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CHAPTER 1

Basic on sumsets

Additive combinatorics aims at studying the following kind of very basic

QUESTION. Given (G,+) a commutative group noted additively and A, B C G two non-
empty subsets, how big is the subset

A+B={a+b, ac Abe B}
in terms of |A| and |B| ¢
DEFINITION 1.1. A subset of the shape
A+B={a+b, ac Abe B}
for 0 # A, B C G two non-empty subsets is called a sumset of G.

We have the following basic bounds
(1.1) max(|Al, |B]) < |4+ B| < |A]|B|.

The upper bound is obvious and the lower bound follow from the fact that for any a €
A, beB
A+ba+BCA+ Band |A+b|=|A||a+ B|=|B|;

we would like to know whether these bounds are sharp and what can be said if |A + B| is
very small or very large ("large” or "small” would have to be made more precise if A or B
are infinite sets).

The following notations will be useful:

- (k)AZ{CLl-i-"'-i-CLk, a1,~-',ak€A}CG.
~koA={ka=a---+a (ktimes), a€ A} C (k)A

~ A+b= A+ {b}.

- A-B=A+(-B), -B={-b, be B}

— If G is a ring with multiplication noted . and £ € G we will write

EA={&a, ac A}

1.1. Examples from number theory

For G = Z examples of sumset problems come from number theory:

Waring’s type problems.
THEOREM (Lagrange 4 — [0 Theorem).
4.0(Z) = 4{n* n € Z} = Zx,.
ie. every mon-negative integer is the sum of at most four squares.
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6 1. BASIC ON SUMSETS

For k > 2 let g(k) € N defined by the property
g(k) = min(g > 1 such that Zsq = g{n*, n € N}).

ie. every non-negative integer is the sum of at most g k-th powers of integers: due to the
efforts of many people we we know that g(k) < oo for anyk > 2 and that

9(2) =4, 9(3) =9, g(4) =19, g(5) = 37.
Goldbach’s type problems. Let P be the set of prime numbers
THEOREM (Schnirelman). There exists G > 1 such that
G(PU{0}) = Z
ie. every mon-negative integer is the sum of at most G primes.
THEOREM (Vinogradov-Helfgott). We have G < 4
CONJECTURE (Goldbach). We have G < 3.

1.2. Sumsets in R
PROPOSITION 1.2. For G = R; suppose A and B finite. We have
|A+ B| > |A|+|B| — 1.

Proor. This is obvious if |[A| or |B| =1
Suppose |A|,|B| > 2 and write A = {a1 < az -+ < ap}, B ={by <bg--- < b,} then
A + B contains

art+bi<ays+bi < - <amt+b <amtb<---<ay,+b,.

O
It is no difficult to provide examples for which the upper bound in (1.1) attained : for
instance for any integer N > 2 let

A={1,--- ,N—1}, B={N,--- (N —-1)N}
then
A+ B={m+nN, mmne{l,-- N-1}}
has
|A+B| = (N -1)”

Nevertheless the lower bound is still sharp and it is possible to characterise the A, B
such that |A + B| is as small as possible.

PROPOSITION 1.3. Suppose that
|A+ B| =|A|+|B| -1
then there exists a,b € R and ¢ € N> such that
A=a+q[0,m), B=0b+q[0,n).

We then say that A and B are arithmetic progressions with the same common differ-
ence/modulus q.
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PROOF. Suppose |A[,|B| > 2 (or this is obvious) we have
A+B={c1<c2<- < Cmin-1}
:{a1+b1 <ast+bhi<---<amt+br<amtb<--- <am+bn}
:{a1+b1 <al+b<---<ag+b,<as+b, < ---<am+bn}
So we have
as+by =a1+bo, a3 +by =a1+bs3, ---
so that
ag —ay =bg — by, az—ay =bg — by, -
and from there we can conclude that A and B are arithmetic progressions with the same
modulus. O

In particular A and B are "intervals” of translates of the subgroup ¢Z C R.
Observe in general that if H C G is a subgroup we have

H+H=H.

This simple Proposition illustrate the following phenomenon that we will find again in
other occasions
A sumset with small size admits some "structure” related to the group law.

