |B|− 1.

Proof. This is obvious if |A| or |B| = 1
Suppose |A|, |B| 󰃍 2 and write A = {a1 < a2 · · · < am}, B = {b1 < b2 · · · < bn} then

A+B contains

a1 + b1 < a2 + b1 < · · · < am + b1 < am + b2 < · · · < am + bn.

□
It is no difficult to provide examples for which the upper bound in (1.1) attained : for

instance for any integer N 󰃍 2 let

A = {1, · · · , N − 1}, B = {N, · · · , (N − 1)N}

then

A+B = {m+ nN, m, n ∈ {1, · · · , N − 1}}
has

|A+B| = (N − 1)2.

Nevertheless the lower bound is still sharp and it is possible to characterise the A,B
such that |A+B| is as small as possible.

Proposition 1.3. Suppose that

|A+B| = |A|+ |B|− 1

then there exists a, b ∈ R and q ∈ N󰃍1 such that

A = a+ q[0,m), B = b+ q[0, n).

We then say that A and B are arithmetic progressions with the same common differ-
ence/modulus q.
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Proof. Suppose |A|, |B| 󰃍 2 (or this is obvious) we have

A+B = {c1 < c2 < · · · < cm+n−1}
= {a1 + b1 < a2 + b1 < · · · < am + b1 < am + b2 < · · · < am + bn}
= {a1 + b1 < a1 + b2 < · · · < a1 + bn < a2 + bn < · · · < am + bn}

So we have
a2 + b1 = a1 + b2, a3 + b1 = a1 + b3, · · ·

so that
a2 − a1 = b2 − b1, a3 − a1 = b3 − b1, · · ·

and from there we can conclude that A and B are arithmetic progressions with the same
modulus. □

In particular A and B are ”intervals” of translates of the subgroup qZ ⊂ R.
Observe in general that if H ⊂ G is a subgroup we have

H +H = H.

This simple Proposition illustrate the following phenomenon that we will find again in
other occasions

A sumset with small size admits some ”structure” related to the group law.

1.3. Sumsets in Fp

We now consider the case of G a finite commutative group. We have the following easy

Lemma 1.4. Suppose that |A|+ |B| > |G| then
A+B = G.

Proof. For any g ∈ G A + g and −B must intersect so ∃a ∈ A, b ∈ B such that
a− g = −b and

g = a+ b.

□
The simplest finite commutative groups are the cyclic ones G = Z/NZ. When N = p

is a prime we have the

Theorem 1.5 (Cauchy-Davenport). Given A,B ⊂ Z/pZ. We have

|A+B| 󰃍 min(p, |A|+ |B|− 1).

1.3.1. First proof. Replacing B by the translate B−b for some b ∈ B we may assume
that 0 ∈ B. In particular A ⊂ A+B.

If |B| = 1 then A+B = A and we are done.
We proceed by induction on |B| and can assume |B| 󰃍 2. Moreover by the previous

Lemma we may assume that
2 󰃑 |A| 󰃑 p− 2.

Suppose that A = A+B then for any b ∈ B−{0} we have A = A+b since A+b ⊂ A+B
and has cardinality |A| = |A + B|. In particular b is in the stabilizer of A under the
translation action of Z/pZ on the set of subsets of Z/pZ and since Z/pZ has no non-trivial
subgroups (p is prime) this stabilizer is Z/pZ and A = Z/pZ = A+B.

Suppose now that A ∕= A+B: there exists a0 ∈ A such that

B0 = {b ∈ B, a0 + b ∕∈ A} ∕= ∅.
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In particular A ∩ (a0 +B0) = ∅ and 0 ∕∈ B0.
Let

δa0(A) := A ⊔ (a0 +B0), δa0(B) = B\B0.

We have

|δa0(A)|+ |δa0(B)| = |A|+ |B0|+ |B|− |B0| = |A|+ |B|,
0 ∈ δa0(B) and |δa0(B)| < |B| so by induction

|δa0(A) + δa0(B)| 󰃍 min(p, |δa0(A)|+ |δa0(B)|− 1) = min(p, |A|+ |B|− 1).

Now

δa0(A) + δa0(B) = {a+ b′, a ∈ A, b′ ∈ B\B0} ∪ {a0 + b+ b′, b ∈ B0, b′ ∈ B\B0} ⊂ A ∪B.

For the first set this is obvious and for the second we have

a0 + b+ b′ = (a0 + b′) + b

and a0 + b′ ∈ A since b′ ∈ B\B0. □
Remark 1.1. The transformation

(A,B) 󰀁→ (δa0(A), δa0(B))

is called the Dyson transform at e of (A,B) after Freeman Dyson and is a synthesis of a
multitude of previous ad-hoc looking arguments.

1.3.2. Second proof. Here we use explicitly the fact that Z/pZ = Fp is a field. This
is a example of the so-called polynomial method.

We start with the following

Theorem 1.6. Let k be a field and P (X1, · · · , Xn) ∈ k[X1, · · · , Xn]. Let Xd1
1 · · ·Xdn

n

be a monomial of degree 󰁛

i

di = deg(P ) = d

having a non zero coefficient in P . For any tuple of subsets (Ai)i󰃑n, Ai ⊂ k satisfying

|Ai| > di, i = 1, · · · , n
there exists (a1, · · · an) ∈ A1 × · · ·An such that P (a1, · · · an) ∕= 0.

Remark 1.2. If n = 1 this is the simple fact that a polynomial of degree d has at most
d roots in k.

Proof. We proceed by induction on d: if d = 0 we are done.
Suppose that d 󰃍 1; let (d1, · · · , dn) satisfying the assumption of the Theorem. WLOG-

WMA d1 󰃍 1.
Let (Ai)i󰃑n satisfying the assumption of the theorem. In particular |A1| 󰃍 2.
Given a1 ∈ A1 we have

P (X1, · · ·Xn) = Q(X1, · · ·Xn)(X1 − a) +R(X2, · · · , Xn)

with degQ < d and R(X2, · · · , Xn) = P (a1, X2, · · · , Xn).

By our assumptionQ(X1, · · ·Xn) has a non-zero coefficient in the monomialXd1−1
1 · · ·Xdn

n

and degQ = d− 1.
Since

P (a1, a2, · · · an) = R(a2, · · · an)
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we may assume that for any (a2, · · · an) ∈ A2 × · · ·An we have R(a2, · · · an) = 0 (otherwise
we are done by taking (a1, a2, · · · an) such that R(a2, · · · an) ∕= 0).

Observe that A1 − {a1} ∕= ∅. By induction on degQ there exists

(a′1, · · · an) ∈ (A1 − {a1})×A2 × · · ·An

such that

Q(a′1, · · · an) ∕= 0

and therefore

P (a′1, · · · an) = Q(a′1, · · · an)(a′1 − a1) ∕= 0.

□

Proof. (of Cauchy-Davenport) We may assume that |A|+ |B| 󰃑 p.
We proceed by contradiction and assume that

|A+B| 󰃑 |A|+ |B|− 2.

Let m = |A|+ |B|− 2− |A+B| 󰃍 0 and

P (X,Y ) = (X + Y )m
󰁜

c∈A+B

(X + Y − c).

This is a polynomial of degree |A|+ |B|− 2 such that for any (a, b) ∈ A×B

P (a, b) = 0.

In addition the coefficient of

X |A|−1Y |B|−1

in P is that of X |A|−1Y |B|−1 in (X + Y )|A|+|B|−2 and equals the binomial coefficient󰀃|A|+|B|−2
|A|−1

󰀄
mod p which is non zero since |A|+ |B|− 2 < p. This is the contradiction. □

1.3.3. Applications. We have the following immediate extension

Theorem 1.7 (Cauchy-Davenport). Given k 󰃍 2 and A1, · · · , Ak ⊂ Z/pZ. We have

|A1 + · · ·+Ak| 󰃍 min(p, |A1|+ · · ·+ |Ak|− k + 1).

In particular taking Ai = A we set that

|kA| = |A+ · · ·+A(k times)| 󰃍 min(p, k(|A|− 1) + 1)

In particular if k 󰃍 p−1
|A|−1 then kA = Fp.

A more arithmetic application is the following theorem

Theorem 1.8 (Lagrange). Given α,β ∈ F×
p . For any x ∈ Fp there exists u, v ∈ Fp such

that

x = αu2 + βv2.

Proof. Suppose p > 2. Let □(Fp) = {u2, u ∈ Fp} the set of squares in Fp. We have

□(Fp) = 1 +
p− 1

2

and

|α□(Fp) + β□(Fp)| 󰃍 min(p, p) = p.

□
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1.3.4. Optimality of CD. Again one may want to compare with the trivial upper
bound

|A+B| 󰃑 min(|A||B|, p).

and again it turn out that most of the time this upper bound is closer to the truth.

Theorem 1.9. for any 1 󰃑 m,n 󰃑 p− 1 there exists A,B ⊂ F×
p with |A| = m, |B| = n

such that

|A+B| 󰃍 1

2
min(|A||B|, p− 1) =

1

2
min(mn, p− 1).

Proof. The difficulty in proving that A+B is large comes from the possibility x ∈ A+B
may have a lot of representations in the form x = a + b. So we introduce the number of
representations

rA,B(x) =
󰁛

(a,b)∈A×B
a+b=x

1.

We have

x ∈ A+B ⇐⇒ rA,B(x) 󰃍 1

and we have
󰁛

x∈Fp

rA,B(x) =
󰁛

x∈Fp

󰁛

(a,b)∈A×B
a+b=x

1 = |A×B| = |A||B|.

By CS we have (write rA,B(x) = rA,B(x).1A+B)

󰁛

x∈Fp

rA,B(x) = 󰀂rA,B.1A+B󰀂1 󰃑 󰀂1A+B󰀂2󰀂rA,B󰀂2 = |A+B|1/2(
󰁛

x∈Fp

r2A,B(x))
1/2.

So that

|A+B| 󰃍 (|A||B|)2󰁓
x∈Fp

r2A,B(x)

The sum
󰁛

x∈Fp

r2A,B(x) = |{(a, b, a′, b′) ∈ (A×B)2, a+ b = a′ + b′}| = E(A,B)

is called the additive energy of the pair (A,B) and the smaller additive nrj is the large
|A+B|.

To find a pair with low additive nrj we will look within the family of ”deformations” of
A+B, namely

A+ ξB, ξ ∈ F×
p .

For this we evaluate the ”expectation” of the random variable

ξ 󰀁→ E(A, ξB).
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E(E(A, •B)) =
1

p− 1

󰁛

ξ∈F×
p

|{(a, b, a′, b′) ∈ (A×B)2, a+ b = a′ + b′}|

=
1

p− 1
|{(a, b, a′, b′, ξ) ∈ (A×B)2 × F×

p , a− a′ = ξ(b′ − b)}|

= |A||B|+ (|A|2 − |A|)(|B|2 − |B|)
p− 1

󰃑 |A||B|(1 + |A||B|
p− 1

)

Here the first term comes from the diagonal solutions a = a′, b = b′ and the second from
the non-diagonal solutions (since then ξ is determined by (a, b, a′, b′) Since E(A, •B) 󰃍 1
there exists ξ such that

E(A, ξB) 󰃑 |A||B|(1 + |A||B|
p− 1

)

and

|A+ ξB| 󰃍 |A||B|
1 + |A||B|

p−1

󰃍 1

2

|A||B|
max(1, |A||B|

p−1 )
󰃍 1

2
min(|A||B|, p− 1).

□
Remark 1.3. This proof has introduced two important concepts that we will meet

again:

(1) the additive energy E(A,B) of two sets and
(2) the probabilistic method which allows to exhibit objects satisfying some generic

property without expliciting them but rather because they form a set of of positive
measure within a probability space.

An important generalisation of Cauchy-Davenport’s theorem is Kneser’s (which in fact
implies Cauchy-Davenport

Theorem 1.10 (Kneser). Given G a commutative group and A,B ∈ G non-empty
subsets and let

H = StabG(A+B) = {h ∈ G, h+A+B = A+B}
the stabilizer of the set A+B under the translation action of G. We have

|A+B| 󰃍 |A+H|+ |B +H|− |H|.

Exercise 1.1. Prove that the Cauchy-Davenport is not true for a composite N but
extends as follows

Theorem 1.11 (Cauchy-Davenport). Suppose that 0 ∈ B and for any b ∈ B − {0},
(b,N) = 1. We have

|A+B| 󰃍 min(N, |A|+ |B|− 1).

Exercise 1.2. Prove that for A,B ⊂ Fp

|{a+ b, (a, b) ∈ A×B, ab ∕= 1}| 󰃍 min(p, |A|+ |B|− 3)





CHAPTER 2

Some applications of additive combinatorics

2.1. The sum-product phenomenon

Theorem 1.9 gives examples of sumset in Fp whose size is growing multiplicatively with
the sizes of the summands. Notice that this construction (which is not explicit) makes
use of the existence of the multiplication in Fp. The sum-product theorem discovered by
Bourgain, Katz and Tao indeed shows that the combitation of addition and multiplication
indeed conduct to growth:

Theorem 2.1 (Sum-Product theorem). For any ε > 0 there exists C, δ such that for
any prime p and any subset A ⊂ F×

p satisfying

C 󰃑 |A| 󰃑 p1−ε

one has then

|A+A|+ |A.A| 󰃍 |A|1+δ.

The sum product theorem state that in the commutative ring Fp a subset exhibit poly-
nomial growth either under addition or multiplication with itself unless (perhaps) it is
already quite big (|A| 󰃍 p1−ε). Moreover under iterated addition/multiplication A grow to
a polynomial size in p after only O(log p) steps (instead of a linear in p steps with CD).

While the sum-product theorem involves only the commutative ring Fp this case be
interpreted in terms of the presence of growth in a non-commutative (but solvable) finite
group: namely the affine group of matrices

Aff2(Fp) = {
󰀕
a b
0 1

󰀖
, y ∈ F×

p , x ∈ Fp} = N(Fp)⋉A(Fp)

N(Fp) = {n(x) =
󰀕
1 x
0 1

󰀖
, x ∈ Fp}, A(Fp) = {a(y) =

󰀕
x 0
0 1

󰀖
, y ∈ F×

p }.

Indeed multiplication in N induces addition while conjugation by A in N induces multipli-
cation:

n(x)n(x′) = n(x+ x), a(y).n(x).a(y)−1 = n(yx).

In fact the sum-product theorem viewed in this light was an important ingredient in the
work of Helfgott who exhibited polynomial growth for another (this time highly non-sovable,
in fact simple) matrix group:

Theorem 2.2 (Helfgott). There exists k, δ > 0 such that for any p and any A ⊂ SL2(Fp)
generating SL2(Fp), one of the following holds

|A(3)| 󰃍 |A|1+δ or (A ∪A−1 ∪ {Id2})(k) = SL2(Fp).

13
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2.1.1. Application to Cayley graphs. Recall that given (G, .) a finite group and
A ⊂ G a non-empty subset, its Cayley graph Cayley(G,A) is the graph whose vertices are
the elements of G and whose edges are the pairs of the shape

(g, a.g), g ∈ G.

The graph Cayley(G,A) is connected iff 〈A〉 = G and has no selfloop iff eG ∕∈ A. Also we
say that A is symetric iff

A−1 = {a−1, a ∈ A} = A.

Recall that a graph Γ = (V,E) is equipped with a natural distance on V :

dΓ(x, y) := minimal number of edges necessary to connect x and y

and its diameter
diam(Γ) = max

x,y∈V
dΓ(x, y).

Corollary 2.3. There exists C 󰃍 1 such that for A ⊂ SL2(Fp) a generating subset
〈A〉 = SL2(Fp) one has

diam(Cayley(SL2(Fp), A)) 󰃑 C(log p)C .

Proof. Assume that A is symetric and Id2 ∕∈ A (see the exercise for the general case);
we have |A| 󰃍 2. Observe that for any symetric set B we have

(B ∪ {e})(n) ⊂ (B ∪ {e})(n+1).

Apply Helfgott’s theorem j 󰃍 1 times we have either

|A(3j)| 󰃍 |A|(1+δ)j

or
(A(3j) ∪ {Id2})(k) = SL2(Fp).

In particular for

j = [log(
4 log p

log 2
)/ log(1 + δ)] + 1

we have
(A(3j) ∪ {Id2})(k) = SL2(Fp)

so that

diam(Cayley(SL2(Fp), A)) 󰃑 3jk = k(
4 log p

log 2
)O(1/δ).

□
Example 2.1. On can take (Exercise)

A1 = {
󰀕
1 1
0 1

󰀖
,

󰀕
1 −1
0 1

󰀖
,

󰀕
1 0
1 1

󰀖
,

󰀕
1 0
−1 1

󰀖
}

since A1 generate SL2(Z). In that case there is another proof using the theory of modular
forms to obtain a stronger result.

On the other hand one can also take

A3 = {
󰀕
1 3
0 1

󰀖
,

󰀕
1 −3
0 1

󰀖
,

󰀕
1 0
3 1

󰀖
,

󰀕
1 0
−3 1

󰀖
}

since A3 (mod p) generates SL2(Fp) for any p > 3 but in that case the theory of modular
forms is not available (as 〈A3〉 ⊂ SL2(Z) has infinite index in SL2(Z)).
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2.2. Fourier theory for finite abelian groups

Let (G,+) be a finite commutative group, the group of characters of G, 󰁥G, is the set of
group morphisms between G and the multiplicative group (C×,×):

󰁥G = HomGr(G,C×) = {χ : G 󰀁→ C×, χ(g + g′) = χ(g)χ(g′)}.
This is a subgroup of the multiplicative group of functions F(G;C×).

Theorem 2.4 (Fourier theory). Let (G,+) be a finite commutative group; its group of

characters 󰁥G = HomGrp(G,C×) is finite and has order

| 󰁥G| = |G|
and in fact is isomorphic (non-canonically) to G.

Moreover 󰁥G is an orthonormal basis of the Hilbert space F(G;C) when equipped with
the hermitian product

〈f1, f2〉G =
1

|G|
󰁛

g∈G
f1(g)f2(g).

In particular we have

∀χ,ψ ∈ 󰁥G, 〈χ,ψ〉 = 1

|G|
󰁛

g∈G
χ(g)ψ(g) = δχ=ψ, 〈χ, 1〉 = 1

|G|
󰁛

g∈G
χ(g) = δχ=1.

For any f ∈ F(G;C×) we have the Fourier decomposition

f =
󰁛

χ∈ 󰁥G

〈f,χ〉χ.

The inner product

〈f,χ〉 = 1

|G|
󰁛

g∈G
f(g)χ(g)

is called the χ-th Fourier coefficient of f and the rescaled function

󰁥f : χ ∈ 󰁥G → |G|1/2〈f,χ〉 = 1

|G|1/2
󰁛

g∈G
f(g)χ(g)

is called the Fourier transform of f .
The Fourier transform map

󰁥• : f ∈ F(G;C) 󰀁→ 󰁥f ∈ F( 󰁥G;C)

is an isometry: ie. we have the Plancherel formula

〈f1, f2〉G =
1

|G|
󰁛

g∈G
f1(g)f2(g) =

1

| 󰁥G|

󰁛

χ∈ 󰁥G

󰁥f1(χ) 󰁥f2(χ) = 〈 󰁥f1, 󰁥f2〉 󰁥G,

and after identifying (canonically) the bidual
󰁥󰁥G with G via the evaluation map

ev• : g 󰀁→ evg : χ 󰀁→ evg(χ) = χ(g)

the Fourier transform is an anti-involution:

󰁥󰁥f(g) = f(−g).
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Proof. The group G act on itself by (right or left) translation and therefore act lineairy
on V := F(G;C): we denote by tg the corresponding action:

tgf(•) = f(•+ g).

Moreover by a change over variable the inner product 〈f1, f2〉G is translation invariant:
∀g ∈ G

〈tgf1, tgf2〉G = 〈f1, f2〉G.
In particular tg is adjoint (t∗g = t−g) and therefore diagonalisable. Moreover since all the
tg, g ∈ G commute with one another, they are simultaneously diagonalisable. We write the
( orthogonal) eigenspace decomposition

F(G;C) =
󰁐

χ

Vχ

where Vχ is the common eigenspace associated with the system of eigenvalues noted χ(g), g ∈
G:

Vχ = {f ∈ V, ∀g ∈ G, tgf = χ(g)f}
Since tg+g′ = tg ◦ tg′ we have

χ(g + g′) = χ(g)χ(g′), χ(eG) = 1

so that the eigenvalue function χ : g → χ(g) is a character of G. Moreover χ ∈ Vχ:

∀g ∈ G, tgχ = χ(•+ g) = χ(g)χ(•) ∈ Vχ.

conversely, given f ∈ Vχ we have

tg′f(g) = f(g + g′) = (tgf)(g
′) = χ(g)f(g′)

so that
tg′f = χ(g′)f = f(g′)χ ⇐⇒ f = (f(g′)/χ(g′))χ.

In follows that
Vχ = C.χ

and that
V =

󰁐

χ∈ 󰁥G′

C.χ

where 󰁥G′ ⊂ 󰁥G is a subset of characters. Since any character ψ ∈ 󰁥G is an eigenfunction of all
tg (with eigenvalues ψ(g), g ∈ G) we conclude that the eigenspace decomposition is made
of one-dimensional eigenspaces indexed by all the characters of G

V =
󰁐

χ∈ 󰁥G

C.χ.

From this we conclude that
| 󰁥G| = |G| = dimV

and that the set 󰁥G form an orthogonal family (since different eigenspaces are mutually
orthogonal) and hence an orthogonal basis. Moreover

〈χ,χ〉 = 1

|G|
󰁛

g∈G
|χ(g)|2 = 1

since |χ(g)| = 1 (this follows either from the fact that the χ(g) are eigenvalues of isometries

or from Lagrange’s theorem χ(g)|G| = χ(g|G|) = χ(eG) = 1).
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The Fourier decomposition is a direct consequence of the fact that 󰁥G form an orthonor-

mal basis of V . The Plancherel formula as well (since | 󰁥G| = |G|)

〈f1, f2〉G =
󰁛󰁛

χ,ψ∈ 󰁥G

〈f1,χ〉〈f2,ψ〉〈χ,ψ〉G =
󰁛󰁛

χ,ψ∈ 󰁥G

〈f1,χ〉〈f2,ψ〉δχ=ψ

=
󰁛

χ∈ 󰁥G

〈f1,χ〉〈f2,χ〉 =
1

|G|
󰁛

χ∈ 󰁥G

󰁥f1(χ) 󰁥f2(χ) = 〈 󰁥f1, 󰁥f2〉 󰁥G.

Finally we have for ψ ∈ 󰁥G
󰁥ψ(χ) = |G|1/2〈ψ,χ〉 = |G|1/2δψ=χ

whose Fourier transform is given by

|G|1/2 1

| 󰁥G|1/2
󰁛

χ

δψ=χevg(χ) = ψ(g) = ψ(−g)

and we conclude by linearity.

The fact the 󰁥G is (non-canonically) isomorphic to G follows from the fact that if

ϕ : G ≃ G1 ×G2

is isomorphic to a product then we have an isomorphism 󰁥ϕ : 󰁥G1 × 󰁥G2 ≃ 󰁥G given by

󰁥ϕ(χ1,χ2)(g) = χ1(g1)χ2(g2)

where ϕ(g) = (g1, g2) ∈ G1 ×G2.
This reduce the proof to the case of G = gZ a cyclic group (with generator g). Since a

character is completely determined by its values at g, the evaluation map

evg : χ ∈ 󰁥G 󰀁→ χ(g) ∈ µ|G|

is an isomorphism and µ|G| ≃ Z/|G|Z ≃ G. □

Example 2.2. For the additive group of congruences modulo q, (Z/qZ,+) we have

󰁥Z/qZ = {eq(a•), a = 0, · · · , q − 1}

where for h (mod q) ∈ Z/qZ

eq(ah) = exp(2πi
ah

q
).

We call these the additive characters modulo q.

Notice that eq(a•) depends only on a (mod q) and the isomorphism Z/qZ ≃ 󰁥Z/qZ is
given by

a (mod q) 󰀁→ eq(a•).
To see that we have indeed an isomorphism we observe that this is a group morphism
whose kernel is {0 (mod q)} so it is injective and since both groups have the same size it is
surjective.

For the multiplicative group of congruences ((Z/qZ)×,×) which has order ϕ(q) the

group 󰁦(Z/qZ)× is the group of Dirichlet characters of modulo q. They are is much less

explicit than 󰁥Z/qZ.
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2.2.1. Convolution. We also recall the convolution operator: for f1, f2 ∈ F(G;C)

f1 󰂏 f2(g) :=
1

|G|1/2
󰁛

g1+g2=g

f1(g1)f2(g2).

We them have

󰁦f1 󰂏 f2(χ) =
1

|G|1/2
󰁛

g∈G
f1󰂏f2(g)χ(g) =

1

|G|1/2|G|1/2
󰁛

g1,g2∈G
f1(g1)f2(g2)χ(g1+g2) = 󰁥f1(χ) 󰁥f2(χ).

For instance if f1 = 1A, f2 = 1B then

|G|1/21A 󰂏 1B(g) = rA,B(g) = |{(a, b) ∈ A×B, a+ b = g}|

and

󰁧rA,B(χ) = |G|1/2󰁦1A(χ)󰁦1B(χ)
where

󰁦1A(χ) =
1

|G|1/2
󰁛

a∈A
χ(a).

By Plancherel formula (or a direct computation) we have also an expression for the additive
nrj:

E(A,B) =
󰁛

g∈G
|rA,B(g)|2 =

󰁛

χ

|󰁧rA,B(χ)|2 = |G|
󰁛

χ

|󰁦1A(χ)|2|󰁦1B(χ)|2

2.2.2. Restriction to a subgroup.

Theorem 2.5. Let G be a finite commutative group, 󰁥G its group of characters, H ⊂ G
a subgroup and let

H⊥ = {χ ∈ 󰁥G, ∀h ∈ H, χ(h) = 1} ⊂ 󰁥G.

We have the exact sequence

(2.1) 1 → H⊥ → 󰁥G → 󰁥H → 1

where the third arrow is the restriction to H. In particular

|H⊥| = | 󰁥G|/| 󰁥H| = |G|/|H|.

We have
1

|H|
󰁛

h∈H
χ(h) =

|G|1/2
|H|

󰁦1H(χ) = 1H⊥(χ).