1.3. Sumsets in [,
We now consider the case of G a finite commutative group. We have the following easy

LEMMA 1.4. Suppose that |A| + |B| > |G| then
A+ B=QG.

PRrROOF. For any ¢ € G A + ¢g and —B must intersect so Ja € A, b € B such that
a—g=—band
g=a-+b.
0
The simplest finite commutative groups are the cyclic ones G = Z/NZ. When N = p
is a prime we have the

THEOREM 1.5 (Cauchy-Davenport). Given A, B C Z/pZ. We have
|A+ B| > min(p, |A| + |B| — 1).

1.3.1. First proof. Replacing B by the translate B —b for some b € B we may assume
that 0 € B. In particular A C A + B.

If |IB| =1 then A+ B = A and we are done.

We proceed by induction on |B| and can assume |B| > 2. Moreover by the previous
Lemma we may assume that

2<|Al<p—-2.

Suppose that A = A+ B then for any b € B—{0} we have A = A+bsince A+b C A+ B
and has cardinality |A| = |A 4+ BJ|. In particular b is in the stabilizer of A under the
translation action of Z/pZ on the set of subsets of Z/pZ and since Z/pZ has no non-trivial
subgroups (p is prime) this stabilizer is Z/pZ and A = Z/pZ = A + B.

Suppose now that A # A + B: there exists ag € A such that

Bo={be B, ag+b¢g A} # 9.
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In particular AN (ag + By) = 0 and 0 ¢ By.
Let
(5a0(A) =AU (ao -+ B()), (5a0(B) = B\Bo.
We have
000 (A)| + |6ao (B)| = [A] + |Bo| + |B| — |Bo| = |A] + | B,
0 € 04y(B) and |04,(B)| < |B| so by induction
|0ao (A) + dao (B)| = min(p, [da, (A)] + |6ae (B)[| — 1) = min(p, |A| + |B| — 1).
Now
8ag(A) 4+ 84y (B) = {a+V, ac A)b € B\By} U{ap+ b+, be By, b € B\By} C AUB.
For the first set this is obvious and for the second we have
ag+b+b = (ag+V)+0b

and ag + b’ € A since V/ € B\ By. O

REMARK 1.1. The transformation
(4, B) = (0ag(A), dao (B))
is called the Dyson transform at e of (A, B) after Freeman Dyson and is a synthesis of a

multitude of previous ad-hoc looking arguments.

1.3.2. Second proof. Here we use explicitly the fact that Z/pZ = F,, is a field. This
is a example of the so-called polynomial method.
We start with the following

THEOREM 1.6. Let k be a field and P(Xy,---,X,) € k[X1,---, X,]. Let X{1 ... X
be a monomial of degree

> d;i = deg(P) =d

having a non zero coefficient in P. For any tuple of subsets (A;)i<n, Ai C k satisfying
|Al| >d;, i=1,---.,n
there exists (ay,---ay) € Ay X -+ Ay, such that P(ay,---a,) # 0.

REMARK 1.2. If n =1 this is the simple fact that a polynomial of degree d has at most
d roots in k.

PRrROOF. We proceed by induction on d: if d = 0 we are done.

Suppose that d > 1; let (dy,--- ,d,) satisfying the assumption of the Theorem. WLOG-
WMA d; > 1.

Let (A;)i<n satisfying the assumption of the theorem. In particular |A;| > 2.

Given a1 € A; we have

P(Xp, - X,) =Q(X1, - Xpn)(X1 —a) + R(Xg, -, X,)

with deg @ < d and R(Xa, -+, X,) = P(a1, Xo, -+, Xp).

By our assumption Q (X7, - - - X},) has a non-zero coefficient in the monomial X fll_l oo X
and deg@ =d — 1.

Since
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we may assume that for any (ag,---ap) € Ay X --- A, we have R(ag,---a,) = 0 (otherwise

we are done by taking (a1, as, - - - a,) such that R(as,---a,) # 0).
Observe that A; — {a1} # (. By induction on deg @ there exists

(allv"'an) E(Al_{al}) XA2 X An
such that
Q(ay,---an) #0

and therefore

PROOF. (of Cauchy-Davenport) We may assume that |A| + |B| < p.
We proceed by contradiction and assume that

|A+ B| < |A|+ |B| — 2.
Let m =|A|+|B|—2—]A+ B| >0 and

PXY)=X+Y)" [ X+Y-0).
ceA+B

This is a polynomial of degree |A| 4+ |B| — 2 such that for any (a,b) € A x B

P(a,b) = 0.