More generally, for any function f : G → C we have

1

|H|
󰁛

h∈H
f(h) =

󰁛

χ∈H⊥

〈f,χ〉 = |G|1/2
󰁛

χ∈H⊥

󰁥f(χ).

Remark 2.1. We have that

󰁦1H =
|H|

|G|1/2
1H⊥ ,

ie. the Fourier transform of the characteristic function of a sous-groupH ⊂ G is proportional

to the characteristic function of a subgroup H⊥ ⊂ 󰁥G. Moreover the larger H is the smaller
the support of the Fourier transform: H⊥ has order the index of H in G.
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Proof. It is clear that the restriction to H map

•|H : χ ∈ 󰁥G → χ|H ∈ 󰁥H.

is a group morphism whose kernel is H⊥. Let us prove it is surjective.

Given any ψ ∈ 󰁥H let

Vψ := {f : G → C, ∀h ∈ H, thf = ψ(h)f}.
This space is non-zero: the function ψ extended by 0 outside H has this property. Moreover
this space is invariant under translation by elements of G: given such an f we have

th(tgf) = tg(thf) = ψ(h)tgf

since tg and th commute. In particular there exist in Vψ a common eigenspace Vχ for some

a character χ ∈ 󰁥G and in particular χ ∈ Vψ: for all h ∈ H we have

χ(h+ g) = χ(h)χ(g) = ψ(h)χ(g)

and therefore χ|H = ψ. From this we obtain the surjectivity of the restriction map hence
(2.1).

We have for any χ ∈ 󰁥G
1

|H|
󰁛

h∈H
χ(h) = δχ∈H⊥

Indeed χ being contained in H⊥ or not is equivalent to χ|H being a trivial character on H
or not.

By Fourier decomposition we have

1

|H|
󰁛

h∈H
f(h) =

󰁛

χ∈ 󰁥G

〈f,χ〉 1

|H|
󰁛

h∈H
χ(h) =

󰁛

χ∈H⊥

〈f,χ〉.

□

2.3. Equidistribution and Exponential sums

Consider the ”circle” X = R/Z which we may identify with the semi-open interval [0, 1).
Suppose given a sequence of finite subsets (Hn)n󰃍1, Hn ⊂ X with |Hn| → ∞. We often

would like to know how the ”image” of Hn ⊂ X evolves as n → ∞. For instance given some
interval [a, b] ⊂ R/Z how many elements of Hn belong to I asymptotically as n → ∞; it is
then natural to look on whether there is a limit to the sequence

Pn([a, b]) :=
|{h ∈ Hn, h ∈ [a, b]}|

|Hn|
,

the proportions of elements of Hn contained in [a, b].

Definition 2.6. A sequence of finite sets (Hn)n becomes uniformly distributed on X
(or equidistributed modulo 1) if for any 0 󰃑 a < b 󰃑 1

Pn([a, b]) → b− a = µLeb([a, b]).

Example 2.3. For instance the sequence Hn = {h/n, 0 󰃑 h 󰃑 n− 1} become equidis-
tributed modulo 1 as n → ∞.

Notice that if (Hn)n becomes equidistributed then for any C 󰃍 1 any sequence of subset
(Cn)n satisfying

Cn ⊂ Hn, |Cn| 󰃑 C
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then (Hn\Cn)n becomes also equidistributed.
For instance the sets {h/n, 1 󰃑 h 󰃑 n− 1} become equidistributed modulo 1.

Notice that the proportion can be rewritten

Pn([a, b]) =
1

|Hn|
󰁛

h∈Hn

1[a,b](h) → b− a = µn(1[a,b])

where µn denote the probability measure on X given by

µn(f) :=
1

|Hn|
󰁛

h∈Hn

f(h)

or in other terms the measure

µn =
1

|Hn|
󰁛

h∈Hn

δh.

By approximating characteristic functions of intervals by continuous functions and continu-
ous functions by linear combination of characteristic functions of intervals we see (exercise)
that uniform distribution is equivalent to showing that for any f ∈ C(X) we have

(2.2) µn(f) →
󰁝

X
f(x)dx = µLeb(f), n → ∞;

in other term, this is equivalent to the weak-󰂏 convergence of the sequence of probability
measure (µn)n towards the Lebesgue measure.

Theorem 2.7 (Weyl equidistribution criterion). Given

Hn ⊂ X, n 󰃍 1, |Hn| → ∞.

TFAE

(1) the sequence (Hn)n becomes equidistributed.
(2) For any a ∈ Z− {0}

1

|Hn|
󰁛

h∈Hn

exp(2πiah) → 0.

Proof. We need only to prove (2) ⇒ (1). By approximating continuous functions by
smooth functions it is equivalent to prove (2.2) for f ∈ C∞(X) a smooth function. By
Fourier theory we have

f(h) =
󰁛

a∈Z

󰁥f(a) exp(2πiah)

where (integration par parts)

󰁥f(a) =
󰁝

[0,1)
f(x) exp(−2πiax)dx ≪f

1

1 + |a|2025 .

In particular 󰁛

a∈Z
| 󰁥f(a)| < ∞

and since for any a ∈ Z,

|µn(exp(2πia•))| = | 1

|Hn|
󰁛

h∈Hn

exp(2πiah)| 󰃑 1
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we have by Fubini

µn(f) =
󰁛

a∈Z

󰁥f(a) 1

|Hn|
󰁛

h∈Hn

exp(2πiah) =
󰁛

a∈Z

󰁥f(a)µn(exp(2πia•)).

Given ε > 0 we have

µn(f) = 󰁥f(0) +
󰁛

1󰃑|a|󰃑1/ε

󰁥f(a)µn(exp(2πia•)) +
󰁛

|a|>1/ε

󰁥f(a)µn(exp(2πia•)).

The first term is

󰁥f(0) =
󰁝

[0,1)
f(x)dx.

The third term is bounded by

|
󰁛

|a|>1/ε

| 󰁥f(a)||µn(exp(2πia•))| ≪ ε2024.

while for the second term there is n(ε) such that for n 󰃍 n(ε) we have

∀1 󰃑 |a| 󰃑 1/ε, |µn(exp(2πia•))| 󰃑 ε.

It follows that

|
󰁛

1󰃑|a|󰃑1/ε

󰁥f(a)µn(exp(2πia•))| 󰃑 ε
󰁛

a

| 󰁥f(a)| ≪f ε.

This shows that

µn(f) →
󰁝

[0,1)
f(x)dx.

□

2.3.1. Equidistribution of the multiplicative subgroups of F×
p . We now consider

the finite field Fp. Any element of Fp is a congruence class h (mod p) and we can associated
to it

h

p
(mod 1) ∈ R/Z.

We know already that as p → ∞ the sets

{h
p
(mod 1), h ∈ Fp}

become equidistributed modulo 1, as does the image of the multiplicative group F×
p

{h
p
(mod 1), h ∈ F×

p }.

We would like to understand equidistribution modulo 1 but for a (strict) subgroup of the
multiplicative group

Hp ⊂ F×
p

satisfying |Hp| → ∞.

Example 2.4. Take Hp = □(F×
p ) the subgroup of squares. If p is odd then |Hp| = p−1

2

indeed Hp is the image of the morphism x 󰀁→ x2 whose kernel is {±1} (alternatively H⊥
p =

{1, (•p)} is the subgroup of order 2 generated by the Legendre symbol); however even if Hp

is commensurable with the size of F×
p , its equidistribution is not obvious.
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Notice that Hp is cyclic (since Fp is a field): so

Hp = {ξnp , n ∈ Z}
and we want to study the distribution of

{
ξnp
p

(mod 1), n = 1, · · · , |Hp|} ⊂ R/Z.

but this does not help much since it is hard to anticipate the variations of the function

n 󰀁→
ξnp
p

(mod 1)

(even if ξp is say 2 (mod p)).

Theorem 2.8. For any p 󰃍 3 let Hp ⊂ F×
p be a multiplicative subgroup of order

|Hp| 󰃍 p1/2+ε

then

{h
p
(mod 1), h ∈ Hp} ⊂ R/Z

is equidistributed as p → ∞.

Proof. By Weyl equidistribution criterion, it would be sufficient to show that the
Weyl’s sum converge to 0, forall a ∈ Z− {0}

1

|Hp|
󰁛

h∈Hp

exp(2πia
h

p
) → 0.

Observe that

exp(2πia
h

p
) = ep(ah)

is an additive character of Fp, in particular it depends only on a (mod p). This character
maybe trivial but this is the case iff a ≡ 0 (mod p) so, as long as a ∕= 0 and p > |a|,
a ∕≡ 0 (mod p) and ep(a•) is a non-trivial additive character. We then have

Theorem 2.9. Let H ⊂ F×
p be a subgroup; given ψ ∈ 󰁦Fp an additive character let

µH(ψ) =
1

H

󰁛

h∈H
ψ(h).

If ψ ∕= 1 we have

|µH(ψ)| 󰃑 p1/2

|H| .

In particular if

|H| 󰃍 p1/2+ε

for some ε > 0 we have for any ψ ∈ 󰁦Fp − {1}
µH(ψ) → 0.

Remark 2.2. The sum µH(ψ) is an average of complex numbers of modulus 1 so the fact
that µH(ψ) → 0 indicate the presence of oscillations in the values of the additive character
along the multiplicative subgroup H.
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Proof. We have
1

|H|
󰁛

h∈H
ψ(h) =

󰁛

χ∈H⊥

〈ψ,χ〉 =
󰁛

χ∈H⊥

1

p− 1

󰁛

x∈F×
p

ψ(x)χ(x).

Set
G(ψ,χ) =

󰁛

x∈F×
p

ψ(x)χ(x).

For ψ ∕= 1 we have
G(ψ, 1) = −1, |G(ψ,χ)| = p1/2 for χ ∕= 1.

Indeed if χ ∕= 1, G(ψ,χ) is a Gauss sum (and a Ramanujan sum if χ = 1).
This implies that

|µH(ψ)| 󰃑 p1/2

p− 1
|H⊥| = p1/2

p− 1

p− 1

|H| =
p1/2

|H| .

□
Remark 2.3. The character ψ : Fp 󰀁→ C× take values in the complex numbers of

modulus 1 and if ψ ∕= 1 satisfies
1

p

󰁛

x∈Fp

ψ(x) = 0,

hence it has a lot of oscillations has x varies in Fp.
The fact that

1

|H|
󰁛

h∈H
ψ(h) → 0

if |H| 󰃍1/2+ε shows that some of these oscillation are still present when ψ is restricted to H

even if |H| is as small as p1/2+1/2025 (since the given bound improves over the trivial bound
1). This is a feature of the additive nature of ψ versus the multiplicative structure of H. For
instance, there may exist non-trivial multiplicative characters χ for which

󰁓
h∈H χ(h) = |H|

: the non-trivial characters in H⊥ !

Using techniques from additive combinatorics Bourgain-Gilibichuk-Konyagin obtained a
considerable improvement on the possible size of H and showed that ψ continue to oscillate
even along extremely small subgroups.

Theorem 2.10 (Bourgain-Gilibichuk-Konyagin). For any ε > 0, there exists δ > 0 such
that for any prime p, any non-trivial additive character ψ and any multiplicative subgroup
H ⊂ F×

p satisfying

(2.3) |H| 󰃍 pε

we have
µH(ψ) ≪ p−δ.

Corollary 2.11. Given any ε > 0. For any p 󰃍 3 let Hp ⊂ F×
p be a multiplicative

subgroup of order
|Hp| 󰃍 pε

then

{h
p
(mod 1), h ∈ Hp} ⊂ R/Z

is equidistributed as p → ∞.
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Remark 2.4. This is all the more remarkable as the condition

|H| 󰃍 p1/2+ε

is a recurrent assumption in analytic number theory appearing in many contexts: it is called
the Polyà-Vinogradov range.



CHAPTER 3

Growth in groups

In this chapter we introduce more sophisticated technique to identify growth for product
of subsets A,B ⊂ G in a finite group (not necessarily commutative).

We have already noted that if H ⊂ G is a subgroup

H.H = H.

So H has no growth.
The converse is true:

Proposition 3.1. If A ⊂ G satisfies |A.A| = |A| and e ∈ A then A is a subgroup of G.

Proof. Since e ∈ A we have
A.e = A ⊂ A.A

and since |A.e| = |A.A| we have A = A.A. In particular

A ⊂ H = StabG(A) = {g ∈ G, gA = A}
but He = H ⊂ A = A so that H = A. □

More generally we have the following proposition (left as an exercise)

Proposition 3.2. Let G be a finite group, A,B ⊂ G non-empty.
Let

H = StabG(B) = {g ∈ G, gB = B}
If |A.B| = |B| then there exists g0 ∈ G such that A ⊂ g0.H and B = H.X for X ⊂ G.

We will show that a subset A exhibing a slow growth (like A(2) or A(3) is not much
larger than A) then A is ”close” to being a subgroup.

3.1. Approximate subgroups

Definition 3.3 (Tao). Let K 󰃍 1 and G a group. A finite set A is a K-approximate
subgroup if

(1) e ∈ A,
(2) A = A−1

(3) There exist X ⊂ A symmetric |X| 󰃑 K such that

A.A ⊂ X.A.

.

Remark 3.1. A 1-approximate subgroup is a subgroup.
If G is finite any set A is a |G|-approximate subgroup. So interesting notions of approx-

imate subgroup occur when K > 1 and is small compared to |G|.

The following is obvious:

25



26 3. GROWTH IN GROUPS

Lemma 3.4. Let A be a K approximate subgroup. We have

|A(n)| 󰃑 Kn−1|A|

It is quite remarkable that there is a converse:

Theorem 3.5. If e ∈ A = A−1 and

|A(3)| 󰃑 K|A|

then A(3) is a K ′-approximate subgroup with K ′ 󰃑 2K5.

Remark 3.2. The important feature is that K ′ is bounded polynomially in K.

Remark 3.3. The exponent (3) is optimal and cannot be replaced by (2) excepted when
G is commutative (see below).

One general reason explaining why commutativity may play a key role is the following
situation: take A = H a subgroup and B = gH a coset; If G is commutative we have

HgH = gHH = gH

has order |H|.
On the other hand if G is not commutative then

HgH ∕= H

excepted when g is in the normalizer of H.
The other extreme is when H ∩ gHg−1 = {e}: let us consider the multiplicities of the

elements in the double coset HgH. Suppose that we have

h1gh
′
1 = h2gh

′
2,

we then have

h2
−1h1 = gh′2h

′
1
−1

g−1 =⇒ h1 = h2, h′1 = h′2

and therefore |HgH| = |H|2.
This argument show more generally that

|HgH| = |H|2/|H ∩ gHg−1|.

A central tool in the proof of Theorem 3.5 is the notion of

Definition 3.6 (Ruzsa distance). Let A,B ⊂ G be nonempty finite sets, their Ruzsa
distance is defined as

d(A,B) = log(
|A.B−1|󰁳
|A||B|

)

or equivalently

|A.B−1| =
󰁳

|A||B| exp(d(A,B)).

This is not exactly a distance but allmost:

Lemma 3.7. We have

d(A,B) 󰃍 0, d(A,B) = d(B,A), d(A,C) 󰃑 d(A,B) + d(B,C).
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Proof. Non-negativity: since

|A.B−1| 󰃍 max(|A|, |B|) 󰃍
󰁳

|A||B|

so we have

d(A,B) 󰃍 0

The symmetry follows from the fact that

|AB−1| = |(AB−1)−1| = |BA−1|.

For the triangle inequality, we have

d(A,B) + d(B,C) = log(|A.B−1||B.C−1|/
󰁳

|A||B|2|C|)

so proving that this is 󰃍 d(A,C) is equivalent to showing that

|A.B−1||B.C−1| 󰃍 |B||A.C−1|.

To prove this inequality it suffice to construct an injection

A.C−1 ×B ↩→ A.B−1 ×B.C−1

For this we choose a section of the surjective map

(a, c) ∈ A× C 󰀁→ ac−1 ∈ AC−1

ie. a map

s : u ∈ AC−1 󰀁→ s(u) = (a(u), c(u))

such that

a(u)c(u)−1 = u.

We then set

ι(u, b) = (a(u)b−1, bc(u)−1) = (v(u), w(u)).

This map is injective since

v(u)w(u) = a(u)b−1bc(u)−1 = u, b = w(u)c(u).

□

Remark 3.4. However the Ruzsa distance is not exactly a distance since it is often the
case that

d(A,A) = log(|A.A−1|/|A|) ∕= 0.

Moreover if A = gH for g ∕= e and B = H then d(A,B) = 0 although A ∕= B.
However notice A is symmetric and contain e we have

d(A,A) = log(|A.A|/|A|) = 0 ⇐⇒ |A.A| = |A| ⇐⇒ A.A = A

so A is a subgroup.

For the proof of the theorem, we need two more results also due to Ruzsa:

Lemma 3.8 (Controlled Growth Lemma). Suppose that e ∈ A = A−1 and let

K = |A(3)|/|A|

then for any n 󰃍 3

|A(n)|/|A| 󰃑 Kn−2.
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Proof. By induction: we have A(n+1) = A(n−1)A(2) and hence

|A(n+1)|
|A| =

󰁳
|A(n−1)||A(2)|

|A| exp(d(A(n−1), A(2)))

󰃑
󰁳

|A(n−1)||A(2)|
|A| exp(d(A(n−1), A) + d(A(2), A))

=

󰁳
|A(n−1)||A(2)|

|A|
|A(n)|󰁳

|A(n−1)||A|
|A(3)|󰁳
|A(2)||A|

󰃑 |A(n)|
|A| K 󰃑 Kn−2.

Here we have used that A = A−1 so that

A(n−1).A−1 = A(n−1).A = A(n).

□
Exercise 3.1. Under the assumptions of the Controlled Growth Lemma, prove that

for any sequence (εi)1󰃑i󰃑n the product set

A(εi)1󰃑i󰃑n = A(ε1). · · · .A(εn)

satisfies
|A(εi)1󰃑i󰃑n | 󰃑 Kn−2|A|.

Remark 3.5. One cannot replace (3) by (2) and n− 2 by n− 1 in the above.
Let us take consider H and g such that g2 = e and

H ∩ gHg−1 = {e}
so that |HgH| = H2 and suppose |H| can be taken arbitrary large.

Let
A = H ∪ {g};

then A is symmetric, contain e and

A(2) ⊃ (Hg ∪ gH) ⊔H

has order 3|H|− 1 (we have Hg ∩ gH = {g}) so that

|A(2)|/|A| = (3|H|− 1)/(|H|+ 1) 󰃑 3.

On the other hand

|A(3)|/|A| = |HgH|/(|H|+ 1) 󰃍 |H|2/(|H|+ 1) 󰃍 |H|/2.
This would contradict a generalization with (2) replacing (3) as soon as |H| 󰃍 18.

Example 3.1. For instance, one can take

H = Aff2(Fp) ∈ GL2(Fp), g = w =

󰀕
0 1
1 0

󰀖
.

The final ingredient is

Lemma 3.9 (Ruzsa Covering Lemma). Suppose that

|AB| 󰃑 K|A|
there exists X ⊂ B such that |X| 󰃑 K and

B ⊂ A−1AX
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Proof. Let X ⊂ B be maximal so that the Ax, x ∈ X are disjoint.
We have

|A.X| = |A||X| 󰃑 |AB| 󰃑 K|A|
so that |X| 󰃑 K. In addition by the maximality of X we have that for any b ∈ B

Ab ∩AX ∕= ∅.
In other terms for any b ∈ B there exists a1, a2 ∈ A and x ∈ X such that

a1b = a2x.

Hence
b = a−1

1 a2x ∈ A−1.A.X.

□
Proof. (of Theorem 3.5) Suppose e ∈ A = A−1. Let H = A(3). We have e ∈ H = H−1

and
|AH(2)| = |A(7)| 󰃑 K5|A|.

By the covering lemma there exist

X ∈ H(2)

with |X| 󰃑 K5 such that

H(2) ⊂ A−1.A.X = A(2).X ⊂ A(3)X = HX

(since e ∈ A, A(2) ⊂ A(3)).
If X is not symmetric we replace it with X ∪X−1 whose size is bounded by 2K5. □

3.2. The commutative case

Theorem 3.10 (Pluennecke). Let (G,+) be a commutative groupe. Suppose that

|A+B| 󰃑 K|A|
then for any m,n 󰃍 0

|mB − nB| 󰃑 Km+n|A|.
In particular if |2A| 󰃑 K|A| or |A−A| 󰃑 K|A| then |mA− nA| 󰃑 Km+n|A|.

Proof. (after Petridis) Let

K ′ := min
∅∕=A′⊂A

|A′ +B|/|A′| 󰃑 K.

We claim that for any A′ ⊂ A such that |A′ +B|/|A′| = K ′ and any C ⊂ G we have

|A′ +B + C| 󰃑 K ′|A′ + C|.
Let us prove the theorem assuming the claim: by induction we have for any n 󰃍 0

|A′ + nB| 󰃑 K ′n|A′|.
Now

|mB − nB| =
󰁳

|mB||nB| exp(d(mB,nB))

󰃑
󰁳

|mB||nB|(exp(d(mB,−A′) + d(nB,−A′))

We have

d(mB,−A′) = log(|A′ +mB|/
󰁳

|mB||A′|) 󰃑 log(K ′m󰁳
|A′|/

󰁳
|mB|)
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and

d(nB,−A′) = log(|A′ + nB|/
󰁳

|nB||A′|) 󰃑 log(K ′n󰁳|A′|/
󰁳

|nB|)
we obtain

|mB − nB| 󰃑 K ′m+n
󰁳

|mB||nB| |A′|󰁳
|mB||nB|

󰃑 Km+n|A|.

It remains to prove the claim. We proceed by induction on |C|. This is obvious if
|C| = 1 since then

|A′ +B + C| = |A′ +B| 󰃑 K ′|A′| = K ′|A′ + C|.

Assume |C| 󰃍 2 Write C = C ′ ⊔ {c}. We have

A′ +B + C = (A′ +B + C ′) ∪ ((A′ +B + c)\(A′
B,c +B + c))

where

A′
B,c = {a ∈ A′, a+B + c ⊂ A′ +B + C ′}.

We have by definition of A′,

|A′
B,c +B| 󰃍 K ′|A′

B,c|
and by this lower bound an induction

|A′ +B + C| = |A′ +B + C ′|+ |A′ +B + c|− |A′
B,c +B + c|

= |A′ +B + C ′|+ |A′ +B|− |A′
B,c +B|

󰃑 K ′|A′ + C ′|+K ′|A′|−K ′|A′
B,c|

= K ′(|A′ + C ′|+ |A′
B,c|− |A′

B,c|)

We have

A′ + C = A′ + C ′ ∪ ((A′ + c)\(A′
c + c))

where

A′
c = {a ∈ A′, a+ c ∈ A′ + C ′} ⊂ A′

B,c

and

|A′ + C| = |A′ + C ′|+ |A′ + c|− |A′
c + c|

= |A′ + C ′|+ |A′|− |A′
c|

󰃍 |A′ + C ′|+ |A′|− |A′
B,c|.

Hence

|A′ +B + C| 󰃑 K ′(|A′ + C ′|+ |A′|− |A′
B,c|) 󰃑 K ′|A′ + C|.

□

Corollary 3.11. Suppose that

|A−A| 󰃑 K|A|

then for any m,n 󰃍 0 there exists X ⊂ G with |X| 󰃑 Km+n+1 such that

mA− nA ⊂ A−A+X.
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Proof. We have by Pluennecke formula

|A+mA− nA| 󰃑 Km+n+1|A|
so that by Ruzsa covering Lemma there exists X ⊂ mA − nA with |X| 󰃑 Km+n+1 such
that

mA− nA ⊂ A−A+X.

□





CHAPTER 4

Growth vs Energy

Definition 4.1. Let G be a group (not necessarily commutative) and A,B ⊂ G non-
empty finite subsets. The (additive/multiplicative) energy

E(A,B) = |{(a1, b1, a2, b2) ∈ A×B ×A×B), a1b1 = a2b2}|.

We set E(A) = E(A,A) and the normalized energy is defined as

e(A,B) =
E(A,B)

(|A||B|)3/2
.

4.1. Basic properties of the energy

4.1.1. Upper/Lower bounds.

E(A,B) 󰃑 min(|A||B|2, |A|2|B|) 󰃑
󰁳

|A||B|2|A|2|B| = (|A||B|)3/2.

(indeed once we choose 3 amongst (a1, b1, a2, b2) the fourth is determined). Notice also that
by considering the diagonal elements (a, b, a, b) one has

E(A,B) 󰃍 |A||B|, e(A,B) 󰃍 1/
󰁳

|A||B|.

In other terms we have

e(A,B) ∈ [1/
󰁳

|A||B|, 1].

4.1.2. Energy and product sets. We also recall that

E(A,B) =
󰁛

g∈G
(rA,B(g))

2, rA,B(g) = |{(a, b) ∈ A×B, ab = g}|

so that by CS we have

(|A||B|)2 = (
󰁛

g∈G
rA,B(g))

2 = (
󰁛

g∈A.B

1A.B(g)rA,B(g))
2 󰃑

󰁛

g∈A.B

1A.B(g)
󰁛

g∈A.B

r2A,B(g)

Or in other terms

|A.B| 󰃍 |A|2|B|2
E(A,B)

=

󰁳
|A||B|

e(A,B)
.

which we rewrite

(4.1) e(A,B) 󰃍
󰁳

|A||B|
|A.B| or equivalently

|A.B|󰁳
|A||B|

󰃍 e(A,B)−1

In particular pairs of subsets with small energy exhibit growth.

33
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Exercise 4.1. Prove that if e(A,B) 󰃍 1/K, one has

K−2|A| 󰃑 |B| 󰃑 K2|A|

and that if e(A,A) 󰃑 1/K then

|A(2)| 󰃍 K|A|.

4.1.3. Energy and symmetry. We don’t have

E(A,B) = E(B,A)

in general, but since

a1b1 = a2b2 ⇐⇒ b−1
2 a−1

2 = b−1
1 a−1

1

We have

E(A,B) = E(B−1, A−1).

Also since

a1a
−1
2 = a3a

−1
4 ⇐⇒ a−1

2 a4 = a−1
1 a3

we have

E(A,A−1) = E(A−1, A).

4.2. The Balog-Szemeredi-Gowers theorem(s)

It says that subsets with big energy are very structured. To get an idea let us look at
the maximal case.

Proposition 4.2. Suppose that e(A,B) = 1, there exists a subgroup H ⊂ G and a, b ∈ G
such that

A = aH, B = Hb

Proof. If e(A,B) = 1 we have

min(|A||B|2, |A|2|B|) = (|A||B|)3/2

so |A| = |B|. Moreover we also have E(A,B) = |A||B|2. Since E(A,B) count the number
of quadruples (a1, b1, a2, b2) satisfying

a1 = a2b2b
−1
1

we see that any such quadruple is of the shape (a2b2b
−1
1 , b1, a2, b2). In particular for any

(a2, b1, b2) ∈ A×B ×B we have

a2b2b
−1
1 ∈ A.

In other terms

B.B−1 ⊂ H = StabG,r(A) = {h ∈ G, Ah = A}.
In particular |A| = |B| 󰃑 |H|. On the other hand we have |H| 󰃑 |A| since aH ⊂ A and
|A| = |H| and A = aH. Moreover for any b ∈ B we have Bb−1 ⊂ H or B ⊂ Hb which
implies B = Hb. □

There is an approximate subgroup analog of this result: it was first proven by Balog-
Szemeredi and improved by Gowers in the commutative setting and the present non-
commutative version is due to Tao:
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Theorem 4.3 (Balog-Szemeredi-Gowers, approximate group version). There exists C, d 󰃍
1 such that if A,B ⊂ G finite with e(A,B) 󰃍 1/K for some K 󰃍 1 then there exist a, b ∈ G,
a K ′-approximate subgroup H with K ′ 󰃑 CKd, such that

|H| 󰃑 K ′|A|, |A| 󰃑 K ′|A ∩ aH|, |B| 󰃑 K ′|B ∩Hb|.
In particular setting

A′ = A ∩ aH, B′ = B ∩ bH

we have

|A′.B′| 󰃑 |H| 󰃑 K ′|A| 󰃑 K ′K
󰁳

|A||B|.

The approximate group version will be deduced from the following set-theoretic version:

Theorem 4.4 (Balog-Szemeredi-Gowers, set-theoretic version). Given K 󰃍 1 and A,B ⊂
G finite with e(A,B) 󰃍 1/K , there exist A′′′ ⊂ A, B′′′ ⊂ B such that

|A′′′| ≫ |A|/K, |B′′′| ≫ |B|/K
and

|A′′′.B′′′| ≪ K8|A|1/2|B|1/2.
Here the implicit constant are absolute and explicitable.

To pass from the set-theoretic version to the approximate group version we will use the
following

Theorem 4.5 (Approximate subgroup recognition criterion). There exists C, d 󰃍 1 such
that if A,B ⊂ G satisfy

|A.B| 󰃑 K|A|1/2|B|1/2

for some K 󰃍 1 then there exist a, b ∈ G, a K ′-approximate subgroup H with K ′ 󰃑 CKd,
such that

|H| 󰃑 K ′|A|, |A| 󰃑 K ′|A ∩ aH|, |B| 󰃑 K ′|B ∩Hb|.
In particular setting

A′ = A ∩ aH, B′ = B ∩Hb

we have

|A′.B′| 󰃑 |H| 󰃑 K ′|A| 󰃑 K ′K
󰁳

|A||B|.

First we will slightly change the language.

4.2.1. Haar measure notation. We denote by µ : F(G;C) → C the couting/uniform/Haar
measure (when G is equipped with the discrete topology): the measure which gives mass 1
to any g ∈ G . In other terms

µ({g}) = 1, µ(A) = |A|
and

µ(f) =

󰁝

G
F (g)dg =

󰁛

g∈G
f(g)

so that

µ(A) = µ(1A).

This measure is up to scaling the unique left and right-invariant measure: if we note

g.f : h 󰀁→ f(hg), f|g : h 󰀁→ f(gh)
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the left and right translation actions, we have by a change of variable

µ(f) = µ(g.f) = µ(f|g).

It is also invariant under inversion g 󰀁→ g−1:

µ(A−1) = µ(A), µ(f) = µ(f̃)

where

f̃(g) = f(g−1).

This measure induces L1 and L2 norms on F(G;C)

󰀂f󰀂1 = µ(|f |), 󰀂f󰀂22 = µ(|f |2).
We have

󰀂f󰀂1, 󰀂f󰀂2 󰃑 󰀂f󰀂∞µ(G).

Notice that the L2-norm comes from the Hermitian product

〈f1, f2〉 := µ(f1.f2) =

󰁝

G
f1(g)f2(g)dg =

󰁛

g

f1(g)f2(g).

(non-degenerate because µ(g) > 0 for every g ∈ G) and we have the CS inequality

|µ(f1.f2)|2 = |〈f1, f2〉|2 󰃑 󰀂f1󰀂22󰀂f2󰀂22 = µ(|f1|2)|µ(|f2|2).

Proof. Easy Exercise. □
The (left-invariant) Ruzsa distance is given by

d(A,B) := log(
µ(A.B−1)

µ(A)1/2µ(B)1/2
).

It has the same properties as in the commutative case (same proofs) and satisfies for any
g ∈ G

d(gA, gB) = d(A,B) = d(Ag,Bg).

4.2.2. Multiplicative energy and convolution. Given two functions f1, f2 ∈ F(G;C)
their convolution is defined as

f1 󰂏 f2(g) =
󰁛

g1g2=g

f1(g1)f2(g2).

Remark 4.1. By comparison with §2.2.1 this definition of the convolution differs by a
factor µ(G)1/2 = |G|1/2.

Proposition 4.6. The convolution operation 󰂏 is

(1) Bilinear
(2) Associative: (f1 󰂏 f2) 󰂏 f3 = f1 󰂏 (f2 󰂏 f3)
(3) The Dirac function δe is a neutral element:

δe 󰂏 f = f 󰂏 δe = f.

(4) 󰂏 is not commutative in general but we have

f1 󰂏 f̃2(e) = µ(f1f2) = µ(f2f1) = f2 󰂏 f̃1(e)

with

f̃ : g 󰀁→ f(g−1).
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More generally

󰁩f2 󰂏 f1 = f̃1 󰂏 f̃2

In particular multiplicative convolution give F(G;C) the structure of noncommutative
but associative unital algebra.

We then have as in the commutative case

rA,B(g) = 1A 󰂏 1B(g)

and

µ(1A 󰂏 1B) = µ(rA,B) = µ(A)µ(B), E(A,B) = µ(|1A 󰂏 1B|2).
Since

0 󰃑 rA,B(g) 󰃑 min(µ(A), µ(B))

we have

E(A,B) 󰃑 min(µ(A), µ(B))µ(1A 󰂏 1B) 󰃑 µ(A)3/2µ(B)3/2

and we retrieve the normalized energy

e(A,B) =
E(A,B)

µ(A)3/2µ(B)3/2
∈ [1/µ(A)1/2µ(B)1/2, 1].

4.3. The approximate subgroup recognition criterion

We will need the following

Lemma 4.7. Let K 󰃍 1 and A ⊂ G such that

µ(AA−1) 󰃑 Kµ(A).

There exists a symmetric set e ∈ S ⊂ G such that

µ(S) 󰃍 µ(A)/2K

and for any n 󰃍 1

(4.2) µ(ASnA−1) 󰃑 2nK2n+1µ(A).

Let us first show how this lemma allows to prove Theorem 4.5.

4.3.1. Proof of Theorem 4.5. The main assumption of Theorem 4.5 states that

d(A,B−1) 󰃑 logK.

By the triangle inequality we have

d(A,A) 󰃑 d(A,B−1) + d(B−1, A) = 2d(A,B−1) 󰃑 log(K2).

We have therefore

µ(AA−1) 󰃑 K2µ(A).

By Lemma 4.7 there exist a symmetric set S such that

µ(S) 󰃍 µ(A)/2K2

and

µ(AS3A−1) 󰃑 8(2K2)7µ(A) ≪ K14µ(A).

In particular

µ(S), µ(AS), µ(S3) ≪ K14µ(A) ≪ K16µ(S).
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It follows that H = S3 is a KO(1)-approximate subgroup containing S. In particular

µ(S.H) 󰃑 KO(1)µ(H) ≪ KO(1)µ(A) ≪ KO(1)µ(S)1/2µ(H)1/2.

This implies that d(S,H) = O(1 + logK) hence d(A,H) = O(1 + logK). By Ruzsa

covering Lemma there exists X such that |X| ≪ KO(1) such that A ⊂ X.H.H and X ′ with
|X ′| ≪ KO(1) with A ⊂ X ′.H. We also have

d(B−1, H) ≪ 1 + logK

and there exists Y ′ with |Y ′| ≪ KO(1) with B−1 ⊂ Y ′.H. Taking

Z = X ′ ∪ Y ′−1

we have
A ⊂ Z.H, B ⊂ HZ

and by the pigeonhole principle we can find a, b ∈ Z such that

A ∩ aH, B ∩Hb

have the required properties.
□

4.3.2. Proof of Lemma 4.7. We will construct S from s ∈ G such that A ∩ As is
large.

We have

µ(A ∩As) =

󰁝

G
1A(g)1A(gs

−1)dg = 1A−1 󰂏 1A(s).

In particular 󰁝

G
µ(A ∩Ag)dg = µ(A)2.

We also have (use (4.1))

(4.3)

󰁝

G
µ(A ∩Ag)2dg =

󰁝

G
(1A−1 󰂏 1A)

2(g)dg = E(A,A−1) 󰃍 µ(A)4

µ(AA−1)
󰃍 µ(A)3/K.

Let
S := {s ∈ G, µ(A ∩Ag) 󰃍 µ(A)/2K}.

The set S is symmetric (µ(A ∩Ag−1) = µ((A ∩Ag)g−1) = µ(A ∩Ag)) and contains e.
Moreover we have

󰁝

G−S
µ(A ∩Ag)2dg 󰃑 µ(A)

2K

󰁝

G
µ(A ∩Ag)dg 󰃑 µ(A)3

2K

and using (4.3) we find 󰁝

S
µ(A ∩Ag)2dg 󰃍 µ(A)3

2K

and since µ(A ∩Ag) 󰃑 µ(A) we have

µ(S) 󰃍 µ(A)

2K
.

The inequality (4.2) follows from evaluating

IA,S,n :=

󰁝

(AA−1)n+1

1ASnA−1(g0 · · · gn)dg0 · · · dgn
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We have

IA,S,n 󰃑 µ(AA−1)n+1 󰃑 Kn+1µ(A)n+1.

On the other hand changing variable by putting

g = g0 · · · gn−1gn,

we have

IA,S,n =

󰁝

ASnA−1

(

󰁝

(AA−1)n
1AA−1(g−1

n−1 · · · g
−1
0 g)dg0 · · · dgn−1)dg.

Given any g ∈ ASnA−1 we write it as

g = a0s1 · · · snan+1.

Making the change of variable (gi)0󰃑i󰃑n−1 ↔ (ai)1󰃑i󰃑n with

g0 = a0a
−1
1 , g1 = a1s1a

−1
2 , · · · , gn−1 = an−1sn−1a

−1
n

we have

g−1
n−1 · · · g

−1
0 g = ansna

−1
n+1

and

󰁝

(AA−1)n
1AA−1(g−1

n−1 · · · g
−1
0 g)dg0 · · · dgn−1

=

󰁝

Gn

1AA−1(g−1
n−1 · · · g

−1
0 g)

n−1󰁜

i=0

1AA−1(gi)dg0 · · · dgn−1

=

󰁝

Gn

1AA−1(a0a
−1
1 )

n󰁜

i=1

1AA−1(aisia
−1
i+1)da1 · · · dan.

If a1, · · · , an ∈ A and a1s1, · · · ansn ∈ A the integrant equals 1 so the integral is lower
bounded by

󰁝

Gn

n󰁜

i=1

1A(ai)1A(aisi)da1 · · · dan =

n󰁜

i=1

µ(A ∩Asi) 󰃍 (µ(A)/2K)n

so that

Kn+1µ(A)n+1 󰃍 IA,S,n 󰃍 (µ(A)/2K)nµ(ASnA−1).

Simplify we obtain

µ(ASnA−1) 󰃑 2nK2n+1µ(A)

□

4.4. Proof of the BSG Theorem (set-theoretic version)

We now prove a set theoretic version:
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4.4.1. First steps. We have by assumption
󰁝

G
(1A 󰂏 1B(g))

2dg 󰃍 µ(A)3/2µ(B)3/2

K
.

Let

E := {g ∈ G, 1A 󰂏 1B(g) 󰃍
µ(A)1/2µ(B)1/2

2K
}.

We have
󰁝

E

µ(A)1/2µ(B)1/2

2K
dg 󰃑

󰁝

E
1A 󰂏 1B(g)dg 󰃑

󰁝

G
1A 󰂏 1B(g)dg = µ(A)µ(B)

that is

(4.4) µ(E) 󰃑 2Kµ(A)1/2µ(B)1/2.

On the other hand we have
󰁝

G−E
(1A 󰂏 1B)

2(g)dg 󰃑 µ(A)1/2µ(B)1/2

2K

󰁝

G
(1A 󰂏 1B)(g)dg =

µ(A)3/2µ(B)3/2

2K

and therefore
󰁝

E
(1A 󰂏 1B)

2(g)dg 󰃍 µ(A)3/2µ(B)3/2

K
− µ(A)3/2µ(B)3/2

2K
=

µ(A)3/2µ(B)3/2

2K
.

In particular E is non empty. Moreover since

1A 󰂏 1B(g) 󰃑 min(µ(A), µ(B)) 󰃑 µ(A)1/2µ(B)1/2

we have

µ(A)1/2µ(B)1/2
󰁝

E
1A 󰂏 1B(g)dg 󰃍

󰁝

E
(1A 󰂏 1B)

2(g)dg 󰃍 µ(A)3/2µ(B)3/2

2K

or 󰁝

E
1A 󰂏 1B(g)dg 󰃍 µ(A)µ(B)

2K

We can rewrite this inequality
󰁝

A
(

󰁝

B
1E(ab)db)da 󰃍

󰁝

A
(

󰁝

B

1

2K
db)da

Let

(4.5) A′ = {a ∈ A,

󰁝

B
1E(ab)db 󰃍 µ(B)/4K}.

Writing again 󰁝

A
· · · =

󰁝

A′
· · ·+

󰁝

A−A′
· · ·

and using that 󰁝

A−A′
(

󰁝

B
1E(ab)db)da 󰃑 µ(A)µ(B)/4K

we obtain

(4.6)

󰁝

A′
(

󰁝

B
1E(ab)db)da 󰃍 µ(A)µ(B)/4K
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and since 1E(ab) 󰃑 1 we have

µ(A′)µ(B) 󰃍 µ(A)µ(B)/4K

or

µ(A′) 󰃍 µ(A)/4K.

Let

R := µ(A)/µ(A′) ∈ [1, 4K].

From (4.4), we have

(4.7) µ(E) 󰃑 2KR1/2µ(A′)1/2µ(B)1/2

and (4.6) becomes

µ⊗ µ({(a, b) ∈ A′ ×B, ab ∈ E}) 󰃍 R

4K
µ(A′)µ(B).

We will prove below the following

Lemma 4.8 (weak BSG). Let K,K ′ 󰃍 1 and A,B,E ⊂ G such that

µ(E) 󰃑 K ′µ(A)1/2µ(B)1/2

and

µ⊗ µ({(a, b) ∈ A×B, ab ∈ E}) 󰃍 1

K
µ(A)µ(B)

then for any ε ∈ (0, 1), there exists A′ ⊂ A and D ⊂ A.A−1 such that

µ(A′) 󰃍 µ(A)

2K
, µ(D) 󰃑 2(KK ′)2

ε
µ(A)

and

µ⊗ µ({(a, a′) ∈ A′ ×A′, a.a′
−1 ∈ D}) 󰃍 (1− ε)µ(A′)2.

Using this lemma with

ε = 1/32K, (A,B,E) ↔ (A′, B,E) and (K,K ′) ↔ (4K/R, 2KR1/2),

we find that there exists A′′ ⊂ A′ ⊂ A and D such that

µ(A′′) ≫ µ(A′)R/K = µ(A)/K,

(4.8) µ(D) ≪ K5µ(A′)/R ≪ K6µ(A′′)/R2 󰃑 K6µ(A′′).

and

µ⊗ µ({(a, a′) ∈ A′′ ×A′′, a.a′
−1 ∈ D}) 󰃍 (1− 1/32K)µ(A′′)2

which we can rewrite this using the complement set as
󰁝

A′′
µ(a′ ∈ A′′, a ∕∈ D.a′)da 󰃑 µ(A′′)2/32K.

Let

A′′′ = {a ∈ A′′, µ(a′ ∈ A′′, a ∕∈ D.a′) 󰃑 µ(A′′)/16K}.
For a ∈ A′′ −A′′′ we have

µ(a′ ∈ A′′, a ∕∈ D.a′) 󰃍 µ(A′′)/16K
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and therefore We have

µ(A′′)

16K
µ(A′′ −A′′′) 󰃑

󰁝

A′′−A′′′
µ(a′ ∈ A′′, a ∕∈ D.a′)da

󰃑
󰁝

A′′
µ(a′ ∈ A′′, a ∕∈ D.a′)da 󰃑 µ(A′′)2

32K

so that
µ(A′′ −A′′′) 󰃑 µ(A′′)/2

and
µ(A′′′) 󰃍 µ(A′′)/2 ≫ µ(A)/K.

Since A′′ ⊂ A′ we have (see (4.5)) for any a ∈ A′′
󰁝

B
1E(ab)db 󰃍 µ(B)/4K.

Hence (by Fubini)
󰁝

B
(

󰁝

A′′
1E(ab)da)db =

󰁝

A′′
(

󰁝

B
1E(ab)db)da 󰃍 µ(A′′)µ(B)

4K
.

Let

B′′′ = {b ∈ B,

󰁝

A′′
1E(ab)da 󰃍 µ(A′′)

8K
}.

Considering again the complement B −B′′′ have
󰁝

B−B′′′
(

󰁝

A′′
1E(ab)da)db 󰃑

µ(A′′)µ(B)

8K

so that 󰁝

B′′′
(

󰁝

A′′
1E(ab)da)db 󰃍

µ(A′′)µ(B)

8K
.

In particular B′′′ is non empty and since
󰁕
A′′ 1E(ab)da 󰃑 µ(A′′) we have

µ(B′′′) 󰃍 µ(B)

8K
.

We have proven that

µ(A′′′) ≫ µ(A)/K, µ(B′′′) ≫ µ(B)

8K
.

It remains to give an upper bound for µ(A′′′.B′′′) (and to prove Lemma 4.8).
Given c ∈ A′′′.B′′′ we have c = a.b with (a, b) ∈ A′′′ × B′′′. By the definition of A′′′ we

have for a ∈ A′′′

µ({a′ ∈ A′′, a(a′)−1 ∕∈ D}) 󰃑 µ(A′′)/16K

so that
µ({a′ ∈ A′′, a(a′)−1 ∈ D}) 󰃍 µ(A′′)(1− 1/16K).

By the definition of B′′′, we have for b ∈ B′′′
󰁝

A′′
1E(a

′b)da′ = µ({a′ ∈ A′, a′b ∈ E}) 󰃍 µ(A′′)

8K
.

Hence taking the intersection of the two sets above, we have that for (a, b) ∈ A′′′ ×B′′′

µ({a′ ∈ A′′, a(a′)−1 ∈ D, a′b ∈ E}) 󰃍 (
1

8K
+ 1− 1

16K
− 1)µ(A′′) =

1

16K
µ(A′′).
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Making the change of variable

x = a′b, cx−1 = a(a′)−1

we have for any c ∈ A′′′.B′′′
󰁝

G
1D(cx

−1)1E(x)dx = 1D 󰂏 1E(c) 󰃍
1

16K
µ(A′′)

and 󰁝

A′′′.B′′′
1D 󰂏 1E(c)dc 󰃍

1

16K
µ(A′′)µ(A′′′.B′′′).

Since 󰁝

A′′′.B′′′
1D 󰂏 1E(c)dc 󰃑

󰁝

G
1D 󰂏 1E(c)dc = µ(D)µ(E)

we obtain

1

16K
µ(A′′)µ(A′′′.B′′′) 󰃑 µ(D)µ(E) ≪ K6µ(A′′)Kµ(A)1/2µ(B)1/2.

Hence
µ(A′′′.B′′′) ≪ K8µ(A)1/2µ(B)1/2.

□
4.4.2. Proof of Lemma 4.8. It remain to prove

Lemma (weak BSG). Let K,K ′ 󰃍 1 and A,B,E ⊂ G such that

µ(E) 󰃑 K ′µ(A)1/2µ(B)1/2

and

µ⊗ µ({(a, b) ∈ A×B, ab ∈ E}) 󰃍 1

K
µ(A)µ(B)

then for any ε ∈ (0, 1), there exists A′ ⊂ A and D ⊂ A.A−1 such that

µ(A′) 󰃍 µ(A)

2K
, µ(D) 󰃑 2(KK ′)2

ε
µ(A)

and
µ⊗ µ({(a, a′) ∈ A′ ×A′, a.a′

−1 ∈ D}) 󰃍 (1− ε)µ(A′)2.

Proof. We have 󰁝

B
(

󰁝

A
1E(ab)da)db 󰃍

1

K
µ(A)µ(B).

By CS we have

(

󰁝

B
(

󰁝

A
1E(ab)da)db)

2 󰃑 µ(B)

󰁝

B
(

󰁝

A
1E(ab)da)

2db

so that 󰁝

B
(

󰁝

A
1E(ab)da)

2db 󰃍 1

K2
µ(A)2µ(B).

By Fubini we have
󰁝

A

󰁝

A
(

󰁝

B
1E(ab)1E(a

′b)db)dada′ 󰃍 1

K2
µ(A)2µ(B).

Let Ωε ∈ A×A be the set of (a, a′) ∈ A×A such that
󰁝

B
1E(ab)1E(a

′b)db 󰃑 ε

2K2
µ(B).
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Equivalently for (a, a′) ∈ Ωε we have

−1

ε

󰁝

B
1E(ab)1E(a

′b)db 󰃍 − 1

2K2
µ(B)

hence 󰁝

A×A
(1− 1

ε
1Ωε)(

󰁝

B
1E(ab)1E(a

′b)db)dada′ 󰃍 1

2K2
µ(A)2µ(B).

By Fubini we have
󰁝

A×A
(1− 1

ε
1Ωε)(

󰁝

B
1E(ab)1E(a

′b)db)dada′

=

󰁝

B
(

󰁝

A×A
(1− 1

ε
1Ωε)1E(ab)1E(a

′b)dada′)db 󰃍 1

2K2
µ(A)2µ(B)

and there exists b ∈ B such that󰁝

A×A
(1− 1

ε
1Ωε(a, a

′))1E(ab)1E(a
′b)dada′ 󰃍 1

2K2
µ(A)2.

This b being now fixed, the above integral is supported in A′ ×A′ where

A′ = Ab = {a ∈ A, ab ∈ E}
and the integrant is bounded by 1. We have therefore

µ(A′)2 󰃍 1

2K2
µ(A)2.

Moreover we also have
1

ε

󰁝

A′×A′∩Ωε

dada′ 󰃑
󰁝

A′×A′
dada′

or

µ(A′ ×A′ ∩ Ωε) 󰃑 εµ(A′)2.

Let

D = {a(a′)−1, (a, a′) ∈ A′ ×A′\Ωε}.
We have

µ⊗ µ({(a, a′) ∈ A′ ×A′, a.a′
−1 ∈ D}) = µ⊗ µ(A′ ×A′\Ωε) 󰃍 (1− ε)µ(A′)2.

It remain to upper bound µ(D).
Given d ∈ D; write

d = a(a′)−1, (a, a′) ∈ A′ ×A′\Ωε.

Since (a, a′) ∕∈ Ωε we have
󰁝

B
1E(ab)1E(a

′b)db 󰃍 ε

2K2
µ(B).

hence writing e = a′b and ab = a(a′)−1e = de we have
󰁝

G
1E(de)1E(e)de 󰃍

󰁝

B
1E(ab)1E(a

′b)db 󰃍 ε

2K2
µ(B)

and integrating over d ∈ D we obtain
󰁝

D

󰁝

G
1E(de)1E(e)dedd 󰃍 ε

2K2
µ(B)µ(D)
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and 󰁝

D

󰁝

G
1E(de)1E(e)dedd 󰃑

󰁝

G

󰁝

G
1E(de)1E(e)dedd 󰃑 µ(E)2.

We have therefore
µ(E)2 󰃍 ε

2K2
µ(B)µ(D)

Which gives

µ(D) 󰃑 2(KK ′)2

ε
µ(A).

□
The proof of the BSG theorem, approximate group version, follow from the set theoretic

version and by applying the Approximate subgroup recognition criterion to A′′′, B′′′ which
satisfy

|A′′′.B′′′| ≪ K8|A|1/2|B|1/2 ≪ K9|A′′′|1/2|B′′′|1/2.





CHAPTER 5

The Sum-Product Theorem

The sum-product theorem discovered by Bourgain, Katz and Tao indeed shows that the
combitation of addition and multiplication indeed conduct to growth:

Theorem 5.1 (Sum-Product theorem). For any δ > 0 there exists C, η > 0 such that
for any prime p and any subset A ⊂ F×

p satisfying

C 󰃑 |A| 󰃑 p1−δ

one has then
|A+A|+ |A.A| 󰃍 |A|1+η.

Remark 5.1. The initial version of the Sum-Product theorem due to Bourgain, Katz
and Tao included the additional assumption |A| 󰃍 pδ. It was weakened to |A| 󰃍 C by
Bourgain, Glibichuck and Konyagin. Here we will follow a very compact proof due to Ben
Green of the initial version.

Remark 5.2. Here and after d(A,B) = d+(A,B) and e(A,B) = e+(A,B) denote the
Ruzsa distance and the additive energy relative to the addition in Fp. Not the multiplication
in F×

p .

5.1. Rough notations and Ruzsa calculus

Given K 󰃍 2 a parameter, X,Y A,B ⊂ (R,+) finite subsets of an abelian group. We
will write

X ≼K Y, Y ≽K Y

if there exists a (absolute) constant c > 0 such that

X 󰃑 KcY.

We will write X ≈K Y if
X ≼K Y ≼K X

and we will write
A ∼K B for |A−B| ≼K (|A||B|)1/2

or equivalently
d(A,B) = O(logK).

In practice the values of the implicit constants c are allowed to vary from line to line. If the
”roughness parameter” K is understood we will omit it from the notation.

With these notations we have the following:

A ∼ B =⇒ e(A,−B) ≈ 1.

Indeed if
|A−B| 󰃑 K

󰁳
|A||B|

47
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we have by CS

K−1 󰃑
󰁳

|A||B|
|A−B| 󰃑 e(A,−B) 󰃑 1.

Conversely the BSG theorem (set-theoretic version) admits the following immediate Corol-
lary expressed in rough notations:

Theorem 5.2 (BSG). Given K 󰃍 2. Suppose that

e(A,B) 󰃍 1/K

then there exists A′ ⊂ A, B′ ⊂ B such that

|A′| ≈ |A|, |B′| ≈ |B|, A′ ∼ B′.

Here are some general results in additive combinatorics expressions in rough notations:

Theorem 5.3 (Ruzsa calculus). Let A,B,C ⊂ (R,+). Set

δ(A) = δ+(A) := |A+A|/|A|
for the doubling constant of A. The following hold:

(1) Suppose that A ∼ B, B ∼ C then A ∼ C.
(2) Suppose that A ∼ B then

(5.1) A ∼ −B, |A| ≈ |B|, δ(A) ≈ δ(B) ≈ 1.

(3) Suppose that A ∼ B ∼ C then

(5.2) A ∼ B + C.

(4) Suppose that A ∼ B, δ(C) ≈ 1 and there exists x ∈ R such that

|A ∩ (x+ C)| ≈ |A| ≈ |B|
then

A ∼ B ∼ C.

(5) Suppose that δ(A), δ(B) ≈ 1 and there exists x ∈ R such that

|A ∩ (x+ C)| ≈ |A| ≈ |B|
then A ∼ B.

For the proof the following proposition will be useful:

Proposition 5.4 (Second Ruzsa inequality). Let (G,+) be a commutative group and
A,B ⊂ G. We have

d(A,−B) 󰃑 3d(A,B).

Proof. Recall that
󰁛

g∈G
rA,B(g) =

󰁛

g∈G
rA,−B(g) = |A||B|

and also that

a+ b = a′ + b′ ⇐⇒ a− b′ = a′ − b

so that

E(A,B) =
󰁛

g∈G
rA,B(g)

2 =
󰁛

g∈G
rA,−B(g)

2 = E(A,−B).
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By CS we have

(|A||B|)2 󰃑 |A−B|
󰁛

g∈A−B

rA,−B(g)
2 = |A−B|

󰁛

g∈A+B

rA,B(g)
2.

This implies that there exists g ∈ A+B such that

rA,B(g) 󰃍
|A||B|
|A−B| .

Suppose the contrary: we would have

(|A||B|)2 󰃑 |A−B|
󰁛

g∈A−B

rA,−B(g)
2 = |A−B|

󰁛

g∈A+B

rA,B(g)
2

< |A−B| |A||B|
|A−B|

󰁛

g∈A+B

rA,B(g) = (|A||B|)2.

For g as above, let

Sg = {(a, b) ∈ A×B, a+ b = g}
so that

|Sg| 󰃍
|A||B|
|A−B| .

Choose a section s = (sA, sB) (say) of the map

(a, b) ∈ A×B 󰀁→ a+ b ∈ A+B

and consider the map

Sg × (A+B) → (A−B)× (A−B)

given by

(a, b, x) → (a− sB(x), sA(x)− b).

This map is injective: suppose that

a− sB(x) = a′ − sB(x
′), sA(x)− b = sA(x

′)− b′

we have

a− sB(x)− (sA(x)− b) = a′ − sB(x
′)− (sA(x

′)− b′)

and since a+ b = a′ + b′ = g we obtain

sA(x) + sB(x) = x = sA(x
′) + sB(x

′) = x′

and then since sA(x) = sA(x
′), sB(x) = sB(x

′) we have (a, b) = (a′, b′).
It follows from the injectivity that

|Sg||A+B| 󰃑 |A−B|2

and therefore
|A||B|
|A−B| |A+B| 󰃑 |A−B|2

so that
|A+B|

(|A||B|)1/2
󰃑 (

|A−B|
(|A||B|)1/2

)3

□
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Proof. (of Thm 5.3) The first property is Ruzsa triangle inequality.
For the second we have

|A|, |B| 󰃑 |A−B| ≼ (|A||B|)1/2

which gives |A| ≈ |B|. The fact that A ∼ −B comes from Ruzsa second inequality. For the
third we have

d(A,−A) 󰃑 d(A,B) + d(B,−A) = O(logK)

which gives

1 󰃑 δ(A) ≼ 1

or

δ(A) ≈ 1

and likewise for B.
We leave the rest as an exercise. □

5.2. Warm-up: growth in Fp under addition and multiplication

We recall the following Lemma which we have proven in the beginning of this course
using the probabilistic method.

Lemma 5.5. Given |A| ⊂ Fp non-empty; there is ξ ∈ F×
p such that

|A+ ξA| 󰃍 1

2
min(|A|2, p).

Theorem 5.6 (Glibichuck-Konyagin). Given A ⊂ Fp. We have

|3A(2) − 3A(2)| 󰃍 1

2
min(|A|2, p).

For the proof and after, the following notation will be very useful. Given A ⊂ Fp we set

Q[A] :=
A−A

A−A
:= {a1 − a3

a2 − a4
, ai ∈ A, a2 ∕= a4}.

(if A has 󰃑 1 element, we set Q[A] = ∅)

Proof. Observe that given ξ ∈ F×
p we have |A+ξA| = |A|2 unless ξ ∈ Q[A] (since then

a1 + ξa4 = a2 + ξa3 with (a1, a4) ∕= (a2, a3)).
If Q[A] ∕= Fp there exists ξ = a1−a3

a2−a4
∈ Q[A] such that 1 + ξ ∕∈ Q[A] and therefore

|A+ (1 + ξ)A| = |A|2.
We have

(a2 − a4)(A+ (1 + ξ)A) ⊂ (a2 − a4)A+ (a1 − a3 + a2 − a4)A ⊂ 3A(2) − 3A(2)

and

|3A(2) − 3A(2)| 󰃍 |A|2.
If Q[A] = Fp there is ξ = a1−a3

a2−a4
such that

|A+ ξA| 󰃍 1

2
min(|A|2, p)

and now we have

(a2 − a4)(A+ (1 + ξ)A) ⊂ 2A(2) − 2A(2) ⊂ 3A(2) − 3A(2)
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where the last inclusion follows from the identity

b+ a− (b′ + a) = b− b′

applied to b, b′ ∈ 2A(2) and a ∈ A. □
Corollary 5.7. Given δ ∈ (0, 1) and |A| 󰃍 pδ, there exists k = k(δ), l = l(δ) 󰃍 1 such

that
kA(l) − kA(l) = Fp.

In particular if A is a subgroup of F×
p we have

kA− kA = Fp.

Proof. Iterating the above process k times we find that

|4l.3.A(2l) − 4l.3.A(2l)| 󰃍 1

2
min(|A|2l, p)

so for l 󰃍 1/2δ we have

|4l.3.A(2l) − 4l.3.A(2l)| 󰃍 p/2.

Since p is odd we have |4l.3.A(2l) − 4l.3.A(2l)| 󰃍 (p + 1)/2. In particular for any t ∈ Fp we
have

t− (4l.3.A(2l) − 4l.3.A(2l)) ∩ (4l.3.A(2l) − 4l.3.A(2l)) ∕= ∅
so that

Fp = (4l.3.A(2l) − 4l.3.A(2l)) + (4l.3.A(2l) − 4l.3.A(2l)) = 4l.6.A(2l) − 4l.6.A(2l).

□
Definition 5.8. Given K 󰃍 2 and A ⊂ Fp we define

AlgK(A) := {b ∈ F×
p , |A+ bA| 󰃑 K|A|}.

Proposition 5.9. There is an absolute constant c > 0 such that

(1) b ∈ AlgK(A) =⇒ b−1 ∈ AlgK(A).
(2) b ∈ AlgK(A) =⇒ −b ∈ AlgKc(A).
(3) b, b′ ∈ AlgK(A), b ∕= −b′ =⇒ b+ b′ ∈ AlgKc(A).
(4) b, b′ ∈ AlgK(A), =⇒ b.b′ ∈ AlgKc(A).

Proof. Exercise using Ruzsa calculus. □
From this we deduce the following consequence of Corollary 5.7

Corollary 5.10. Given δ ∈ (0, 1/2), there exists η = ηδ > 0 such that for A,B ⊂ Fp

with
pδ 󰃑 |A| 󰃑 p1−δ, |B| 󰃍 pδ

There exists b ∈ B satisfying
|A+ bA| 󰃍 |A|1+η.

Proof. Given K 󰃍 2 and assume that

∀b ∈ B, |A+ bA| 󰃑 K|A|
that is B ⊂ AlgK(A).

By Corollary 5.7, there exist k, l 󰃍 1 (depending on δ) such that

kB(l) − kB(l) = Fp.
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By proposition 5.9 applied several times, there exists c = c(δ) such that

(kB(l) − kB(l))\{0} ⊂ AlgKc(A)

and for any ξ ∈ F×
p we have

|A+ ξA| 󰃑 Kc|A|.
On the other hand, by Lemma 5.5 there exists ξ ∈ F×

p such that

|A+ ξA| 󰃍 1

2
min(|A|2, p) 󰃍 1

2
|A|min(2, 1

1−δ
) =

1

2
|A|

1
1−δ .

and we obtain

K 󰃍 1

21/c
|A|

1
c(1−δ) .

In particular for K = 1
41/c

|A|
1

c(1−δ) there exists b ∈ B such that

|A+ bA| 󰃍 1

41/c
|A|1+

1
c(1−δ) .

□

5.3. The BBSG theorem

The key ingredient is the following version of the BSG Theorem due to Bourgain:

Proposition 5.11 (Multiplicative BBSG). Given K 󰃍 2 and A ⊂ Fp, B ⊂ F×
p such

that

∀b ∈ B, e(A, bA) 󰃍 1/K.

There exists A′ ⊂ A, b0 ⊂ B′ ⊂ B satisfying

|A′| ≈ |A|, |B′| ≈ |B|
and such that

∀b ∈ B′, bA′ ∼ b0A
′.

Proof. By the BSG, for any b ∈ B there exists A′
b, A

′′
b ⊂ A such that |A′

b| ≈ |A′′
b | ≈ |A|

and A′
b ∼ bA′′

b (where the implicit exponents of K are all independant of b). We would like
the A′

b, A
′′
b to not depend on b up to restricting to the b in a sufficiently large subset of B.

We will use the following

Lemma 5.12. Let δ ∈ (0, 1), S a finite set and Sn ⊂ S, n 󰃑 N be subsets of S such that

|Sn| 󰃍 δ|S|.
There exists n0 such that

|Sn0 ∩ Sn| 󰃍 δ2|S|
for at least [δ2N/2] n’s.

Proof. We have 󰁛

n󰃑N

󰁛

s∈S
1Sn(s) 󰃍 δ|S|N

and by CS
󰁛

s∈S
(
󰁛

i,j

1Si(s)1Sj (s) 󰃍
δ2|S|2N2

󰁓
s∈S 1

= δ2|S|N2.
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Hence 󰁛

n

󰁛

n′

|Sn ∩ Sn′ | 󰃍 δ2|S|N2.

In particular there exists n0 such that
󰁛

n

|Sn0 ∩ Sn| 󰃍 δ2|S|N.

Consider the set Nδ of n’s such that

|Sn0 ∩ Sn| 󰃍
δ2|S|
2

.

We have
󰁛

n ∕∈Nδ

|Sn0 ∩ Sn| 󰃑
δ2|S|
2

N

and therefore
󰁛

n∈Nδ

|Sn0 ∩ Sn| 󰃍
δ2|S|
2

N.

Since |Sn0 ∩ Sn| 󰃑 |S| we conclude that

|Nδ| 󰃍
δ2

2
N.

□
We apply this Lemma to the family of subsets

Sb = A′
b ×A′′

b ⊂ S = A×A, b ∈ B

with δ = K−c for a suitable absolute constant c > 0. There exists b0 ∈ B′ ⊂ B with
|B′| ≈ |B| and such that

∀b ∈ B′, |(A′
b ×A′′

b ) ∩ (A′
b0 ×A′′

b0)| ≈ |A×A|

and therefore

|A′
b ∩A′

b0 | ≈ |A′′
b ∩A′′

b0 | ≈ |A|.
Since for all b ∈ B′ we have

(5.3) A′
b ∼ bA′′

b , A′
b0 ∼ b0A

′′
b0

and in particular by (5.1) from Ruzsa calculus we have

δ(A′
b0), δ(A′′

b0), δ(A
′
b), δ(A′′

b ) ≈ 1.

It then follows from Thm 5.3 (5) that

A′
b ∼ A′

b0 , A′′
b ∼ A′′

b0 .

combining this with (5.3) we see that

∀b ∈ B′, b0A
′
b0 ∼ b0A

′
b ∼ b0bA

′′
b = bb0A

′′
b0 ∼ bA′

b0

and we take A′ = A′
b0
. □
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Corollary 5.13. Given δ ∈ (0, 1/2), there exists η = ηδ > 0 such that for A ⊂ Fp, B ⊂
F×
p with

pδ 󰃑 |A| 󰃑 p1−δ, |B| 󰃍 pδ

There exists b ∈ B satisfying

e(A, bA) 󰃑 |A|−η.

Proof. Let K = |A|η for η > 0 to be chosen sufficiently small (in terms of δ) and
assume that for all b ∈ B we have

e(A, bA) 󰃍 1/K.

In particular for any b ∈ B we have

(5.4)
|A+ bA|

|A| 󰃑 K = |A|η.

By the BBSG theorem there exists A′ ⊂ A, b0 ∈ B′ ⊂ B satisfying |A′| ≈ |A|, |B′| ≈ |B|
and

∀b ∈ B′, b0A
′ ∼ bA′.

The conditions |A′| ≈ |A|, |B′| ≈ |B| say that there exists an absolute constant c 󰃍 0 such
that

|A′| 󰃍 |A|1−cη, |B′| 󰃍 |B||A|−cη.

In particular we have

pδ−(1−δ)cη 󰃑 |A|1−cη 󰃑 |A′| 󰃑 |A| 󰃑 p1−δ, pδ−(1−δ)cη 󰃑 |B′|.

Take η ∈ (0, δ
2c) so that

pδ/2 󰃑 |A′| 󰃑 |A|1−δ/2, pδ/2 󰃑 |B′|.
By the Corollary 5.10 applied to ”(A,B, δ)” = (A′, (b0)

−1B′, δ/2), there exists η′ = η′(δ) ∈
(0, 1) and b ∈ B′ such that

|A′ + bA′| 󰃍 |A′|1+η′ 󰃍 |A|(1+η′)(1−cη).

Suppose that η is chosen so that

(5.5) |A|(1+η′)(1−cη) 󰃍 |A|1+2η

We have

|A+ bA| 󰃍 |A′ + bA′| 󰃍 |A|1+2η

and we conclude that
|A+ bA|

|A| 󰃍 |A|2η

which is a contradiction with (5.4).
Let us see that we can pick η with this property: We have

lim
η→0

(1 + η′)(1− cη)− (1 + 2η) = η′ > 0

so there exists η0 = η0(c, η
′) = η0(c, δ) > 0 such that for η ∈ (0, η0] we have (5.5). We then

take

η = min(η0,
δ

2c
).

□
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5.4. Proof of the sum-product Theorem

Let K = |A|η for η > 0 to be chosen sufficiently small depending on δ.
We assume that

|A+A|, |A.A| 󰃑 K|A|.
In particular this means that a lot of the translates

bA, b ∈ A

have a rather large intersection.
Indeed by Lemma 5.12 (applied to S = A.A and the sets bA, b ∈ A− {0}) there exists

b0 ∈ B ⊂ A− {0} such that
|B| ≫ |A|/K2

and
∀b ∈ B, |b0A ∩ bA| ≫ |A|/K2.

We assume that η > 0 is chosen sufficiently small (depending only on δ) so that

|A|/K2 = |A|1−2η 󰃍 pδ/2.

For any b ∈ B let
Ab := A ∩ (b/b0)A.

We have
|Ab| ≈ |A|

and since
|Ab +Ab| 󰃑 |A+A| 󰃑󰃑 K|A| ≼ |Ab|

we have
δ(Ab) ≈ 1

and therefore
e(Ab, Ab) ≈ 1.

Since Ab ⊂ A we have

1 ∼ e(Ab, Ab) =
E(Ab, Ab)

|Ab|3
󰃑 E(A,Ab)

|Ab|3
≈ E(A,Ab)

(|A||Ab|)3/2
= e(A,Ab).

In other terms there exists an absolute constant c 󰃍 0 such that for all b ∈ B

e(A, (b/b0)A) 󰃍 K−c = |A|−cη.

On the other hand by Corollary 5.13 applied to (A, (1/b0)B) using that

|A|, |B| 󰃍 pδ/2

there exists b ∈ B such that
e(A, (b/b0)A) 󰃑 p−η′

where η′ depends on δ. In particular if we choose η such that cη 󰃑 η′/2 we obtain a
contradiction.





CHAPTER 6

Growth in SL2(Fp)

Let

SL2(Fp) = {
󰀕
a b
c d

󰀖
∈ M2(Fp), ad− bc = 1}

be the special linear group. It has order

| SL2(Fp)| = p(p2 − 1) = p3 − p

(more generally for k a finite field | SL2(k)| = |k|(|k|2 − 1)).

Theorem 6.1 (Product Theorem for SL2(Fp); Helfgott version). There exists k, δ > 0
such that for any p and any subset A ⊂ SL2(Fp) generating SL2(Fp) as a group, one of the
following holds

|A(3)| 󰃍 |A|1+δ or (A ∪A−1 ∪ {Id2})(k) = SL2(Fp).

This will be a consequence of the following:

Theorem 6.2 (Product Theorem for SL2(Fp); approximate subgroup version). Let K 󰃍
2, there exists an absolute constant C > 0 such that given any finite field k and any K-
approximate subgroup A ⊂ G = SL2(k) generating G, one has either

(1) |A| 󰃑 KC ,
(2) |A| 󰃍 |G|K−C .

We leave the proof of the implication
Thm 6.2 =⇒ Thm 6.1

as an exercise but this still require a ”finisher” due to Gowers.

Theorem 6.3. There exists an absolute constant δ > 0 such that for any subsets
A,B,C ⊂ SL2(Fp) such that

|A||B||C| 󰃍 | SL2(Fp)|3−δ

then

(6.1) A.B.C = SL2(Fp).

In particular if

|A| 󰃍 | SL2(Fp)|1−δ/3

then

A(3) = SL2(Fp).

Remark 6.1. As we will see, for p large enough one can take any δ ∈ (0, 1/3).

57
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6.1. A spectral gap property for SL2(Fp)

The proof goes via harmonic analysis on the group G = SL2(Fp) which is recalled in
Appendix 7.5.

Consider the convolution

f = 1A 󰂏 1B 󰂏 1C : g 󰀁→
󰁛󰁛

abc=g

1.

We need to show that if |A.B.C| is large enough then

∀g ∈ G, f(g) > 0.

In fact, up to replacing C by Cg−1 (which has the same size as C) it is sufficient to show
that

f(eG) > 0.

For this we decompose f using non-abelian Fourier theory.
We have the Fourier decomposition (7.18)

f(eG) =
1

|G|
󰁛

π∈Irr(G)

dπtr(π(f))

where

π(f) : v ∈ Vπ 󰀁→
󰁛

h∈G
f(h)π(h)v ∈ Vπ.

The contribution of the trivial representation π0 : G 󰀁→ 1 is

1

|G|
󰁛

h∈G
f(h) =

1

|G|
󰁛

h∈H

󰁛

abc=h

1 =
|A||B||C|

|G| .

We now bound the contribution of the non-trivial irreducible representations π ∕= π0. We
have

f(h) =
󰁛

abc=h

1 = (1A 󰂏 1B) 󰂏 1C(h)

and the contribution of π can be bounded using (7.19)

dπ
|G| |〈π(1A)π(1B),π(1̌C)〉HS | 󰃑

dπ
|G|󰀂π(1A)󰀂HS󰀂π(1B)󰀂HS󰀂π(1C)󰀂HS

on using the CS inequality, the sub-multiplicativity of the HS-norm,

󰀂ϕ ◦ ψ󰀂HS 󰃑 󰀂ϕ󰀂HS󰀂ψ󰀂HS ,

and

󰀂π(1C)󰀂HS = 󰀂π(1̌C)󰀂HS .

By Parseval we have

|A| =
󰁛

h∈G
|1A(h)|2 =

1

|G|
󰁛

π′∈Irr(G)

dπ′󰀂π′(1A)󰀂2HS 󰃍 dπ󰀂π(1A)󰀂2HS

so that

󰀂π(1A)󰀂HS 󰃑 (
|A||G|
dπ

)1/2 󰃑 (
|A||G|

minπ′ ∕=π0 dπ
)1/2.
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We have therefore

f(eG) 󰃍
|A||B||C|

|G| − 1

|G|(
|A||G|

minπ′ ∕=π0 dπ
)1/2

󰁛

π ∕=π0

dπ󰀂π(1B)󰀂HS󰀂π(1C)󰀂HS .

By CS and Parseval we have
󰁛

π ∕=π0

dπ󰀂π(1B)󰀂HS󰀂π(1C)󰀂HS 󰃑 (
󰁛

π ∕=π0

dπ󰀂π(1B)󰀂2HS)
1/2(

󰁛

π ∕=π0

dπ󰀂π(1C)󰀂2HS)
1/2

󰃑 (|G||B|)1/2(|G||C|)1/2

and

f(eG) 󰃍
|A||B||C|

|G| − (
|A||B||C||G|
minπ′ ∕=π0 dπ

)1/2

which is > 0 as long as

|A||B||C| > |G|3
minπ′ ∕=π0 dπ

.

A remarkable theorem of Frobenius states that SL2(Fp) has no non-trivial representations
of small dimension (this is the spectral gap in the title of this section):

Theorem 6.4 (Frobenius). For G = SL2(Fp) the dimension of any non-trivial irre-
ducible representation π satisfies

dπ 󰃍 p− 1

2
.

Let us conclude the proof of Theorem 6.3. Since

| SL2(Fp)| ∼ p3, p → ∞
we see that (6.1) hold when

|A||B||C| 󰃍 | SL2(Fp)|3−δ

for any δ ∈ (0, 1/3) as long as p is large enough. □
Proof. Let

N(Fp) = {n(x) :=
󰀕
1 x
0 1

󰀖
, x ∈ Fp}

The map x 󰀁→ n(x) is an isomorphism Fp ≃ n(Fp). The group SL2(Fp) contains the group
of diagonal matrices

T (Fp) = {t(y) :=
󰀕
y 0
0 1/y

󰀖
, y ∈ F×

p }

and we have
t(y)n(x)t(y)−1 = n(y2x)).

Consider n(1) (it generated N(Fp)). If n(1) does not act trivially on Vπ then it has at least
one eigenvalue α ∕= 1 and since n(1)p = Id2 we have

α ∈ µp(C)− {1}

(ie. is a non-trivial p-th root of unity). Moreover for any y ∈ Z coprime with p, αy2 is also
an eigenvalue of n(1) (since n(y2) = t(y)n(1)t(y)−1 is conjugate to n(1), they have the same

eigenvalues). It follows that n(1) has at least p−1
2 = |(F×

p )
2| distinct eigenvalues; gives the

lower bound dπ 󰃍 p−1
2 .
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Suppose now that n(1) acts trivially on Vπ: we have n(1) ∈ ker(π) and thereforeN(Fp) =
n(1)Z ⊂ ker(π) and any conjugate of this group is also in the kernel (a kernel is a normal
subgroup): in particular the lower triangular unipotent subgroup

wN(Fp)w
−1 =

󰀕
1 0
x 1

󰀖
, x ∈ Fp}

is also in ker(π). But we have the following Lemma

Lemma 6.5. The set

{
󰀕
1 0
x 1

󰀖
,

󰀕
1 x
0 1

󰀖
, x ∈ Fp}

generates SL2(Fp).

Proof. Let g =

󰀕
a b
c d

󰀖
; we want to show this is a product of elements in the above

set.
We have

(6.2)

󰀕
a b
c d

󰀖󰀕
1 x
0 1

󰀖
=

󰀕
a ax+ b
b d+ bx

󰀖

so if a ∕= 0 we are reduced to the case b = 0 and we have
󰀕
1 0
x 1

󰀖󰀕
a 0
c d

󰀖
=

󰀕
a

ax+ c d

󰀖

and we reduced to the case

g =

󰀕
a 0
0 a−1

󰀖
.

We have 󰀕
1 0
x 1

󰀖󰀕
1 y
0 1

󰀖
=

󰀕
1 y
x 1

󰀖
,

󰀕
1 y
0 1

󰀖󰀕
1 0
x 1

󰀖
=

󰀕
1 + xy y

x 1

󰀖

and 󰀕
a 0
0 a−1

󰀖󰀕
1 + xy y

x 1

󰀖
=

󰀕
a(1 + xy) ay
a−1x a−1

󰀖

so we may force a = 1 and reduce to the case g = Id2.
If a = 0, d ∕= 0 we can replace g by g−1 and a and d are exchanged.
If a = d = 0 we use (6.2) to make d ∕= 0 and are reduced to the previous case. □

Remark 6.2. Recall that PSL2(Fp) = SL2(Fp)/{±Id2} is a simple non-commutative
group as long as p > 3. Frobenius theorem is in line with this property. In fact Landazuri
and Seitz have proven a generalisation of Frobenius’s theorem for simple groups of Lie type
and bounded rank.

For instance for n 󰃍 2 one has

min
π∈Irr(SLn(Fp))

π ∕=π0

dπ ≫n pn−1.
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6.2. The Larsen-Pink inequalities

The product theorem is a classification result for the finite approximate subgroups of
SL2(Fp). A first step is to obtain a classification for the for the finite subgroups of SL2(Fp).

In fact we will discuss more generally the classification of the finite subgroups of SL2(Fp)

where Fp is an algebraic closure of Fp.
Such classification is provided in much greater generality by the fundamental work of

Larsen and Pink [?LP]. A key point is the fact that SL2(Fp) is an algebraic group.

6.2.1. Algebraic varieties and algebraic groups. Let k ⊂ k be a field with a choice
of algebra closure. The n-dimensional affine space k

n
is equipped with the Zariski topology

in which the closed sets are the subsets of the shape

VI(k) = {x ∈ k
n
, P (x) = 0, ∀P ∈ I}

where I ⊂ k[X1, · · · , Xn] is an ideal and the open sets are the complements.
A closed set is also called an (affine) algebraic variety.
The I is finitely generated (k[X1, · · · , Xn] is noetherian) and if I is generated by at

most C polynomials of degree 󰃑 C then one says that VI has complexity 󰃑 C.
6.2.1.1. Connected components. A subvariety is connected if it is connected for the

Zariski topology. One can show that a variety decomposes uniquely into a disjoint union
of connected subvarieties (the connects components) whose number is OC(1) where C is a
bound on the complexity of V .

6.2.1.2. Irreducible components and dimension. A subvariety V is irreducible if it is not
the union of two proper subvarieties. One can show that any variety can be decomposed
(uniquely) into a finite union of irreducible subvarieties (called the irreducible components
of V ) whose number is OC(1) where C is a bound on the complexity of V .

The dimension, dimV , of an irreducible subvariety V is the maximal length of a strict
chain of irreducible subvarieties

∅ ∕= V0 ⊊ V1 ⊊ · · · ⊊ VD = V.

The dimension, dimV , of a general variety V is the maximal dimension of its irreducible
components.

6.2.1.3. Variety defined over a field. Suppose that I = k.I is the ideal generated by
some k-ideal I ⊂ k[X1, · · · , Xn]. We say that V is defined over k and we define the set of
k-points of V as

VI(k) := {x ∈ kn, P (x) = 0, ∀P ∈ I} ⊂ VI(k).

We can in fact in the same way VI(k
′) the set of k′-point of VI for any field extension k ⊂ k′

and more generally define the set of K-points VI(K) for any k-algebra (not necessarily
contained in k).

6.2.2. Linear algebraic groups. Let Mn(k) be the k-algebra of n×n matrices. Tak-
ing elementary matrices as a basis we have the identifications

Mn(k) ≃ kn
2
, Mn(k) ≃ k

n2

.

The group

GLn(k) = {g ∈ Mn(k)} = {g ∈ Mn(k), det(g) ∕= 0}
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can be seen as the set of k-points of an affine subvariety of dimension n2 in a space of
dimension n2 + 1, namely:

GLn(k) ≃ {(g, t) ∈ Mn(k)× k, det(g)t− 1 = 0}.
via the map

(g, t) 󰀁→ g.

In fact GLn is defined over k. If n = 1, GL1 is also noted Gm and is called the multiplicative
group. We have

Gm(k) = k×.

Definition 6.6. A linear algebraic group G (defined over k) is an affine subvariety
(defined over k) obtained from a system of polynomial equations

P (X, T ) = 0, P (X, T ) ∈ I(G), det(X)T − 1 ∈ I(G) ⊂ k[X11, · · · , Xnn, T ]

and such that G(k) ⊂ GLn(k) is a subgroup GLn(k).

Example 6.1. Given m 󰃍 1 let

µm(k) = {µ ∈ k×, µm − 1 = 0} ⊂ Gm(k).

This is the group of m-th root of unity defined via the ideal of k[X,T ] generated by

XT − 1, Xm − 1.

SL2(k) ⊂ GL2(k) is a linear algebraic group defined over k via the ideal generated by

det(g)T − 1 = 0, T − 1.

The Larsen-Pink inequalities provide a partial classification of the finite subgroups of
an algebraic group.

Theorem 6.7 (Larsen-Pink). Let k be algebraically closed and G(k) be a connected
simple algebraic group.

For any D 󰃍 1 there exists C = C(D, dimG) > 0 such that the following holds.
For any finite subgroup A ⊂ G(k), either A is contained in a proper algebraic subgroup

H(k) ⊂ G(k) such that [H : H0] 󰃑 C or for every closed algebraic subvariety V (k) ⊂ G(k)
of degree 󰃑 D, one has

|A ∩ V (k)| 󰃑 C|A|dimV/ dimG.

This Theorem states that unless A is trapped inside some ”reasonable” proper subgroup
of G(k) then A intersects any reasonable algebraic subvariety in at most the right order of
point. It admits an almost-subgroup version initiated by Hrushovski:

Theorem 6.8 (Larsen-Pink for almost groups). Let k be algebraically closed and G(k)
be a connected simple algebraic group.

For any D,K 󰃍 1 there exists C = C(D,K, dimG) > 0 such that the following holds.
For any K–approximate subgroup A ⊂ G(k), either A is contained in a proper algebraic

subgroup H(ovk) ⊂ G(k) such that [H : H0] 󰃑 C or for every closed algebraic subvariety
V ⊂ G of degree 󰃑 D, one has

|A ∩ V (k)| 󰃑 CKC |A|dimV/ dimG.

The proof of Helfgott theorem, we present here (which is a special case more general
results of Breuillard-Green-Tao and Pyber-Szabo) make use of very special cases of the
Larsen-Pink inequalities.
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6.3. Structure of SL2(k)

Let k be a field, k an algebraic closure. We write

G(k) = SL2(k),G(k) = SL2(k).

6.3.1. Elements and sous-groups. Let G = SL2 and let
Given g ∈ G, its eigenvalues are the roots of

Pg(X) = X2 − tr(g)X + 1.

– Semisimple: if tr(g) ∕= ±2 then g has two distinct eigenvalues λ1,λ2 ∈ k (and even
in k if tr(g)− 4 is a square in k).

– In particular g is diagonalizable, ie. conjugate to a diagonal matrix with distinct
entries; the conjugating matrix is a priori in GL2(k) but can in fact be taken in

SL2(k) (by multiplying any conjugating matrix h by det(h)−1/2Id2).
– Central: if g = ±Id2 then tr(g) = ±2.
– Quasi-unipotent regular: if tr(g) = 2ε, ε = ±1 and g ∕= εId2 then there is one
eigenvalue ε of multiplicity 2 and ε.g is regular unipotent

εg ∕= Id2, (εg − Id2)
2 = 02.

Consequently g is conjugate to a matrix of the shape

ε

󰀕
1 x
0 1

󰀖
, x ∈ k×

and the conjugating matrix can be taken in SL2(k).

6.3.1.1. Centralizers, normalizers. Given g ∈ G(k), we note

Centg(k) = {h ∈ G(k), hgh−1 = g}
its centralizer.

If g is semisimple then Centg(k) =: Tg is conjugate to the group of diagonal matrices

T = Diag2(k) = {
󰀕
t 0
0 t−1

󰀖
, t ∈ k

×}

and is called a maximal torus of G(k).
Let

NorTg = {h ∈ G(k), hTgh
−1 = Tg}

denote the normalizer of Tg then

NorTg = Tg ⊔ wgTg

where w2
g = Id2. For instance

NorT = T ⊔ wT, w =

󰀕
0 −1
1 0

󰀖
.

If g is regular unipotent then

Centg(k) =: ±Ng

where g ⊂ Ng is conjugate to the group of unipotent upper triangular matrices

N = {
󰀕
1 x
0 1

󰀖
, x ∈ k}
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The group Ng is called a unipotent subgroup.
The normalizer of a unipotent subgroup Ng

Bg = NorUg = {h ∈ G(k), hUgh
−1 = Ug}

is called a Borel subgroup is conjugate to the group of unipotent upper triangular matrices

B = {
󰀕
t x
0 t−1

󰀖
, x ∈ k, t ∈ k

×}.

It is clear that maximal tori, unipotent subgroups and Borel subgroups are linear algebraic
subgroups of SL2(k) of dimensions 1, 1 and 2.

6.3.1.2. The action by fractional linear transformations. Let

P1(k) = {0 ⊂ L ⊂ k
2
, dimL = 1}

be the set of one dimensional subspaces in k
2
(the lines passing through the origin).

Any L can be written

L = {βy = αx, (α,β) ∕= (0, 0)}
and can be represented by its slope

s(L) = [α : β] =

󰀫
α/β β ∕= 0

∞ β = 0
.

The group SL2(k) acts on P1(k) by fractional linear transforrmations: z ∈ P1(k)
󰀕
a b
c d

󰀖
z =

󰀫
az+b
cz+d z ∕= −d/c

∞ z = −d/c
.

Its kernel is the center {±Id2}. In addition we have

– This action is transitive. The stabilizer of a point z ∈ P1(k) is a Borel subgroup
Bz and conversely a Borel subgroup is the stablizer of a unique L (the common
eigenspace of the elements of B). For instance the upper triangulat Borel subgroup
is the stabilizer of ∞, B∞ and the lower triangular Borel subgroup is the stabilizer
of 0, tB = B0. In particular we have for any Borel subgroup an isomorphism of
SL2(k)-spaces

P1(k) ≃ SL2(k)/B.

– In fact (check it) the action is 2-transitive: for any z1 ∕= z2 ∈ P1(k) there is
g ∈ SL2(k) such that

gz1 = 0, gz2 = ∞.

The poinwise stabilizer of a pair of distinct points z1 ∕= z2 ∈ P1(k) is the intersection
of the two Borel subgroups Bz1∩Bz2 which is in fact a maximal torus Tz1,z2 . To see
this transform z1, z2 to 0,∞ and check that the stabilizer is the diagonal subgroup
T = B∞ ∩B0.

– Finally the pointwise stabilizer of three distinct points z1, z2, z3 (ie. the intersection
of three distinct Borel subgroups) is the trivial subgroup {±Id2}. To see this we
may assume that z1 = 0, z2 = ∞ and any element stabilizing 0,∞ and z3 ∕= 0,∞

would have to be a diagonal matrix

󰀕
t

t−1

󰀖
and we would have t2z3 = z3 which

implies t = ±1 (since z3 ∕= 0).
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6.4. Special Larsen-Pink inequalities for SL2(k)

We will now prove some special cases of the LP inequalities for SL2(k) namely for V

– A maximal torus T (of dimension 1),
– a unipotent subgroup U (of dimension 1),

– The conjugacy class Conj(g) of a non-central element g ∈ SL2().

The proper algebraic subgroup H will be Borel subgroups B.

6.4.1. Intersection with Tori and Unipotent subgroups.

Proposition 6.9 (LP for tori). There exist constants C,D > 0 such that for any finite
subgroup A ⊂ G(k) satisfying |A| 󰃍 D, one of the following holds

– For any maximal torus T ,

|T ∩A| 󰃑 C|A|1/3.
– There is a Borel subgroup B such that

|B ∩A| 󰃍 C−1|A|.

Remark 6.3. The exponent 3 is the dimension of SL(k) as an algebraic subvariety of
M2(k) and 1 is the dimension of a maximal torus.

Proof. Suppose that for any Borel subgroup B

|A ∩B| 󰃑 C−1|A|.
Given any γ ∈ G(k), consider the intersection A∩γB and suppose it is non-empty. The

group A ∩B acts on A ∩ γB by right translations: if g ∈ A ∩B and x = a = γb ∈ A ∩ γB,
we have xg = ag ∈ A and xg = γbg ∈ γB. The action is simple and transitive hence

|A ∩ γB| = |A ∩B| 󰃑 C−1|A|.
We claim that there exists

g =

󰀕
a b
c d

󰀖
∈ A

with abcd ∕= 0. Indeed the set of matrices
󰀕
a b
c d

󰀖
∈ SL2(k), abcd = 0

is the union of the cosets of B∞

B∞, B0 = wB∞w, wB∞, wB0

(corresponding to c = 0, b = 0, a = 0, d = 0). Hence if C > 4 and |A| is large enough, we
have

|A ∩ (B∞ ∪B0 ∪ wB∞, wB0)| < |A|
hence g exists.

Up to conjugating A we may assume that

T = {
󰀕
t 0
0 t−1

󰀖
, t ∈ k

×}

is the diagonal torus; let TA = A∩T . A priori it would be sufficient to construct an injective
map

ϕ : TA × TA × TA ↩→ A
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for then

|TA|3 = |ϕ(TA, TA, TA)| 󰃑 |A|.
In fact we don’t need the map to be exactly injective. It will be sufficient that its fibers
have uniformly bounded sizes or even that almost all of them have this property. We will
do this by producing a map defined via polynomials equations of bounded degrees.

Write

TA = A ∩ T = {
󰀕
t 0
0 t−1

󰀖
, t ∈ HA}

for some finite subgroup HA ⊂ k
×
.

Given t1, t2, t2 ∈ HA we define

ϕ(t1, t2, t3) =

󰀕
t1 0
0 t−1

1

󰀖󰀕
a b
c d

󰀖󰀕
t2 0
0 t−1

2

󰀖󰀕
a b
c d

󰀖󰀕
t3 0
0 t−1

3

󰀖

=

󰀕
t1 0
0 t−1

1

󰀖󰀕
a2t2 + bct−1

2 act2 + bdt−1
2

act2 + cdt−1
2 bct2 + d2t−1

2

󰀖󰀕
t3 0
0 t−1

3

󰀖
∈ A

Since abcd ∕= 0 there at most 8-values of t2 for which one of the entries in the middle matrix
is zero. Given any t2 away from these values, varying t1, t3 ∈ HA we obtain |HA|2 distinct
elements. In addition the product of the diagonal entries of the triple product does not
depend on t1, t3 and equals

(a2t2 + bct−1
2 )(bct2 + d2t−1

2 ).

As t2 varies over HA this function takes 󰃍 |HA|/4 distinct values. In conclusion one obtains
at least ≫ |HA|3 distincts elements in A hence

|TA| = |HA| ≪ |A|1/3

where the implicit constant is absolute. □

Proposition 6.10. (LP for unipotent subgroups) There exist constants C,D > 0 such
that for any finite subgroup A ⊂ SL2(k) satisfying |A| 󰃍 D, one of the following holds

– For any unipotent subgroup N ,

|N ∩A| 󰃑 C|A|1/3.
– There is a Borel subgroup B such that

|B ∩A| 󰃍 C−1|A|.

Proof. Exercise. (hint: use a similar method but also involve the inverse of

󰀕
a b
c d

󰀖
)

□

6.4.2. Intersection with conjugacy classes. Given g ∈ G(k) we let

Conj(g) = {hgh−1, h ∈ G(k)}

the conjugacy class of g. This is an algebraic subvariety of G(k).
We have

– If g = ±Id2, Conj(g) = {g},
– If g is regular unipotent Conj(g) is the set of all regular unipotent elements.
– If g is semisimple, Conj(g) = {h ∈ G(k), tr(h) = tr(g)}.
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Here we will use the upper bounds from Proposition 6.9 and 6.10 to obtain lower bounds on
the intersection with conjugacy classes using the orbit-stabilizer theorem:

Proposition 6.11 (LP, large intersection with a conjugacy classes). There exist con-
stants C,D > 0 such that for any finite subgroup A ⊂ G(k) satisfying |A| 󰃍 D, one of the
following holds

– For any g ∈ A regular,

|Conj(g) ∩A| 󰃍 C−1|A|2/3.
– There is a Borel subgroup B such that

|B ∩A| 󰃍 C−1|A|.

Proof. We treat only the case g regular semisimple and leave the unipotent case as an
exercise.

We assume that for any Borel subgroup B, |A ∩ B| 󰃑 C−1|A| where C 󰃍 1 is to be
chosen sufficiently large.

Consider the map

cg : h ∈ A 󰀁→ hgh−1 ∈ Conj(g) ∩A =: Conj(g)A.

Given any g′ ∈ Conj(g)A, the preimage of g′ by cg is contained in a coset of

Centg(k) = Tg

the unique maximal torus containing g and therefore by Prop. 6.9

|c(−1)
g ({g′})| 󰃑 C|A|1/3

but this shows that

|cg(A)| 󰃍 C−1|A|2/3.
□

Now we prove the (upperbound) LP inequalities for conjugacy classes of regular ele-
ments:

Proposition 6.12 (LP, small intersection with conjugacy classes). There exist constants
C,D > 0 such that for any finite subgroup A ⊂ SL2(k) satisfying |A| 󰃍 D, one of the
following holds

– For any g ∈ SL2(k), regular (either semisimple or quasi-unipotent)

|Conj(g) ∩A| 󰃑 C|A|2/3.
– There is a Borel subgroup B such that

|B ∩A| 󰃍 C−1|A|.

Proof. We prove the case semisimple and leave the quasi-unipotent case as an exercise.
A first basic observation is that for any h ∈ SL2(k) we have

tr(h) = tr(h−1)

(since

󰀕
a b
c d

󰀖−1

=

󰀕
d −b
−c a

󰀖
and therefore if g is regular semisimple we have

Conj(g) = {h ∈ SL2(k), tr(h) = tr(g)} = Conj(g)−1 = Conj(g−1).
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We assume that for any Borel subgroup B we have |B ∩ A| 󰃑 C−1|A| where C 󰃍 1 to
be chosen sufficiently large1. We aim to prove that

|A ∩ Conj(g)| 󰃑 C|A|2/3.
For this we (following Larsen-Pink) consider the following map

ϕ : (c1, c2, c3) ∈ Conj(g)3 󰀁→ (c1c2, c1c3) ∈ SL2(k)
2

or rather its restriction to Conj(g)3A with

Conj(g)A := A ∩ Conj(g) = {c ∈ A, tr(c) = tr(g)}
(note particular Conj(g)A contains only regular semisimple elements).

Lemma 6.13. Given g ∈ SL2(k) a regular element (semisimple or quasi-unipotent)

(a, b) ∈ SL2(k)
2, the map

(c1, c2, c3) 󰀁→ c1 = ac−1
2 = bc−1

2

a bijection

ϕ(−1)(a, b) ≃ Conj(g) ∩ bConj(g)−1 ∩ aConj(g)−1.

If in addition g is semisimple we have Conj(g)−1 = Conj(g) so that the bijection can be
written

ϕ(−1)(a, b) ≃ Conj(g) ∩ aConj(g) ∩ bConj(g).

The restriction of ϕ to Conj(g)3A has image in A2; we will bound |Conj(g)A| by bound-
ing |Conj(g)3A| = |Conj(g)A|3 and obtain the later by ”slicing” Conj(g)3A into the fibers

ϕ(−1)(a, b) ∩A3.
By the previous lemma, we have

|Conj(g)3A| =
󰁛

a,b∈A
|Conj(g)A ∩ aConj(g)A ∩ bConj(g)A|

and we will bound |Conj(g)A ∩ aConj(g)A ∩ bConj(g)A| either pointwise or on average over
some suitable families of (a, b). For this we observe that the set

Conj(g)A ∩ aConj(g)A ∩ bConj(g)A = Conj(g) ∩ aConj(g) ∩ bConj(g) ∩A

is the intersection of A with

Conj(g) ∩ aConj(g) ∩ bConj(g)

which is an algebraic subvariety of Conj(g) ⊂ SL2(k) to which we may want to apply the
LP inequalities.

Let us do some rough dimensional analysis: the intersection Conj(g) ∩ aConj(g) ∩
bConj(g) is the intersection of three 2-dimensional varieties in a 3 dimensional space so
one would hope that for most values of (a, b) the has dimension 0 ie. is finite absolutely
bounded (think of the intersection of three affine planes in a three dimensional space).
Hence we expect that for most (a, b) ∈ A2,

|Conj(g) ∩ aConj(g) ∩ bConj(g) ∩A|
should be absolutely bounded and the contribution of such generic terms is ≪ |A|2.

If Conj(g)∩aConj(g)∩bConj(g) is one dimensional then a and b are somewhat ”related”
(for instance we could have a = b or more generally, as we will see, b is contained in a one

1As we will see the values of C depends on the ”C” in Propositions 6.9 and 6.10
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dimensional subvariety associated with a). Applying the LP inequalities to count the b in
that subvariety along with the trivial bound

|Conj(g) ∩ aConj(g) ∩ bConj(g) ∩A| 󰃑 |Conj(g) ∩A|
we obtain that the contribution of such special terms is bounded by

≪
󰁛

a∈A
|A|1/3|Conj(g)A| ≪ |A|4/3|Conj(g)A|

Finally if Conj(g)∩ aConj(g)∩ bConj(g) is two dimensional which basically means that

Conj(g) = aConj(g) = bConj(g)

which can occur only in very rare cases (such as a = b = Id) which are handled easily using
that |Conj(g)A| 󰃑 |A|.

Let us implement this strategy (we will proceed a bit differently however) and prove the
upper bound

|Conj(g)A|3 = |
󰁛

a,b∈A
|Conj(g)A ∩ aConj(g)A ∩ bConj(g)A| ≪ |A|2 + |A|4/3|Conj(g)A|.

If a = ±Id2 we use the trivial bound

|Conj(g)A ∩ aConj(g)A ∩ bConj(g)A| 󰃑 |Conj(g)A|
so that 󰁛

b∈A
|Conj(g)A ∩ aConj(g)A ∩ bConj(g)A| 󰃑 |Conj(g)A||A| 󰃑 |A|2.

Same for b = ±Id2 and a = ±b.
We may assume that ±Id2,±a,±b are distinct and in particular a and b are regular

either semisimple or quasi-unipotent.
Suppose that Id2, a

−1, b−1 are k-linearly dependent in the vector space M2(k). This
implies that either, a and b are both regular and either both semisimple (and then b belong
to the unique maximal torus containing a) or both quasi-unipotent (and then ±b belong to
the unique unipotent subgroup containing ±a). In particular, by Prop. 6.9 or Prop. 6.10,

given any such a, the number of such b’s is bounded by C|A|1/3 and the sum over such a, b’s
is bounded by

|A|C|A|1/3|Conj(g)A| = C|A|4/3|Conj(g)A|.
It remains to treat the case where Id2, a

−1, b−1 are k-linearly independent; they are in
fact k linearly independent (put the three elements in a k-basis of M2(k), their determinant
is ∕= 0 and so the four elements are still linearly independent in M2(k)).

In this case
Conj(g)A ∩ aConj(g)A ∩ bConj(g)A = A ∩ L

where
L = L(g, a, b) := {ℓ ∈ M2(k), tr(ℓ) = tr(a−1ℓ) = tr(b−1ℓ) = tr(g)}

is an affine line in M2(k) (since Id2, a
−1, b−1 are k-linearly independent the three linear

forms m 󰀁→ tr(m), tr(a−1m), tr(b−1m) are linearly independent in the dual M2(k)
∗).

If L ∕⊂ SL2(k) then L ∩ SL2(k) consists in at most two points : to see this use the
fact that SL2(k) is the algebraic subvariety of M2(k) defined by the polynomial equation of
degree at most 2, ad− bc = 1 and use a parametrisation of the affine line

L : x ∈ k 󰀁→ ℓ0 + ℓ′x
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for L′ ∈ M2(k).
Therefore the contribution of such a, b is bounded by

2|A|2.
Suppose now that we are in the special case

L ⊂ SL2(k).

Given ℓ0 ∈ L, the shifted line ℓ−1
0 .L contains Id2 and admits a parametrization of the shape

x ∈ k 󰀁→ Id2 + ℓ−1
0 ℓ′x.

We have

det(ℓ−1
0 L(x)) = det

󰀕
1 + a′x b′x
c′x 1 + d′x

󰀖

= (1 + a′x)(1 + d′x)− b′c′x2

= 1 + tr(ℓ−1
0 ℓ′)x+ det(ℓ−1

0 ℓ′)x2 = 1

and therefore
tr(ℓ−1

0 ℓ′) = det(ℓ−1
0 ℓ′) = 0.

This shows that ℓ−1
0 ℓ′ is conjugate to a nilpotent upper triangular matrix

󰀕
0 u
0 0

󰀖
and

therefore ℓ−1
0 L is conjugate to the group of unipotent matrices

N = {
󰀕
1 xu
0 1

󰀖
, x ∈ k} = {

󰀕
1 x
0 1

󰀖
, x ∈ k}

(note that u ∕= 0 since L has more than 1 element).
Therefore there exists h ∈ SL2(k) such that

hℓ−1
0 Lh−1 = hℓ−1

0 h−1hLh−1 = N.

Setting ℓ′0 = hℓ0h
−1 a′ = hah−1, b′ = hbh−1 we have

ℓ′0N = {hmh−1 ∈ M2(k), tr(m) = tr(a−1m) = tr(b−1m) = tr(g)}

= {ℓ′0n, n =

󰀕
1 x
0 1

󰀖
, x ∈ k, tr(ℓ′0n) = tr(a′

−1
ℓ′0n) = tr(b′

−1
ℓ′0n) = tr(g)}.

We have for any x ∈ k

tr(

󰀕
s t
u v

󰀖󰀕
1 x
0 1

󰀖
) = s+ ux+ v.

Since the traces are independent of x the lower left entries of ℓ′0, a′, b′ have to be zero and
therefore

ℓ′0, a′, b′ ∈ B∞

and in particular
a, b ∈ Bh = h−1B∞h

and
ℓ−1
0 L = h−1Nh = Nh.

Moreover Nh is the stabilizer of one of the eigenvectors of a (since N is the stabilizer of the
first vector of the canonical basis) so given a, the unipotent subgroup Nh can take at most
two values as does Bh (being the normalizer of Nh).
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Finally, let {t, t−1} be the two eigenvalues of g (these are distincts since g is regular

semisimple). The diagonal entries of ℓ′0, a
′−1ℓ′0, b

′−1ℓ′0 are equal to either (t, t−1) or (t−1, t)
and those of a′ and b′ are either (t2, t−2) or (t−2, t2) or (1, 1); therefore given a′, b′ is contained
in at most three cosets of U∞ or in other terms, given a, the element b is contained in at
most three cosets of Uh. By Proposition 6.10, this implies that given a, there are at most
6C|A|1/3 possible values of b’s so the contribution of (a, b)’s such that Id2, a

−1 and b−1 are
linearly independent is bounded by

2|A|2 + 6C|Conj(A, g)||A||A|1/3.

□

Since the conjugacy class of a regular unipotent element g consists of all regular unipo-
tent elements, and the conjugacy class of the quasi-unipotent −g is − the conjugacy class
of g we have

Corollary 6.14. There exist constants C,D > 0 such that for any finite subgroup
A ⊂ SL2(k) satisfying |A| 󰃍 D, one of the following holds

– There is a Borel subgroup B such that

|B ∩A| 󰃍 C−1|A|.

– A contains at most 2C|A|2/3 quasi-unipotents elements. In particular A contains

at least (2C)−1|A|1/3 − 2 regular semisimple elements.

Corollary 6.15 (Large intersection with tori). There exist constants C,D > 0 such
that for any finite subgroup A ⊂ G(k) satisfying |A| 󰃍 D, one of the following holds

– For any g ∈ A, regular semisimple contained in the maximal torus Tg we have

|Tg ∩A| 󰃍 C−1|A|1/3.

– There is a Borel subgroup B such that

|B ∩A| 󰃍 C−1|A|.

Proof. As usual we assume that we are not in the second situation. We have a map

a ∈ A 󰀁→ aga−1 ∈ A ∩ Conj(g)

with image of size 󰃑 C|A|2/3 so there is g′ ∈ A ∩ Conj(g) with preimage 󰃍 C−1|A|1/3 but

since all preimages are translates of one another, all have the same size 󰃍 C−1|A|1/3 and in
particular the preimage of g which is A ∩ Centg(k) = A ∩ Tg. □

This corollary admits a unipotent version which we leave as an exercise.

Corollary 6.16. There exist constants C,D > 0 such that for any finite subgroup
A ⊂ G(k) satisfying |A| 󰃍 D, one of the following holds

– For any g ∈ A, regular unipotent contained in the unipotent subgroup Ug we have

|Ug ∩A| 󰃍 C−1|A|1/3.

– There is a Borel subgroup B such that

|B ∩A| 󰃍 C−1|A|.
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6.4.3. A rough description of the finite subgroups of SL2(k) over finite fields.
From Corollary 6.15 we see that if A is not roughly contained in any Borel subgroup then
for any maximal torus T , the following dichotomy holds:

(6.3) either |A ∩ T | 󰃑 2 or |A ∩ T | 󰃍 C−1|A|1/3

depending on whether A∩T is contained in {±Id2} or contains at least one regular element.
This dichotomy can be used to prove the following classification result which we will

not prove in the live course unless we have time.

Theorem 6.17 (Rough description of the finite subgroups of SL2(k)). There exist con-
stants C,D > 0 such that for k = Fp the algebraic closure of a finite field k and any finite

subgroup A ⊂ SL2(k) satisfying |A| 󰃍 D, one of the following holds:

– there is a finite subfield k ⊃ Fp satisfying

C−1|A|1/3 󰃑 |k| 󰃑 C|A|1/3

such that A is contained in a conjugate of SL2(k) (in particular A has index 󰃑 C
in that conjugate).

– There is a Borel subgroup B such that

|B ∩A| 󰃍 C−1|A|.

Proof. To be included. □

6.5. Larsen-Pink inequalities for approximate subgroups

We now prepare for the proof Theorem 6.2 by obtaining LP inequality for approximate
subgroups.

From now on, we assume that k is a finite field and that A ⊂ SLd(k) is a K-approximate
subgroup generating G(k) = SLd(k).

The main tool for the proof will be LP inequalities for A which are proving by using
the group theoretic versions from the previous sections.

6.5.1. Approximate subgroup versions of the orbit-stabilizer theorem.

Lemma 6.18 (Orbit-Stabilizer for approximate subgroups). Let G ↷ X be a group
acting on a set X and A ⊂ G be a set. We have for x ∈ X

(6.4) |A.A−1 ∩Gx| 󰃍
|A|
|A.x|

and for any B ⊂ G we have

(6.5) |BA| 󰃍 |A ∩Gx||B.x|.
Here Gx = StabG(x) denote the stablizer of x.

Proof. We have a.x = a′.x ⇐⇒ a′a−1 ∈ Gx. Hence for any y = ax ∈ A.x we have

rA(y) = |{a′ ∈ A, a′x = y}| = |Aa−1 ∩Gx| 󰃑 |A.A−1 ∩Gx|.
We then have 󰁛

y∈A.x

rA(y) =
󰁛

y∈A.x

󰁛

a′∈A
a′x=y

1 =
󰁛

a′∈A

󰁛

y∈A.x,a′x=y

1 = |A|
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and 󰁛

y∈A.x

rA(y) 󰃑 |A.x||A.A−1 ∩Gx|.

For the second inequality we observe that

|BA| 󰃍 |B.(A ∩Gx)|
and that

B.(A ∩Gx).x = B.x.

□

Lemma 6.19. Let G ↷ X be a group acting on a set X and A ⊂ G be a symmetric set
(A−1 = A). For any x ∈ X and m 󰃍 1 we have

|A(m+1)| 󰃍 |A(m) ∩Gx|
|A(2) ∩Gx|

|A|.

In particular if eG ∈ A (so that A(m) ⊂ A(m+1)) and |A(m+1)| 󰃑 Km|A| we have

1 󰃑 |A(m) ∩Gx|
|A(2) ∩Gx|

󰃑 Km.

Proof. We have by (6.5) and (6.4)

|A(m+1)| 󰃍 |A(m) ∩Gx||A.x| =
|A(m) ∩Gx|
|A(2) ∩Gx|

|A(2) ∩Gx||A.x| 󰃍 |A(m) ∩Gx|
|A(2) ∩Gx|

|A|.

□
Applying this to the action G ↷ G/H for H a subgroup and x = eG.H we obtain

Corollary 6.20. Let G be a group and A ⊂ G be a symmetric set (A−1 = A). For
any subgroup H ⊂ G and k 󰃍 1 we have

|A(m+1)| 󰃍 |A(m) ∩H|
|A(2) ∩H|

|A|.

In particular if eG ∈ A (so that A(m) ⊂ A(m+1)) and |A(m+1)| 󰃑 Km|A| we have

1 󰃑 |A(m) ∩H|
|A(2) ∩H|

󰃑 Km.

6.5.2. Escaping Borel subgroups. In the group theoretic version of the LP inequal-
ities a part of the alternative was that the subgroup A was not roughly contained in any
Borel subgroup.

In this section we develop a version of the LP inequalities when A is a generating
approximate subgroup. We first show that the Borel subgroup rough containment never
occurs (at least of k is large enough).

Lemma 6.21 (Escape from Borel subgroups). Let k,A as above. There exists an absolute
constant D 󰃍 1 such that for any C 󰃍 1, one of the following holds

– one has |A| 󰃑 KDC ;
– for any Borel subgroup B ⊂ SL2(k)

|A(2) ∩B| 󰃑 K−C |A|.
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Proof. We assume that |A| > KDC (in particular |k| ≫ KDC/3).

Assume that for some B one has |A(2) ∩B| > K−C |A|. Since A(2) is covered by at most
K-translates of A there exists a ∈ A such that

|aA ∩B| > K−C−1|A|.
We also claim (see below) that for |k| is sufficiently large there exists g ∈ SL2(k) such

that gBg−1 ∕= B; since A generates SL2(k) this implies that there exists b ∈ A such that

Bb := bBb−1 ∕= B.

In particular since the two Borel subgroups B and Bb are distincts B ∩ Bb = Tb is a
maximal torus.

We have bA(2)b−1 ∩Bb ⊂ A(4) ∩Bb hence

|A(4) ∩Bb| 󰃍 |bA(2)b−1 ∩ bBb−1| = |A(2) ∩B| > K−C |A|.
Since A(4) = A(3).A is covered by at mostK3 successive translates of A there exists a3 ∈ A(3)

such that
|a3A ∩Bb| > K−C−3|A|.

Let
A1 = aA ∩B, A2 = a3A ∩Bb.

We have 󰁛

g∈SL2(k)

1A1 󰂏 1A−1
2
(g) = |A1||A2| > K−2C−4|A|2.

Since supp(1A1 󰂏 1A−1
2
) ⊂ A(6) we have

|supp(1A1 󰂏 1A−1
2
)| 󰃑 |A(6)| 󰃑 K5|A|,

and there exists a6 ∈ A(6) such that

1A1 󰂏 1A−1
2
(a6) = |A1 ∩ a6A2| 󰃍 K−2C−9|A|.

Hence the product set
(A1 ∩ a5A2)

−1.(A1 ∩ a5A2)

which is of size 󰃍 K−2C−9|A| is contained in the intersection of

A.a−1.a.A = A(2), B.B = B and Bb.Bb = Bb

and therefore
|A(2) ∩ Tb| = |A(2) ∩B ∩Bb| 󰃍 K−2C−9|A|.

We claim again that there exist g ∈ SL2(k) such that gTbg
−1 ∕= Tb. Indeed such a g would

have to be in the normalizer of Tb which is Tb ⊔ wbTb and so would have to be semisimple
but if k is large enough SL2(k) contains regular non-semisimple elements. Since A generates
SL2(k) this implies that there is c ∈ A such that Tb,c = cTbc

−1 ∕= Tb and therefore (since we
are intersecting distinct maximal tori)

Tb,c ∩ Tb = {±Id2}.
On the other hand the same reasoning as above shows that

|A(2) ∩ Tb ∩ Tb,c| 󰃍 K−2(2C+9)−9|A|
which yields a contradiction if A is large enough. □

It remains to prove the claim which we leave as an exercise.
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Lemma 6.22. There exists an absolute constant D such that for any finite field k satis-
fying |k| 󰃍 D, any Borel subgroup B ⊂ SL2(k) there is g ∈ SL2(k) such that

gBg−1 ∕= B.

Proof. (hint) Use the fact that B = Bz for some z ∈ P1(k) to show that any g ∈ Bz

has its matrix entries satisfying a linear equation (depending on z and with coefficients in
k). Show that if |k| is large enough there is some g ∈ SL2(k) not satisfying this equation
(because |SL2(k)| ≫ |k|3). □

6.5.3. A series of LP inequalities. We can then use this Escape from the Borels
”wildcard” lemma to obtain approximate subgroup versions of the Larsen-Pink inequalities.

Proposition 6.23 (LP for tori (App. subgroup version)). There exist a constant C > 0
such that for any generating K-approximate subgroup A ⊂ SL2(k) and any maximal torus
T ⊂ SL2(k), we have

|T ∩A(2)| 󰃑 KC |A|1/3.
Proof. We may assume that |A| 󰃍 KDC for D the constant in Lemma 6.21 and C to

be chosen sufficiently large, for otherwise the trivial bound

|T ∩A(2)| 󰃑 K|A|

will suffice (since K|A| 󰃑 KC |A|1/3 if |A| 󰃑 K
3
2
(C−1)).

Moreover, by Lemma 6.21 and our assumption |A| 󰃍 KDC , we have that for any Borel
subgroup B ⊂ SL2(k)

(6.6) |A(2) ∩B| 󰃑 K−C |A|.
Up to conjugating T (and A would then generate a group conjugate to SL2(k) ⊂ SL2(k)
but this does not change the argument) we may assume that

T = {
󰀕
t 0
0 t−1

󰀖
, t ∈ k

×}

is the diagonal torus. Let

TA = T ∩A(2) = {
󰀕
t

t−1

󰀖
, t ∈ HA}

for HA ⊂ k
×
. If |HA| 󰃑 KC we have

|TA| 󰃑 KC 󰃑 KDC/3 󰃑 |A|1/3

as long as D 󰃍 3.

By the same reasoning as in the proof of Prop. 6.9, using (6.6) there exists g =

󰀕
a b
c d

󰀖
∈

A(2) whose four entries satisfy abcd ∕= 0 (as long as KC > 4). We then have

TAgTAgTA ⊂ A(10)

so for all t1, t2, t3 ∈ HA

ϕ(t1, t2, t3) =

󰀕
t1 0
0 t−1

1

󰀖󰀕
a b
c d

󰀖󰀕
t2 0
0 t−1

2

󰀖󰀕
a b
c d

󰀖󰀕
t3 0
0 t−1

3

󰀖

=

󰀕
t1 0
0 t−1

1

󰀖󰀕
a2t2 + bct−1

2 act2 + bdt−1
2

act2 + cdt−1
2 bct2 + d2t−1

2

󰀖󰀕
t3 0
0 t−1

3

󰀖
∈ A(10)
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and by the same reasoning as in Prop. 6.9 we find that

|T ∩A(2)|3 = |HA|3 ≪ |A(10)| 󰃑 K9|A|

where the implicit constant is absolute. □

Corollary 6.24. Assumptions as in Prop. 6.23. For any m 󰃍 1, there exists Cm 󰃍 1
such that one has

|A(m) ∩ T | 󰃑 KCm |A|1/3

Proof. Exercise (use §6.5.1). □

Proposition 6.25. (LP for unipotent subgroups (App subgroup version)) For any m 󰃍 1
exist constants Cm > 0 such that for any generating K-approximate subgroup A ⊂ SL2(k)
and any unipotent subgroup N ⊂ SL2(k) one has

|N ∩A(m)| 󰃑 KCm |A|1/3.

Proof. Exercise. □

Proposition 6.26. (LP, large intersections with conjugacy classes (App subgroup ver-
sion)) There exist constant C > 0 such that for any generating K-approximate subgroup
A ⊂ SL2(k) and any g ∈ A regular, one has

|Conj(g) ∩A(3)| 󰃍 K−C |A|2/3.

Proof. Exercise. □

Proposition 6.27. (LP, small conjugacy classes (App subgroup version)) There exist
constant C > 0 such that for any generating K-approximate subgroup A ⊂ SL2(k) and any
g ∈ SL2(k) regular one has

|Conj(g) ∩A(3)| 󰃑 KC |A|2/3.

Proof. Exercise. □

Corollary 6.28. For any m 󰃍 1, there exist constant Cm > 0 such that for any
generating K-approximate subgroup A ⊂ SL2(k) and any g ∈ SL2(k) regular one has

|Conj(g) ∩A(m)| 󰃑 KCm |A|2/3.

Proof. Exercise. □
Using that the conjugacy class of a regular unipotent element is the set of all regular

unipotent elements one has

Corollary 6.29. (LP, unipotent bound (App subgroup version)) There exist constant
C > 0 such that for any generating K-approximate subgroup A ⊂ SL2(k), A contains at

most 2KC |A|2/3 quasi-unipotent elements and at least (2KC)−1|A|1/3−2 regular semisimple
elements.

Proposition 6.30 (Large intersection with tori (App subgroup version)). There exist
constant C > 0 such that for any generating K-approximate subgroup A ⊂ SL2(k) and any

g ∈ A(2) regular semisimple with associated maximal torus Tg we have

|Tg ∩A(2)| 󰃍 K−C |A|1/3.
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Proof. Given g ∈ A(2) regular semisimple, the map

cg : a ∈ A 󰀁→ aga−1 ∈ A(4) ∩ Conj(g)

has image of size

|cg(A)| 󰃑 |A(4) ∩ Conj(g)| 󰃑 KC |A|2/3

(where C = C4 from Cor. 6.28) so there exists some g′ = a′ga′−1 ∈ cG(A) whose preimage
is large:

|c(−1)
g ({g′})| = |{a ∈ A, aga−1 = g′}| 󰃍 K−C |A|1/3

but then any element of a′−1c
(−1)
g ({g′}) ⊂ A(2) centralizes g so is contained in Tg; therefore

|A(2) ∩ Tg| 󰃍 K−C |A|1/3. □

Definition 6.31. Let T ⊂ SL2(k) be a maximal torus. We say that T is involved with
A if

T ∩A(2) ∕⊂ {±Id2}.
In this case, from Prop. 6.30, we have

|T ∩A(2)| 󰃍 K−C |A|1/3.

Lemma 6.32 (Key lemma). For K and A as above, one of the following holds

– |A| 󰃑 KC ,
– If T is involved with A then for any a ∈ A, aTa−1 is also involved.

Proof. If T is involved then |A(2)∩T | 󰃍 K−C |A|1/3 and conjugating by a ∈ A we have

K−C |A|1/3 󰃑 |A(2) ∩ T | 󰃑 |aA(2)a−1 ∩ aTa−1| 󰃑 |A(4)|

and since A(4) is covered by K3 translates of A there is g such that

|gA ∩ aTa−1| 󰃍 K−C−3|A|1/3

but then the product set

(Ag−1 ∩ aTa−1).(gA ∩ aTa−1) ⊂ A(2) ∩ aTa−1

and has size 󰃍 |gA ∩ aTa−1| 󰃍 K−C−3|A|1/3 so that

|A(2) ∩ aTa−1| 󰃍 K−C−3|A|1/3.

If we are not in the first case (up adjusting the definition of C) then K−C−3|A|1/3 > 2 and
aTa−1 is also involved. □

Remark 6.4. It is important that the definition of a torus T being ”involved” is

|T ∩A(2)| > 2

instead of |T ∩A(2)| 󰃍 K−C |A| (the consequence of Prop. 6.30) because as we have seen in

the proof, we obtain upon conjugating by a the lower bound |A(2) ∩aTa−1| 󰃍 K−C−3|A|1/3
which gets weaker and weaker if we perform more and more conjugations (as we will do
below). On the other hand, once we know the much weaker lower bound statement |aTa−a∩
A(2)| > 2 we automatically get |aTa−a∩A(2)| 󰃍 K−C |A|1/3 (with the same C and not C+3).
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6.5.4. Proof of Theorem 6.2. (Note: all the implicit constants involved in the sym-
bols ≫ or ≈ below are absolute).

Assume that |A| 󰃍 KDC . From Prop. 6.29 A contain 󰃍 K−C |A|1/3 − 2 > 0 semisimple
regular elements (for D large enough) and therefore A admits at least one involved torus.
Since A generate SL2(k), the set of all involved torus is SL2(k)-invariant under conjugation
(reflect on Remark 6.4). Since |SL2(k)| ≫ |k|3 and for any torus T , |SL2(k)∩NorT (k)| 󰃑 2|k|
(for instance conjugate T to the diagonal torus to see this) there are at least ≫ |k|3/|k| =
|k|2 ≈ |SL2(k)|2/3 involved tori.

For each such torus T we have

|A(2) ∩ T | 󰃍 K−C |A|1/3

which implies that (since two distinct tori intersect only in ±Id)

|A(2)| ≫ K−2C |SL2(k)|2/3|A|1/3

and since
K|A| ≫ |A(2)| ≫ K−2C |SL2(k)|2/3|A|1/3

we have
|A| ≫ K−(2C+1)3/2|SL2(k)|.

□



CHAPTER 7

Expansion in SL2(Fp)

7.1. Basic on graphs

We recall that a (finite) graph G = (V,E) where V = VG is a finite set of ”vertices” and
E = EG ⊂ V × V − V ∆ is a set1 of ”edges”.

– If (v, w) ∈ E we say that w is directly connected to v or that w is adjacent to v or
that there is a path of length 1 between v and w which one write v 󰀁→ w.

– We say that w is connected to v by a path of length l 󰃍 1 if there is l edges
ei = (vi−1, vi) ∈ E, i 󰃑 l such that

v0 = v, vl = w, ∀i = 1, · · · , l − 1, vi = vi+1.

We say that w is connected to v if there is a path of some length between the two.
– If for any v, w ∈ V one has

(v, w) ∈ E ⇐⇒ (w, v) ∈ E

we say that the graph is undirected (and otherwise it is a directed graph).
– From now on we assume that graphs are undirected. This implies that the relations
being ”directly connected” or being ”connected” are symmetric and transitive (but
not necessarily reflexive).

– The set of w directly connected to v is the set of neighbours of v, Neig(v). The
set on w connected to v is the connected component of v, Conc(v). A graph is
connected if it has only one connected component.

– The set of vertices is equipped with a distance distG : V × V 󰀁→ N ⊔∞ defined by
distG(v, v) = 0 and

distG(v, w) = minimal length of a path connecting v to w

(defined to be ∞ if v is not connected to w).
One define the diameter of G to be

diam(G) = max
v,w∈V

distG(v, w).

– The cardinality dv := |Neig(v)| is the degree of G at the point v. If dv = d 󰃍 1 for
every v we say that G is regular of degree d.

We will write Gn,d to denote a d regular graph with n vertices.

7.1.1. Example: Cayley graphs. Let G be a finite group of order n and S ⊂ G
a symmetric subset of G of order d not containing eG. We define the (left) Cayley graph
GG,s,l = (G,ES,l) where

ES,l = {(g, sg), g ∈ g, s ∈ S}.
The graph is connected iff S generates G.

1sometimes E could be a multiset
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We will often write a Cayley graph in the form

G = (G,ES,l) = Cayl(G,S) or simply (G,S).

Remark 7.1. Likewise we can define the right Cayley graph GG,S,r = (G,ES,r) where

ES,r = {(g, gs), g ∈ g, s ∈ S}.

7.1.2. The adjacency operator. Suppose that G is d-regular undirected.
Let L2(V ) be the space of functions on V equipped with the inner product

〈f1, f2〉 =
󰁛

v∈V
f1(v)f2(v)

The (normalized) adjacency operator A : L2(V ) → L2(V ) is the linear map defined by

f 󰀁→ Af : v 󰀁→
󰁛

(v,w)∈E
f(w).

To each vertex v, Af(v) is the sum of f at the immediate neighbours of v.
More generally iterating the above we see that for any ℓ 󰃍 1

(7.1) Aℓf(v) =
󰁛

(wt)t󰃑ℓ
w0=v

f(wℓ)

is the sum of the values of f at the end-points of the paths of length ℓ which start from v.
The adjacency matrix (also noted A) is the matrix of A is the basis

{δv1 , · · · , δvn}

where n = |V | and {vi, i 󰃑 n} = V is an enumeration of the set of vertices of G.
Writing the matrix A = (Aij) then have

Aij = δ(vi,vj)∈E

and for any ℓ 󰃍 1

(Aℓ)ij = number of paths of length ℓ joining vi to vj .

The adjacency operator is self-adjoint (because the graph is undirected):

〈Af, f〉 =
󰁛

v

(
󰁛

(v,w)∈E
f(w))f(v) =

󰁛

w

f(w)
󰁛

(w,v)∈E
f(v) = 〈f,Af〉

so is diagonalizable with its (multiset) of eigenvalues being real numbers which we write

Spec(A) = Spec(G) = {λ0 󰃍 λ2 󰃍 · · · 󰃍 λn−1 󰃍 λn−1}.

The structure of Spec(G) contains some of the geometry of G. For instance we have

Lemma 7.1. We have λ0 = d and

d = λ0 󰃍 λ2 · · · 󰃍 λn−1 󰃍 −d.

Proof. We have

A(1) = d.1
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and for ϕ ∕= 0 any eigenfunction (using that |uv| 󰃑 1
2(|u|

2 + |v|2)) we have

|λ|〈ϕ,ϕ〉 = |〈Aϕ,ϕ〉| = |
󰁛󰁛

v,w
(v,w)∈E

ϕ(w)ϕ(v)| 󰃑 1

2

󰁛󰁛

v,w
(v,w)∈E

|ϕ(w)|2 + |ϕ(v)|2

=
1

2
(
󰁛

w

|ϕ(w)|2d+
󰁛

v

|ϕ(v)|2d) = d〈ϕ,ϕ〉.

□
In the sequel we denote by B a ONB of eigenfunction

B = {ϕi, Aϕi = λiϕi, i = 0, · · · , n− 1, }

and take

ϕ0 = 1/n1/2

the constant function. We will write

B0 = B − {ϕ0} = {ϕi, i = 1, · · · , n− 1, }

which is an ONB of the subspace of function with mean values 0:

L2(V )0 = (Cϕ0)
⊥ = {f ∈ L2(V ), 〈f, 1〉 =

󰁛

v∈V
f(v) = 0}.

We recall the following basic results of graph theory:

Proposition 7.2. The multiplicity of λ1 = d is the number of connected components
of G.

Suppose G is connected. We have λn−1 = −d iff G is a bi-partite graph: there exists a
decomposition V = V+ ⊔ V− with |V+| = |V−| and

(v, w) ∈ E ⇐⇒ (v, w) ∈ Vε × V−ε, ε = ±1.

In that case Spec(G) is symmetric relative to the origin: Spec(G) = −Spec(G) and the (one
dimensional) eigenspace with eigenvalue −d is generated by

1V + − 1V − .

Proof. Exercise. □
In particular the graph G is connected iff λ0 = d has multiplicity 1 or in other terms

λ0 > λ1.

Definition 7.3. The graph G has a (one-sided) spectral gap iff

λ1 < d

The graph G has a two-sided spectral gap iff iff

−d < λn−1, · · · ,λ1 < d.

A graph with a one-sided spectral gap is therefore connected and a graph with a two-
sided spectral gap is non bi-partite connected graph.
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7.1.3. The averaging operator. It is useful to to normalize A and to consider instead
the averaging operator

M =
A

d

so that

Mf(v) =
1

d

󰁛

(v,w)∈E
f(w)

is the average value of f along the immediate neighbours of v (M is for ”mean” or ”moyenne”).
We then have

Spec(M) = {ρ0 = 1 󰃍 ρ1 = λ1/d 󰃍 · · · 󰃍 ρn−1 = λn−1/d} ⊂ [−1, 1].

The graph has then a one(resp. two)-sided spectral gap iif

Spec(M)− {ρ0} = {ρ1 󰃍 · · · 󰃍 ρn−1} ⊂ [−1, 1), resp. ⊂ (−1, 1).

Remark 7.2. One also define the Laplace operator

∆ = Id−M

whose eigenvalues are non negative

Spec(∆) = {0 = 1− ρ0 󰃑 1− ρ1 󰃑 · · · , 1− ρn−1} ⊂ [0, 1].

7.2. Expander graphs

The notion of expander graph is a quantification of the notion of graph with a spectral
gap:

Definition 7.4. Given ε ∈ (0, 1), the graph G is a (one-sided) ε-expander iff

λ1 󰃑 (1− ε)d

or equivalently

Spec(A)− {λ0} ⊂ [−d, (1− ε)d] or Spec(M)− {ρ0} ⊂ [−1, (1− ε)].

The graph G is a two-sided ε-expander iff

∀i = 1, · · · , n− 1, |λi| 󰃑 (1− ε)d or |ρi| 󰃑 (1− ε)

or equivalently

Spec(A)− {λ0} ⊂ [−d(1− ε), (1− ε)d] or Spec(M)− {ρ0} ⊂ [−(1− ε), (1− ε)].

Remark 7.3. Of course any graph with a spectral gap is automatically an ε-expander
for some ε > 0. This notion is really interesting as long as ε is not too small compared to
either d or n. For instance this notion is interesting when ε does not depend on n (and d
remains small compared to n).

Definition 7.5. Given ε ∈ (0, 1) and d 󰃍 1 a family of (d, ε) expanders is a sequence
(Gni,d)i∈N of d regular connected graphs satisfying ni → ∞ and which are one or two-sided
ε-expanders.
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7.2.1. Equidistribution and Mixing for expanders.

Lemma 7.6. Given Gn,d be a regular graph and B = {n−1/2} ⊔ B0 an ONB for M

containing the constant function ϕ0 = n−1/2.
We have for any f1, f2 ∈ L2(V )

〈f1,M ℓf2〉 =
〈f1, 1〉〈1, f2〉

n
+

󰁛

ϕ∈B0

ρℓϕ〈f1,ϕ〉〈ϕ, f2〉.

Proof. We have (since M is self-adjoint)

〈f1,M ℓf2〉 =
󰁛

ϕ∈B
〈f1,ϕ〉〈M ℓf2,ϕ〉 =

󰁛

ϕ∈B
〈f1,ϕ〉〈f2,M ℓϕ〉 =

󰁛

ϕ∈B
ρℓϕ〈f1,ϕ〉〈f2,ϕ〉

=
〈f1, 1〉〈f2, 1〉

n
+

󰁛

ϕ∈B0

ρℓϕ〈f1,ϕ〉〈f2,ϕ〉.

□
Since 󰁛

ϕ∈B0

|〈f1,ϕ〉〈ϕ, f2〉| 󰃑 󰀂f1󰀂2󰀂f2󰀂2

we obtain

Corollary 7.7. Let Gn,d be a two sided ε-expander. For any f1, f2 ∈ L2(V ) and any
ℓ 󰃍 1 we have

󰀏󰀏〈f1,M ℓf2〉 −
〈f1, 1〉〈f2, 1〉

n

󰀏󰀏 󰃑 (1− ε)ℓ󰀂f1󰀂2󰀂f2󰀂2.

where the implicit constant is absolute.

7.2.1.1. Equidistribution. Take f2 = δv0 for some v0 ∈ V and let f1 = 1W be the
characteristic function of some subset W ⊂ V we have from (7.1)

〈1W ,M ℓδv0〉 =
1

dℓ

󰁛

(wt)t󰃑ℓ
w0=v0

1W (wℓ) =
|{(wt)t󰃑ℓ, w0 = v0, wℓ ∈ W}|

dℓ

is the proportion of the paths of length ℓ in the graph that start from v0 and end up in W .
By Corollary 7.7, we obtain

|{(wt)t󰃑ℓ, w0 = v0, wℓ ∈ W}|
dℓ

=
|W |
n

+O((1− ε)ℓ|W |1/2)

Remark 7.4. Notice that the implicit constant is absolute. In particular it does not
depend on v0.

In other terms as ℓ → ∞, the probability that a path of length ℓ starting from v0 ends
in W is asymptotic to |W |/n the measure of W relative to the uniform probability measure
on V ; moreover, we are sure that some of these paths will end-up in W as soon as

(7.2) ℓ ≫ log(n/|W |1/2)
log(1/(1− ε))

.
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Let us generalize this result slightly. Given any probability measure ν0 on L2(V ): ie. a
non-negative linear form ν0 : f 󰀁→ ν0(f) ( ν0(f) 󰃍 0 whenever f 󰃍 0) such that ν0(1) = 1
or equivalently a convex linear combination of Dirac masses

ν0 =
󰁛

v∈V
ν0(v)δv s.t. ν0(v) 󰃍 0,

󰁛

v∈V
ν0(v) = 1.

We can then define the sequence of probability measures

ν(ℓ) : f 󰀁→ ν0(M
ℓ(f)).

For instance ν0 = δv0

ν(ℓ)v0 (f) = M ℓf(v0) =
1

dℓ

󰁛

(wt)t󰃑ℓ
w0=v0

f(wℓ)

is the average value of f along the end-points of the paths of length ℓ in G starting from v0.
Corollary 7.7 then state that the sequence of measures ν(ℓ) weak-󰂏 converge to the

uniform probability measure µV on V which assigns mass 1/n to any vertex: for any W ⊂ V

µV (W ) =
|W |
n

.

We can interpret this as a random walk along the graph G: ν
(ℓ)
v0 is the distribution

function of the random variable which is the end of the following process:

– Start from some v0 ∈ V chosen randomly according to the probability measure ν0.
– Choose uniformly at random a point v1 at distance 1 from v0;
– choose uniformly at random a point v2 at distance 1 from v1,
– · · · ,
– iterate ℓ time and obtain vl.

The previous computation shows that this process converge in law to the uniform random
variable on V and in ≫ log(n) steps will get very close.

Remark 7.5. This a special case of the convergence of irreducible Markov chains in a
space with finitely many states. Recall that for such Markov chains, the key ingredient is
the Perron-Frobenius theorem. Instead we have used the spectral theorem for the self-adjoint
operator M .

7.2.2. Geometry of expanders. It turn out that expander graph have nice geometric
properties that can be extracted from the properties of their spectrum.

7.2.2.1. The diameter of an expander. Let us return to the discussion in §7.2.1.1and
take W = v for any vertex v ∈ V , from (7.2) we see that v can be reached by a path of
length ℓ starting from v0 as soon as

ℓ ≫ log(n)

log(1/(1− ε))

or in other terms if G is a two sided ε- expander we have

(7.3) diam(G) ≪ log(n)

log(1/(1− ε))
.

We will slightly improve this bound:
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Theorem 7.8. Suppose that G = Gn,d is a two sided ε-expander. We have

diam(G) ≪ log(2n)

log(1+(1−(1−ε)2)1/2

1−ε )
.

Remark 7.6. In particular when ε is small

log(
1 + (1− (1− ε)2)1/2

1− ε
) = ε1/2 +O(ε)

and

diam(G) ≪ log(2n)

ε1/2
.

Proof. Let
B = {ϕ0 = 1/n1/2, ϕ1, · · · ,ϕn−1}

be an ONB of L2(V ) made of eigenfunction of A with eigenvalues λϕ. We have

〈A(δv), δw〉 =
󰁛

ϕ∈B
λϕϕ(v)ϕ(w)

and more generally for any polynomial P (X) ∈ C[X]

〈P (A)(δv), δw〉 =
󰁛

ϕ∈B
P (λϕ)ϕ(v)ϕ(w).

Suppose dist(v, w) > N then for degP 󰃑 N we have

〈P (A)(δv), δw〉 = 0

because P (A) is a linear combination of Aℓ for ℓ 󰃑 N and for each such ℓ 〈Aℓδv, δw〉 = 0
since v and w are not connected by any path of length ℓ.

We have therefore

P (d)

n
= P (λ0)ϕ0(v)ϕ0(w) = −

󰁛

ϕ ∕=ϕ0

P (λϕ)ϕ(v)ϕ(w)

󰃑 ( sup
|x|󰃑(1−ε)d

|P (x)|)
󰁛

ϕ ∕=ϕ0

|ϕ(v)ϕ(w)|

󰃑 ( sup
|x|󰃑(1−ε)d

|P (x)|)1
2

󰁛

ϕ ∕=ϕ0

|ϕ(v)|2 + |ϕ(w)|2

󰃑 sup
|x|󰃑(1−ε)d

|P (x)|.

We apply this to
P (X) = PN (X) = TN (X/(1− ε)d)

where TN (X) is the N -th Chebycheff polynomial of the first kind

TN (X) = cos(N arccos(X)) =
1

2
((X +

󰁳
X2 − 1)N + (X −

󰁳
X2 − 1)N ).

We have for |x| 󰃑 (1− ε)d

|PN (x)| = |TN (x/(1− ε)d)| 󰃑 1

so that
PN (d) 󰃑 n.
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On the other hand, since d/d(1− ε) > 1 we have

PN (d) = TN (d/(1− ε)d) 󰃍 1

2

󰀕
(1− ε)−1 +

󰁳
(1− ε)−2 − 1

󰀖N

.

Combining the two inequalities, we have

N 󰃑 log(2n)

log(1+(1−(1−ε)2)1/2

1−ε )
.

□
Exercise 7.1. Prove an analogous result when G is an ε-expander bipartite graph (hint

consider A2).

7.2.2.2. Independence number.

Definition 7.9. An independent set of a graph G is a subset of I ⊂ V with no two
adjacent vertices. The independence number i(G) of G is the largest size of an independent
set.

Proposition 7.10. If Gn,d is a two sided ε-expander one has

i(G) 󰃑 (1− ε)n

Proof. Exercise. □
7.2.2.3. Chromatic number.

Definition 7.11. The chromatic number χ(G) of a graph G is the minimum number of
colors needed to color V so that in a set of a given color no two elements are adjacent.

Remark 7.7. One has χ(G) 󰃑 n by coloring any vertice with a different color!

Proposition 7.12. If Gn,d is a two sided ε-expander one has

χ(G) 󰃍 (1− ε)−1.

Proof. Exercise. □

Remark 7.8. One can show that

lim inf
n→∞

max
Gn,d

(|λ1|, |λn−1|) 󰃍 2
√
d− 1.

A graph achieving max(|λ1|, |λn−1|) = 2
√
d− 1 is called a Ramanujan graph. Such graphs

(which are optimal expanders) exist and are called Ramanujan graphs. The theory of
modular form furnished examples of Ramanujan graphs (see [6]).

7.3. Expansion in Cayley graphs

We assume now that G = (G,S) is a (left) Cayley graph for a generating set S ⊂ G (in
particular the graph is connected); let n = |G| and d = |S| and

G = {g1 = eG, · · · , gn}.
We can rewrite M as a convolution operator

Mf = µ 󰂏 f : g 󰀁→
󰁛

g1g2=g

µ(g1)f(g2)
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where

µ = µS =
1

S

󰁛

s∈S
δs.

Indeed since S is symmetric

µ 󰂏 f(g) =
󰁛

g1g2=g

1

|S|
󰁛

s∈S
δg1=sf(g2) =

1

|S|
󰁛

s∈S
f(s−1g) =

1

|S|
󰁛

s∈S
f(sg).

Likewise
M ℓf = µ(ℓ) 󰂏 f

where µ(ℓ) is the ℓ-times self convolution of µ

µ(ℓ) =
1

|S|ℓ
󰁛

(s1,s2··· ,sℓ)∈Sℓ

δs1.s2··· .sℓ = µ 󰂏 · · · 󰂏 µ (ℓ times).

Our aim is to discuss Cayley graphs which are expanders; in particular we hope to explain
the proof of the following:

Theorem 7.13 (Bourgain-Gamburd). Let S = {s1, · · · , sd} ⊂ SL2(Z)−{Id2} be a finite
symmetric set of d elements not containing the identity; for any prime p let

Sp = {s1 (mod p), · · · , sd (mod p)} ⊂ SL2(Fp)

be the set of reductions of elements of S modulo p (for p large enough, Sp has d elements
and does not contain Id2). There exists ε = ε(|S|) > 0 such that for p sufficiently large and
such that Sp generates SL2(Fp), the Cayley graph (SL2(Fp), Sp) is a two sided ε-expander.

Example 7.1. The following sets have the property that their reduction modulo p
generate SL2(Fp) for p large enough: for k 󰃍 1 let

S(k) = {
󰀕
1 k
0 1

󰀖
,

󰀕
1 k
0 1

󰀖−1

,

󰀕
1 0
k 1

󰀖
,

󰀕
1 0
k 1

󰀖−1

}

(with

󰀕
1 k
0 1

󰀖−1

=

󰀕
1 −k
0 1

󰀖
and

󰀕
1 0
k 1

󰀖−1

=

󰀕
1 0

−k 1

󰀖
). Then S(k) (mod p) generates

SL2(Fp) for p > k (so that k (mod p) is invertible).
Globally the set S(1) generates SL2(Z) and S(2) generates the finite index (congruence)

subgroup

Γ(2) = {
󰀕
a b
c d

󰀖
≡

󰀕
1 0
0 1

󰀖
(mod 2)} ⊂ SL2(Z).

For these sets the expansion property can also be deduced from the theory of modular
forms.

One the other hand for k 󰃍 3 the set S(k) generate a subgroup Lk ⊂ SL2(Z) (the
Lubotsky group) of infinite index and which is a free group of rank 2. Moreover for p ∕ |k
Lk (mod p) generates SL2(Fp).

Remark 7.9. A group Fr is said to be free of rank r if F is generated by a symmetric
set of 2r (distinct) elements

S(r) = {s1, · · · , sr, s−1
1 , · · · , s−1

r }
such that any g ∈ Fr − {e} can be written uniquely in a reduced form in the elements of
S(r):

g = w1. · · · .wℓ for some ℓ 󰃍 1 and wi ∈ S(r), wi+1 ∕= w−1
i .
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7.3.1. A expansion criterion for Cayley graphs. To produce expanding Cayley
graphs we have to study the spectral properties of the convolution operator

f ∈ L2(G) 󰀁→ µ 󰂏 f ∈ L2(G).

This will depend on the methods discussed in Appendix 7.5 on representations of G
Let

(7.4) dG := min
r∈Irr(G), r ∕=1

dim(r)

the minimal dimension of a non-trivial irreducible representation of G.

Proposition 7.14 (Bourgain-Gamburd). For any ρ ∈ Spec(µ)− {1} and any ℓ 󰃍 1 we
have

|ρ| 󰃑 (
|G|
dG

󰀂µ(l)
S 󰀂22)1/2ℓ.

Proof. Since {δgi , i 󰃑 n} is an OBN of L2(G) we have for any ℓ 󰃍 1

tr(M ℓ) =

n−1󰁛

i=0

ρℓi =

n󰁛

i=1

〈µ(ℓ)δgi , δgi〉

=

n󰁛

i=1

|paths of length ℓ starting and arriving at gi|
dℓ

Observe that by translating by g−1
i on the right we have

|{paths of length ℓ starting and arriving at gi}|

is equal to

|{paths of length ℓ starting and arriving at eG|} = |{(s1, · · · , sℓ) ∈ Sℓ, s1s2. · · · sℓ = eG}|

and therefore

tr(M ℓ) = |G| |{(s1, · · · , sℓ) ∈ Sℓ, s1s2. · · · sℓ = eG}|
dℓ

.

In particular we have

tr(M2ℓ) = |G|
|{(s1, · · · , sℓ), (s1, · · · , sℓ) ∈ Sℓ, s1s2. · · · sℓ = s′1s

′
2. · · · s′ℓ}|

d2ℓ

which we can rewrite
n−1󰁛

i=0

ρ2ℓi = |G|〈µ(l), µ(l)〉.

Since all the terms in the sum on the left are non-negative, we obtain the upper bound

|ρi| 󰃑 (|G|〈µ(l), µ(l)〉)1/2ℓ.

However one can do better. Given ρ ∈ Spec(M)− {1}, let L2(G)ρ be the corresponding
eigenspace. Since M = µ 󰂏 • is a convolution operator defined by left multiplication, the
eigenspace L2(G)ρ is invariant under the right multiplication action of G

rgf : h 󰀁→ f(hg)
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and is therefore is a (sub)representation of the right regular representation of G. Moreover
this representation does not contain the trivial representation (which is the representation
spanned by the constant functions). It follows that

dimL2(G)ρ 󰃍 dG.

We have therefore

dG.ρ
2ℓ 󰃑 dimL2(G)ρ.ρ

2ℓ 󰃑 tr(M2ℓ) = |G|〈µ(l), µ(l)〉.

□

Corollary 7.15 (Bourgain-Gamburd expansion criterion). Assume that there exists
C 󰃍 1, and α,β > 0 satisfying 0 < β < α/2 󰃑 1/2 and such that the following hold

(1) dG 󰃍 |G|α,
(2) There exists 1 󰃑 ℓ 󰃑 C log |G| such that

󰀂µ(ℓ)
S 󰀂2 󰃑 C|G|−1/2+β .

Then for |G| sufficiently large (depending on C,α,β) there exists ε = ε(C,α,β) > 0
(not depending on |G|) such that (G,S) is a two sided ε-expander.

Proof. We have for any ρ ∕= 1

|ρ| 󰃑 (
|G|
dG

󰀂µ(l)
S 󰀂22)1/2ℓ 󰃑 exp(

log |G|
2ℓ

(1− α− 1 + 2β + 2
logC

log |G|))

= exp(
− log |G|

2ℓ
(α− 2β − 2

logC

log |G|)) 󰃑 exp(−α− 2β′

2C
) := 1− ε

for (say) β′ = β+α/2
2 < α/2 and as long as |G| is sufficiently large in term of C and

α/2− β □

Remark 7.10. One can see quickly that graph (G,S) is not bipartite: if (G,S) were
bipartite the −1-eigenspace L2(G)−1 would be one dimensional but is also a non-trivial
representation of G so of dimension 󰃍 dG > 1.

Remark 7.11. Note that the function

ℓ 󰀁→ 󰀂µ(ℓ)
S 󰀂2

is a decreasing functions. Indeed

󰀂µ(ℓ+1)
S 󰀂2 = 󰀂µ 󰂏 µ

(ℓ)
S 󰀂2 󰃑 󰀂µ 󰂏 •󰀂󰀂µ(ℓ)

S 󰀂2
where 󰀂µ 󰂏 •󰀂 is the operator norm which is 󰃑 1 (since Spec(M) ⊂ [−1, 1]). Moreover for
any probability measure ν we have by CS

1 =
󰁛

g

ν(g) 󰃑 Supp(ν)1/2󰀂ν󰀂2

or

(7.5) Supp(ν) 󰃍 1/󰀂ν󰀂22

so the fact the 󰀂µ(ℓ)
S 󰀂2 converge to 0 shows that µ

(ℓ)
S is ”spreading” through G which is in

line with the equidistribution property for expanders.
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7.4. The Bourgain-Gamburd expansion machine

The proof of Theorem 7.13 depends on a general expansion criterion called the ”Bourgain-
Gamburd expansion machine” whose properties can be verified for the Cayley graphs

(SL2(Fp), S (mod p)).

Theorem 7.16 (Bourgain-Gamburd). Let G be a finite group and S a symetric set of
d generators and let

µ = µS =
1

|S|
󰁛

s∈S
δs.

Suppose there exists constants 0 < α < 1 < Λ such that

(1) (Representation gap) dG 󰃍 |G|α.
(2) (Product Theorem) For any δ > 0 there exists δ′ > 0 such that setting K = |G|δ′,

any K-approximate subgroup H ⊂ G satisfying

|G|δ 󰃑 |H| 󰃑 |G|1−δ

generates a proper subgroup of G.
(3) (Non-concentration along proper subgroups) There exists ℓ 󰃑 1

2Λ log |G| such that
for any proper subgroup H ⊊ G

µ(2ℓ)(H) =
|{(s1. · · · s2ℓ) ∈ S2ℓ, s1. · · · .s2ℓ ∈ H}|

d2ℓ
< |G|−α.

There exists ε = ε(d,α,Λ) > 0 such that (G,S) is a two sided ε-expander.

Remark 7.12. ForG = SL2(Fp), (1) is Frobenius Theorem 6.4 while (2) is a consequence
of Helfgott product Theorem 6.2. It ”remains” to discuss the verification of (3) for SL2(Fp)
and the proof of the ”Expansion Machine” Theorem 7.16.

7.4.1. A weighted BSG Lemma. To be able to exploit Condition (3) we will need
a new version of the Balog-Szemeredi-Gowers lemma; here is a direct consequence of the
Approximate subgroup version of the BSG lemma Theorem 4.3 (take A = A−1 = B)

Theorem 7.17 (Balog-Szemeredi-Gowers, approximate group version). There exists
C 󰃍 1 such that for any K 󰃍 2, any finite group G and any A = A−1 ⊂ G finite symmetric
set whose self-normalized energy satisfies

e(A,A) 󰃍 1/K.

There exist g ∈ G, a KC-approximate subgroup H, such that

(7.6) |H| 󰃑 KC |A|, K−C |A| 󰃑 |A ∩ gH|.

Remember that the energy can be written in terms of a convolution

e(A,A) =
󰀂1A 󰂏 1A󰀂22

|A|3 =

󰁓
g |1A 󰂏 1A(g)|2

|A|3 .

The following generalization (called the BSG weighted lemma) recovers Theorem 7.17 when
the measure probbility measure ν below is the uniform measure

νA =
1A
|A| .
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Lemma 7.18 (BSG weighted lemma). There exists an absolute constant C such that for
any K 󰃍 2, any group G and ν : G → R󰃍0 any finitely supported probability measure on G
(
󰁓

g∈G ν(g) = 1) which is moreover symmetric (∀g ∈ G, ν(g) = ν(g−1)) which satisfies

󰀂ν 󰂏 ν󰀂2 󰃍 󰀂ν󰀂2/K,

then there exists a KC-approximate subgroup H ⊂ G and g ∈ G such that

|H| 󰃑 KC/󰀂ν󰀂22, ν(gH) 󰃍 K−C .

For the proof it will be useful to recall a special case of Young’s convolution inequality:

Lemma 7.19 (Young’s convolution inequality (for (2, 1, 2))). Let G be a group and µ, ν :
G 󰀁→ C be finitely supported functions.

We have

󰀂µ 󰂏 ν󰀂2 󰃑 󰀂µ󰀂2󰀂ν󰀂1
where

󰀂ν󰀂1 =
󰁛

g∈G
|ν(g)|.

Remark 7.13. Using Hölder inequality one can obtain a family of Young inequalities:
Given p, q, r ∈ [1,∞) such that

1

p
+

1

q
= 1 +

1

r

one has

󰀂µ 󰂏 ν󰀂r 󰃑 󰀂µ󰀂p󰀂ν󰀂q
where

󰀂µ󰀂p = (
󰁛

g∈G
|µ(g)|p)1/p

and 󰀂µ 󰂏 ν󰀂r, 󰀂ν󰀂q are defined similarly.

Proof. Taking absolute values, we may assume that µ, ν are non-negative.
We have

󰀂µ 󰂏 ν󰀂22 =
󰁛

g∈G
(
󰁛

g1g2=g

µ(g1)ν(g2))(µ 󰂏 ν)(g) =
󰁛

g1,g∈G
µ(g1)ν(gg

−1
1 )(µ 󰂏 ν)(g)

=
󰁛

g1,g∈G
µ(g1)ν(gg

−1
1 )1/2(µ 󰂏 ν)(g)ν(gg−1

1 )1/2

󰃑 (
󰁛

g1,g∈G
µ(g1)

2ν(gg−1
1 ))1/2(

󰁛

g1,g∈G
(µ 󰂏 ν)2(g)ν(gg−1

1 ))1/2

= 󰀂µ󰀂2󰀂ν󰀂1/21 󰀂µ 󰂏 ν󰀂2󰀂ν󰀂1/21 = 󰀂µ󰀂2󰀂ν󰀂1󰀂µ 󰂏 ν󰀂2
□

We can now prove the the BSG weighted Lemma.

Proof. Let

W = width(ν) := 1/󰀂ν󰀂22
(recall that Supp(ν) 󰃍 W and for A ⊂ G a finite set and ν = νA we have W = |A|) and let

ν = ν≪ + ν≍ + ν≫
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where

ν≪ = ν.1ν<1/100K2W , ν≫ = ν.1ν>100K/W , ν≍ = ν.11/100K2W󰃑ν󰃑100K/W .

We have

󰀂ν≪󰀂22 =
󰁛

ν(g)<1/100K2W

|ν(g)|2 󰃑 (100K2W )−1
󰁛

g

ν(g) = (100K2W )−1.

By Young’s inequality we have

󰀂ν≪ 󰂏 ν󰀂2 󰃑 󰀂ν≪󰀂2󰀂ν󰀂1 󰃑 (10KW )−1/2.

By symmetry of ν we also have

󰀂ν 󰂏 ν≪󰀂2 󰃑 (10KW )−1/2.

By CS we have

󰀂ν≫󰀂1 󰃑
W

10K
󰀂ν󰀂22 = 1/10K

and therefore we have

󰀂ν≫ 󰂏 ν󰀂2 = 󰀂ν 󰂏 ν≫󰀂2 󰃑 󰀂ν≫󰀂1󰀂ν󰀂2 󰃑 (10KW 1/2)−1.

By assumption we have 󰀂ν 󰂏 ν󰀂2 󰃍 1/KW 1/2 and from this and the previous estimates, we
conclude that

󰀂ν≍ 󰂏 ν≍󰀂2 ≫ (KW 1/2)−1.

Let
A := {g ∈ G, ν(g) 󰃍 (100K2W )−1}.

We have by Young’s inequality

󰀂1A 󰂏 1A󰀂2 󰃑 󰀂1A󰀂2󰀂1A󰀂1 = |A|3/2

and
󰀂1A 󰂏 1A󰀂2 󰃍 (100K/W )−2󰀂ν≍ 󰂏 ν≍󰀂2 ≫ K−5W 3/2

and in particular
|A| ≫ K−4W.

On the other hand we have
1 󰃍 ν(A) 󰃍 |A|/100K2W

and we conclude that
K−4W ≪ |A| 󰃑 100K2W.

The upper bound implies that

󰀂1A 󰂏 1A󰀂2 ≫ K−8|A|3/2.
By the BSG theorem there exists C 󰃍 1 and a KC-approximate subgroup H and g ∈ G
such that

|H| 󰃑 KC |A| and K−C |A| ≪ |A ∩ gH|
and therefore

|H| ≪ KC+2W = KC+2/󰀂ν󰀂22
and

ν(gH) 󰃍 ν(gH ∩A) 󰃍 (100K2W )−1|gH ∩A| ≫ K−C−2|A|/W ≫ K−(C+10).

□
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7.4.2. Proof of Theorem 7.16. In this section we assume that the assumptions (1),
(2), (3) of Theorem 7.16 hold.

We have to show that there exists C 󰃍 1 and 1 󰃑 ℓ 󰃑 C log |G| such that

(7.7) 󰀂µ(ℓ)
S 󰀂2 󰃑 |G|−1/2+β

for some β < α/2.
The next Lemma shows that the non-concentration inequalities (3) a priori valid for a

single ℓ = O(log |G|) in fact hold for a whole range of large ℓ’s:

Proposition 7.20. For any ℓ 󰃍 1
2Λ log |G|, any proper subgroup H ⊂ G and any g ∈ G

we have

(7.8) sup
g∈G

µ(ℓ)(gH) 󰃑 |G|−α/2.

We also have

(7.9) 󰀂µ(ℓ)󰀂∞ = sup
g∈G

µ(ℓ)(g) 󰃑 |G|−α/2

and

(7.10) 󰀂µ(ℓ)󰀂2 󰃑 󰀂µ(ℓ)󰀂∞󰀂µ(ℓ)󰀂1 󰃑 |G|−α/2.

Proof. By Assumption (3), there exists ℓ0 󰃑 1
2Λ log |G| such that for any proper

subgroup H ⊂ G we have

µ(2ℓ0)(H) 󰃑 |G|−α.

By positivity and symmetry, we have for any g ∈ G,

µ(2ℓ0)(H) = µ(ℓ0) 󰂏 µ(ℓ0)(Hgg−1H) 󰃍 µ(ℓ0)(Hg)µ(ℓ0)(g−1H) = µ(ℓ0)(Hg)2

and therefore, for any proper subgroup H we have

sup
g∈G

µ(ℓ0)(Hg) 󰃑 |G|−α/2

as and

sup
g∈G

µ(ℓ)(gH) 󰃑 |G|−α/2

by writing gH = gHg−1g = H ′g.
Given ℓ 󰃍 1

2Λ log |G|, for any g ∈ G we have

µ(ℓ)(gH) = µ(ℓ−ℓ0) 󰂏 µℓ0)(gH) 󰃑 |G|−α/2

by averaging the previous upper bound over the various products of ℓ − ℓ0 elements of S:
this gives (7.8).

Taking H = {eG} we obtain that

󰀂µ(ℓ)󰀂∞ = sup
g∈G

µ(ℓ)(g) 󰃑 |G|−α/2

so that

󰀂µ(ℓ)󰀂2 󰃑 󰀂µ(ℓ)󰀂∞󰀂µ(ℓ)󰀂1 = 󰀂µ(ℓ)󰀂∞ 󰃑 |G|−α/2.

□
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Lemma 7.21 (Flattening lemma). Let ℓ 󰃍 1
2Λ log |G| such that

󰀂µ(ℓ)󰀂2 󰃍 |G|−1/2+α/2

then there exists η = η(α) > 0 such that

󰀂µ(2ℓ)󰀂2 = 󰀂µ(ℓ) 󰂏 µ(ℓ)󰀂2 󰃑 |G|−η󰀂µ(ℓ)󰀂2.

Proof. Suppose instead that

󰀂µ(ℓ) 󰂏 µ(ℓ)󰀂2 󰃍 |G|−η󰀂µ(ℓ)󰀂2
for some η > 0 (to be chosen later). Set

K = |G|η.

By the weighted BSG lemma, there exists C 󰃍 1, a KC-approximate subgroup H ⊂ G
and g ∈ G such that

|H| 󰃑 KC/󰀂µ(ℓ)󰀂22 = |G|Cη/󰀂µ(ℓ)󰀂22 󰃑 |G|1−α+Cη

and

µ(ℓ)(gH) 󰃍 K−C = |G|−Cη.

By (7.9) we have

󰀂µ(ℓ)󰀂∞ 󰃑 |G|−α/2

so that

|H| = |gH| 󰃍 |G|α/2−Cη

and

|G|α/2−Cη 󰃑 |H| 󰃑 |G|1−α+Cη.

Let

δ = α/4

and let δ′ > 0 be the exponent occurring in Assumption (2).
Let η = η(α, C) > 0 be small enough such that

α/4 < α/2− Cη < 1− α+ Cη < 1− δ, 0 < Cη 󰃑 min(δ′,α);

By the Product Theorem assumption (2), H generates a proper subgroup H ′ of G and we
have

µ(ℓ)(gH ′) 󰃍 µ(ℓ)(gH) 󰃍 |G|−Cη 󰃍 |G|−α

but this contradicts Assumption (3). □
Let us conclude the proof of Theorem 7.16: let

ℓ0 = [
1

2
Λ log |G|] + 1

and let

󰀂µ(ℓ0)󰀂2 = |G|−γ0 ;

notice that have

γ0 󰃍 α/2.

If γ0 󰃑 1/2− α/2, we can apply the Flattening Lemma and obtain

󰀂µ(2ℓ0)󰀂2 󰃑 |G|−γ0−η.
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If γ0 + η 󰃑 1/2 − α/2 we keep applying the Lemma until we can’t that is until γ0 + kη >
1/2− α/2. We need to do this at most

k 󰃑 (1/2− α/2− γ0)/η = O(1/η)

times and we then obtain
󰀂µ(2kℓ0)󰀂2 󰃑 |G|−1/2+β

for some β < α/2. □

7.5. Implementing the Bourgain-Gamburg expansion machine

We want now to describe the proof of Theorem 7.13.
As already explained Assumption (1) and (2) of Theorem 7.16 follow from Frobenius

Theorem and Helfgott product Theorem.
It remains to verify Assumption (3).
For this we will use the assumption that the generating set is of the form

Sp = S (mod p)

for
S = {s1, · · · , sd} ⊂ SL2(Z)− {Id2}

a fixed set.

One (ie. Bourgain-Gamburd) use this property in the following way: given g =

󰀕
a b
c d

󰀖
∈

SL2(Z) define
󰀂g󰀂∞ = max(|a|, |b|, |c|, |d|).

Lemma 7.22. Given g, g′ ∈ SL2(Z) such that 󰀂g󰀂∞, 󰀂g′󰀂∞ < p/2 then

g ≡ g′ (mod p) ⇐⇒ g = g′.

Proof. Indeed if g ≡ g′ (mod p) we have

a− a′ ≡ b− b′ ≡ c− c′ ≡ d− d′ ≡ 0 (mod p)

but since
󰀂g − g′󰀂∞ 󰃑 󰀂g󰀂∞ + 󰀂g′󰀂∞ < p

we have
|a− a′|, |b− b′|, |c− c′|, |d− d′| < p

which implies (since the only integer < p and divisible by p is 0)

a− a′ = b− b′ = c− c′ = d− d′ = 0.

□
Let us pursue this discussion for the special (but representative case) of

S(k) = {
󰀕
1 k
0 1

󰀖
,

󰀕
1 k
0 1

󰀖−1

,

󰀕
1 0
k 1

󰀖
,

󰀕
1 0
k 1

󰀖−1

}.

As was explained before (Exercise) for k 󰃍 3, S(k) generates a free group in SL2(Z) of rank
2 which implies that for any (s1, · · · , sℓ) ∈ S(k)ℓ

s1. · · · .sℓ = Id2 ⇐⇒ ℓ = 2ℓ′, ∀i 󰃍 1, si = s−1
2ℓ′−i+1.

For g ∈ SL2(Z) let

󰀂g󰀂o = max
x ∕=(0,0)

󰀂g.x󰀂2
󰀂x󰀂2
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be the operator of g acting on R2. Recall that this norm is semi-multiplicative

󰀂g1g2󰀂o 󰃑 󰀂g1󰀂o󰀂g2󰀂o
and satisfies

󰀂g󰀂∞ 󰃑 󰀂g󰀂0;
indeed

max(|a|, |c|) 󰃑 (|a|2 + |c|2)1/2 = 󰀂(a, c)󰀂 = 󰀂g.(1, 0)󰀂22 󰃑 󰀂g󰀂0.1
and

max(|b|, |d|) 󰃑 (|b|2 + |d|2)1/2 = 󰀂(b, d)󰀂 = 󰀂g.(0, 1)󰀂22 󰃑 󰀂g󰀂0.1.
This implies the following

Lemma 7.23. Let
Smax = max

s∈S(k)
󰀂s󰀂o.

For ℓ < 1
2 log(

p
2Smax

) the map

(s1, · · · , sℓ) ∈ S(k)ℓ 󰀁→ s1.s2. · · · .sℓ (mod p) ∈ SL2(Fp)

is injective.

Proof. Suppose that

s1.s2. · · · .sℓ = s′1.s
′
2. · · · .s′ℓ (mod p)

we have
s1.s2. · · · .sℓ.s′−1

ℓ . · · · .s′−1
1 ≡ Id2 (mod p)

but

󰀂s1.s2. · · · .sℓ.s′−1
ℓ . · · · .s′−1

1 󰀂∞ 󰃑 󰀂s1.s2. · · · .sℓ.s′−1
ℓ . · · · .s′−1

1 󰀂0 󰃑 S2ℓ
max < p/2

From the previous lemma we conclude that

s1.s2. · · · .sℓ.s′−1
ℓ . · · · .s′−1

1 = Id2

and therefore si = s′i, i 󰃑 ℓ since we are in a free group. □
Corollary 7.24. Suppose that

ℓ <
1

2
log(

p

2Smax
),

we have
󰀂µ(ℓ)󰀂2 󰃑 (dℓ)−1/2

Proof. We have

󰀂µ(ℓ)󰀂22 =
1

d2ℓ

󰁛󰁛

s1.s2.··· .sℓ=s′1.s
′
2.··· .s′ℓ (mod p)

1 =
1

d2ℓ

󰁛󰁛

s1.s2.··· .sℓ=s′1.s
′
2.··· .s′ℓ

1 =
1

dℓ

since in a free group
s1.s2. · · · .sℓ = s′1.s

′
2. · · · .s′ℓ

implies that
s1 = s′1, · · · , sℓ = s′ℓ.

□
In particular since |SL2(Fp)| ≍ p3 we see that for any ℓ satisfying

log(|SL2(Fp)|) ≪ ℓ ≪Smax log(|SL2(Fp)|)
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we have

(7.11) 󰀂µ(ℓ)󰀂2∞ 󰃑 󰀂µ(ℓ)󰀂22 󰃑 |SL2(Fp)|−α/2

for some absolute 0 < α′.
In particular we have the non-concentration inequality for the trivial subgroupH = {eG}

and more generally for H any subgroup of SL2(Fp) of absolutely bounded size.
For the other subgroups, we have the following classification:

Theorem 7.25 (Dickson). For p > 5. Given H ⊂ SL2(Fp) a strict subgroup, one of the
following holds

– H/{±Id2} = A4,S4 or A5

– H is a subgroup of a dihedral subgroup of order 2 (p±1)
2 .

– H is a subgroup of a Borel subgroup of order p(p−1)
2 .

Corollary 7.26. For p > 5. For any H ⊂ SL2(Fp) a strict subgroup with |H| > 120
we have for any g1, g2, g3, g4 ∈ H we have

[[g1, g2], [g3, g4]] = 1.

We then have for any ℓ ≪ log(|SL2(Fp)|)

µ(ℓ)(H) =
1

dℓ

󰁛

wℓ (mod p)∈H
1

where wℓ = s1.s2. · · · .sℓ range over all the words of ℓ letters in the alphabet S(k). We have

µ(ℓ)(H)4 =
1

d4ℓ

󰁛

i=1,2,3,4
wℓ,i∈H

1 󰃑 1

d4ℓ

󰁛

wℓ,i, i=1,2,3,4
[[wℓ,1,wℓ,2],[wℓ,3,wℓ,4]]≡Id2 (mod p)

1.

The commutator [[wℓ,1, wℓ,2], [wℓ,3, wℓ,4]] is a word in the alphabet S(k) of length 16ℓ so if

ℓ <
1

32
log(

p

2Smax
)

we have

[[wℓ,1, wℓ,2], [wℓ,3, wℓ,4]] ≡ Id2 (mod p) ⇐⇒ [[wℓ,1, wℓ,2], [wℓ,3, wℓ,4]] = Id2.

We have the following result (see [2, Prop. 8])

Proposition 7.27. In the free group of rank 2 the number of quadruples (wℓ,1, wℓ,2, wℓ,3, wℓ,4)
of words of length 2ℓ satisfying

[[wℓ,1, wℓ,2], [wℓ,3, wℓ,4]] = 1

is bounded by ≪ ℓ6.

It follows that for ℓ < 1
32 log(

p
2Smax

) one has

µ(ℓ)(H)4 ≪ ℓ6

d4ℓ

or equivalently

µ(ℓ)(H) ≪ ℓ3/2

dℓ
.

This establishes the non-concentration inequality for strict subgroups of SL2(Fp).





Appendix : Harmonic analysis for finite groups

7.6. Representations of a finite group

Definition 7.28. Let G be a finite group.

– A (finite dimensional) representation of G is a group morphism

π : G → GL(Vπ)

where Vπ ∕= {0} is a finite dimensional complex vector space. In other terms a
representation is a linear action of G a finite dimensional complex vector space.

The vector space Vπ is also called a G-module.
– A morphism of G-modules (or G-morphism) ϕ : (π, Vπ) → (ρ, Vρ) is a linear map
ϕ : Vπ → Vρ such that

ϕ ◦ π = ρ ◦ ϕ.
We denote by HomG(π, ρ) the space of all G-morphisms.

We define injective, surjective, bijective/iso/auto G-morphisms in the evident
way.

– A submodule (sub-representation) W ⊂ Vπ is a subspace stable under π(G) or
equivalently such that the inclusion ι : W ⊂ Vπ is a G-morphism.

– A representation (π, Vπ) is irreducible iff Vπ has no non-trivial G-submodules (no
submodules distinct from {0} and Vπ). Otherwise it is called reducible. We denote
by Irr(G) the set of equivalence classes of irreducible representations.

– A representation is unitarizable if there exists an inner product 〈•, •〉π on Vπ such
that π(G) ⊂ U(〈•, •〉π) (the unitary group of the inner product): for any g ∈
G, v, v′ ∈ Vπ

〈ρ(v), ρ(v′)〉π = 〈v, v′〉π.
Such inner product is called a unitary structure for the representation.

Theorem 7.29. Any representation (π, Vπ) is unitarizable.

Proof. Fix any inner product 〈•, •〉 and define

〈v, v′〉π =
1

|G|
󰁛

g∈G
〈g.v, g.v′〉, g.v := ρ(g)(v)

□
Example 7.2. The regular representation is the |G|-dimensional representation of G×G

on F(G;C) via left and right translations:

reg(g, g′)(f) : h 󰀁→ (g, g′).f = f(g′
−1

hg).

It restriction to G× {eG} (resp. {eG}× G) is called the right (resp. left) regular represen-
tation and is noted rG (resp. lG).

99
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For the regular representation (reg,F(G;C)) the unitary structure is the usual inner
product

〈f1, f2〉G =
1

|G|
󰁛

g∈G
f1(g)f2(g) =

1

|G|

󰁝

G
|f(g)|2dg

where dg denote the counting measure.

Corollary 7.30. Any representation is completely reducible: ie. decompose into a
direct sum of irreducible representations. Moreover this decomposition is unique up to per-
mutation of the factors.

Proof. Let 〈•, •〉π be a unitary structure. If W ⊂ Vπ is a submodule then

W⊥ = {v ∈ Vπ, ∀w ∈ W, 〈v, w〉π = 0}

is a G-submodule and we have the decomposition into G-modules

Vπ = W ⊕W⊥

and we iterate. Uniqueness can be obtained from the following ”Lemma”. □

Theorem 7.31 (Schur’s Lemma). Let π, ρ ∈ Rep(G).
If π is irreducible, any G-map

ϕ : Vπ → Vρ

is zero or injective.
If ρ is irreducible, any G-map

ϕ : Vπ → Vρ

is either zero or surjective.
If π and ρ are irreducible, on has

dimCHomG(π, ρ) = δπ∼Gρ.

Proof. Suppose π is irreducible and let ϕ ∈ HomG(Vπ, Vρ) non-zero then the kernel
is G-invariant so the kernel is either {0} or Vπ but cannot be Vπ: ie. kerϕ = {0}. Same
reasonning if ρ ∈ Irr(G) with the image.

In particular if π, ρ ∈ Irr(G) and π ∕≃ ρ then

HomG(Vπ, Vρ) = {0}.

If π ≃ ρ we may assume π = ρ. Given ϕ ∈ HomG(Vπ, Vπ) − {0} and λ ∈ C an eigenvalue
of ϕ with eigenspace Vλ. Since Vλ is a non-zero G-module we must have Vλ = Vπ and
ϕ = λ.Idπ. □

7.7. Matrix coefficients

Definition 7.32. Given a unitary representation (π, Vπ) and v, w ∈ Vπ; the (v, w)
matrix coefficient of π is the function

Φπ,v,w(•) : g 󰀁→ 〈g.v, w〉π.

Remark 7.14. The term matrix coefficient come from the fact that if v, w are unitary
and contained in an ONB of Vπ, 〈g.v, w〉π is the (v, w) coefficient of the matrix representaing
π(g) ∈ GL(Vπ) in that basis.
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Matrix coefficients allow to construct maps between different representations: given any
w ∈ Vπ the map

Φπ,•,w : v ∈ Vπ 󰀁→ Φπ,v,w ∈ F(G;C)
is linear and satisfies for any v

Φπ,g.v,w(g
′) = 〈g′.g.v, w〉π = Φπ,v,w(g

′g) = rG(g)(Φπ,v,w)(g
′)

and so is a G-map relative to the right regular representation. If particular if Φπ,•,w is
injective, the right regular representation will ”contain” π as a sub-G module.

More generally given π, ρ ∈ Rep(G) and w ∈ Vπ, w′ ∈ Vρ the map

(7.12) ϕw,w′ : v ∈ Vπ 󰀁→
󰁝

G
Φπ,v,w(g)g

−1.wdg =

󰁝

G
〈g.v, w〉πg−1.w′dg ∈ Vρ

is G-equivariant: for any h ∈ G

ϕw,w′(h.v) =

󰁝

G
〈gh.v, w〉πg−1.w′dg =

󰁝

G
〈g′.v, w〉π(hg′−1

).w′dg

= h.(

󰁝

G
〈g′.v, w〉πg′−1

.w′dg) = h.ϕw,w′(v).

Example 7.3. In particular for π ∈ Irr(G) and w ∈ Vπ − {0} we have an injective
G-map

Φπ,•,w : v ∈ Vπ 󰀁→ Φπ,v,w ∈ F(G;C)
and we can identify Vπ with a subrepresentation of (the right regular) representation
F(G;C). We denote the image by

(7.13) Vπ,w ⊂ F(G;C).

Theorem 7.33 (Orthogonality of matrix coefficients). Let π, ρ ∈ Irr(G) non-isomorphic
and of dimension dπ, dρ and v, w ∈ Vπ, v′, w′ ∈ Vρ. Let

Φπ,v,w, Φρ,v′,w′ ∈ F(G;C)

be the corresponding matrix coefficients. We have

〈Φπ,v,w, Φρ,v′,w′〉G = 0 if π ∕≃ ρ

and for π = ρ

〈Φπ,v,w, Φπ,v′,w′〉G =
〈w,w′〉π〈v, v′〉π

dπ
.

Proof. We have

〈ϕw,w′(v), v′〉ρ =

󰁝

G
〈g.v, w〉π〈g−1w′, v′〉ρdg

=

󰁝

G
〈g.v, w〉π〈w′, gv′〉ρdg

=

󰁝

G
〈g.v, w〉π〈gv′, w′〉ρdg

= |G|〈Φπ,v,w, Φρ,v′,w′〉G.

So 〈Φπ,v,v′ ,Φρ,w,w′〉G ∕= 0 implies that the G-map ϕw,w′ in (7.12) is non zero and π and ρ
are isomorphic.
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Assume that π = ρ and write V for Vπ. We have for v, v′, w, w′ ∈ V

〈ϕw,w′(v), v′〉π = |G|〈Φπ,v,w, Φρ,v′,w′〉G.
By Schur’s lemma we have

ϕw,w′ = λ(w,w′)Id2

for some λ(w,w′) ∈ C and

〈ϕw,w′(v), v′〉π = λ(w,w′)〈v, v′〉π.
Moreover its trace equals

tr(ϕw,w′) = λ(w,w′)dπ.

Let {v1, · · · , vd} be an ONB. We have

tr(ϕw,w′) =

d󰁛

i=1

〈ϕw,w′(vi), vi〉π =

󰁝

G

󰁛

i

〈g.vi, w〉π〈g−1w′, vi〉πdg

=

󰁝

G

󰁛

i

〈w′, gvi〉π〈g.vi, w〉πdg =

󰁝

G
〈w′, w〉πdg = |G|〈w,w′〉π

Indeed for any g ∈ G, {g.vi, i 󰃑 d} is an ONB and for any ONB {v′i, i 󰃑 d}, one has
󰁛

i

〈w′, v′i〉π〈v′i, w〉π = 〈w′, w〉π.

Hence

λ(w,w′) =
tr(ϕw,w′)

dπ
=

|G|
dπ

〈w,w′〉π
and

|G|〈Φπ,v,w, Φρ,v′,w′〉G = |G|〈v, v
′〉π〈w,w′〉π
dπ

.

□
A direct consequence of Theorem 7.33 is the following.

Theorem 7.34 (Fourier Theory for finite groups). For any π ∈ Irr(G) let

Bπ = {v1, · · · , vdπ}
be an ONB of Vπ and for j 󰃑 d let

Vπ,vj := {Φπ,v,vj , v ∈ Vπ} ⊂ F(G;C)

be the G-space defined in (7.13) and let

(7.14) Bπ,vj := {d1/2π Φπ,vi,vj} ⊂ F(G;C).
The set Bπ,vj is an ONB of the space Vπ,vj and we have an orthogonal decomposition

into irreducible representations

F(G : C) =
󰁐

π∈Irr(G)

󰁐

j󰃑dπ

Vπ,vj .

In other terms the regular representation contains each irreducible representation Vπ, π ∈
Irr(G) with multiplicity dπ and have

|G| = dimCF(G : C) =
󰁛

π∈Irr(G)

d2π.
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In addition, the set

BG := {d1/2π Φπ,vi,vj , π ∈ Irr(G), vi, vj ∈ Bπ}
form an ONB of F(G : C) and for any f ∈ F(G : C) we have the Fourier decomposition

f =
󰁛

π∈Irr(G)

dπ
󰁛󰁛

i,j󰃑dπ

cπ,i,j(f)Φπ,vi,vj

where

cπ,i,j(f) = 〈f,Φπ,vi,vj 〉G =
1

|G|
󰁛

g∈G
f(g)Φπ,vi,vj (g).

We also have the Plancherel-Parseval formula
󰁛

g∈G
|f(g)|2 = |G|〈f, f〉G =

󰁛

π∈Irr(G)

d2π
󰁛

i,j󰃑dπ

1

dπ
|〈f,Φπ,vi,vj 〉G|2

=
1

|G|
󰁛

π∈Irr(G)

dπ
󰁛

i,j󰃑dπ

|
󰁛

g∈G
f(g)Φπ,vi,vj (g)|2.

Proof. The only point which is not ”mechanical” is the fact that the orthonormal set
BG generate F(G;C). If not the space orthogonal to C.〈BG〉 is G-stable hence a subrep-
resentation of F(G;C) which contains an irreducible representation π. But any ONB of it
gives matrix coefficient which would have to be contained in the space generated by BG. □

Remark 7.15. Let π0 : G 󰀁→ 1 be the trivial 1-dimensional representation. Its only
matrix coefficient is the constant function 1 and and the contribution to the Fourier decom-
position is

1

|G|
󰁛

g∈G
f(g)

and to the Plancherel-Parseval formula is
1

|G| |
󰁛

g∈G
f(g)|2.

7.7.1. Interpretation in terms of linear maps. Given f ∈ F(G;C) and π ∈
Rep(G) we define the endomorphism π(f) ∈ End(Vπ) by

π(f) : v ∈ Vπ 󰀁→
󰁛

g∈G
f(g)π(g)v.

For instance for g ∈ G
π(g) = π(1{g}).

The coefficient (i, j) of the matrix of π(f) in the basis Bπ are given by

〈π(f)vi, vj〉π =
󰁛

g∈G
f(g)〈g.vj , vj〉π =

󰁛

g∈G
f(g)Φπ,vi,vj (g).

From this we see that 󰁛

i,j󰃑dπ

|
󰁛

g∈G
f(g)Φπ,vi,vj (g)|2 = 󰀂π(f)󰀂2HS

where 󰀂 • 󰀂HS denote the Hilbert-Schmidt norm on End(Vπ), ie.

󰀂X󰀂2HS = 〈X,X〉HS = tr(X.X∗)
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where X∗ is the dual (whose matrix is the conjugate transpose).
The Parseval formula can then be rewritten in a more compact form

(7.15)
󰁛

g∈G
|f(g)|2 = 1

|G|
󰁛

π∈Irr(G)

dπ󰀂π(f)󰀂2HS

and more generally

(7.16)
󰁛

g∈G
f1(g)f2(g) =

1

|G|
󰁛

π∈Irr(G)

dπ〈π(f1),π(f2)〉HS

where
〈X,Y 〉HS = tr(XY ∗).

Likewise the Fourier decomposition formula can be rewritten

(7.17) f(g) =
1

|G|
󰁛

π∈Irr(G)

dπ〈π(f),π(g)〉HS

(directly or by taking f1 = f, f2 = 1{g}).
Also since f(g) = g.f(eG) where

g.f : h 󰀁→ f(hg)

we have

(7.18) f(g) =
1

|G|
󰁛

π∈Irr(G)

dπ〈π(g.f), IdVπ〉HS =
1

|G|
󰁛

π∈Irr(G)

dπtr(π(g.f)).

7.7.2. Convolution. The space F(G;C) is a non-commutative C-algebra relative to
the convolution product

f1 󰂏 f2 : g 󰀁→
󰁛

g1g2=g

f1(g1)f2(g2)

with unital element δ{eG} and the map

f ∈ F(G;C) 󰀁→ π(f) ∈ End(Vπ)

is an algebra morphism:

π(f1 󰂏 f2) =
󰁛

g1,g2∈G
f1(g1)f2(g2)π(g1g2) = π(f1) ◦ π(f2).

This algebra is equipped with an (anti-)involution

f 󰀁→ f̌ : g 󰀁→ f(g−1)

and (7.18) can be rewritten

(7.19) f1 󰂏 f̌2(eG) =
1

|G|
󰁛

π∈Irr(G)

dπ〈π(f1),π(f2)〉HS .



Reference

[1] N. Alon, M. B. Nathanson, and I. Ruzsa, The polynomial method and restricted sums of congruence
classes, J. Number Theory 56 (1996), no. 2, 404–417, DOI 10.1006/jnth.1996.0029. MR1373563

[2] J. Bourgain and A. Gamburd, Uniform expansion bounds for Cayley graphs of SL2(Fp), Ann. of Math.
(2) 167 (2008), no. 2, 625–642, DOI 10.4007/annals.2008.167.625. MR2415383

[3] H. A. Helfgott, Growth and generation in SL2(Z/pZ), Ann. of Math. (2) 167 (2008), no. 2, 601–623,
DOI 10.4007/annals.2008.167.601. MR2415382

[4] H. A. Helfgott, Growth in linear algebraic groups and permutation groups: towards a unified perspective,
Groups St Andrews 2017 in Birmingham, London Math. Soc. Lecture Note Ser., vol. 455, Cambridge
Univ. Press, Cambridge, 2019, pp. 300–345. MR3931419

[5] E. Kowalski, An introduction to expander graphs, Cours Spécialisés [Specialized Courses], vol. 26,
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