In addition the coefficient of
x A=y |B|-1

in P is that of XMI=1yIBI=1 in (X 4 Y)IAI*IBI=2 and equals the binomial coefficient

(|A|+|B|*2
[A[—1

1.3.3. Applications. We have the following immediate extension

THEOREM 1.7 (Cauchy-Davenport). Given k > 2 and Ay,--- , A C Z/pZ. We have

|A1 + -+ Ag| > min(p, |[A1]| + - + |Ax| — k+ 1).
In particular taking A; = A we set that
|kA| =|A+ -+ A(k times)| > min(p, k(|A| — 1) + 1)

In particular if & > |£|%11 then kA =T,

A more arithmetic application is the following theorem

) mod p which is non zero since |A| + |B| — 2 < p. This is the contradiction. [

THEOREM 1.8 (Lagrange). Given «, 8 € F)f. For any x € F), there exists u,v € F), such

that
z = au? + v

PROOF. Suppose p > 2. Let O(F,) = {u?, u € F,} the set of squares in F,. We have

1
Dmﬁ:1+35—

and
|al)(Fy) + BO(Fp)| = min(p, p) = p.
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1.3.4. Optimality of CD. Again one may want to compare with the trivial upper
bound

|A+ B| < min(|4||B|, p).
and again it turn out that most of the time this upper bound is closer to the truth.

THEOREM 1.9. for any 1 <m,n < p— 1 there exists A, B C F)\ with |[A| =m, |B]=n
such that

1 1
|A+ B| > 5min(|A||B|,p— 1) = §min(mn,p— 1).

Proovr. The difficulty in proving that A+ B is large comes from the possibility x € A+ B
may have a lot of representations in the form x = a +b. So we introduce the number of

representations
ra(T) = Z 1.
(a,b)eAXB
a+b=x
We have

re€A+B<=rap(r)>1

and we have

Sras@) =3 S 1=|AxB|=4|B].

z€F, z€Fp (a,b)eAxB
at+b=z

By CS we have (write r4 g(z) = r4,5(2).14+B)

3" rap@) = Iraslasslh < 1lasslalrasle = 1A+ B2 74 p(2)V2.

z€lF, z€lF,
So that
A5 s (AIBI?
> ver, Ta,p(7)

The sum

> rhp(@) ={(a,b,d,V) € (Ax B, a+b=d +V}| = E(A,B)

z€elf)y

is called the additive energy of the pair (A, B) and the smaller additive nrj is the large
|A+ B|.

To find a pair with low additive nrj we will look within the family of ”deformations” of
A+ B, namely

A+¢EB, €€ ]F;;.
For this we evaluate the ”expectation” of the random variable

&~ E(AEB).
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E(B(4,0B)) = —— > [{(a,b,d V) € (A x BY, atb=d +V)]
p_
E€Fy

= ﬁu(a, ba'\W,6) € (Ax BY x Y, a—d =t — b))

(1A = |AD(IBI* - 1B])
—1

= [A[|B] +

Al Bl
< |A||B|(1+ ———
411811+ 215

Here the first term comes from the diagonal solutions a = a’, b = b’ and the second from
the non-diagonal solutions (since then ¢ is determined by (a,b,a’,b’) Since E(A,eB) > 1

there exists £ such that
A||B
B(4.¢8) < 4|1+ 212

and AllB 1 Al||B 1

|A[| B 51 [A[| B > ~min(|A||Bl,p - 1).
[AIB] ©~ 9 (1, AlLBL = 2
e max(1, =75

|A+¢B| >

]
REMARK 1.3. This proof has introduced two important concepts that we will meet
again:
(1) the additive energy E(A, B) of two sets and
(2) the probabilistic method which allows to exhibit objects satisfying some generic

property without expliciting them but rather because they form a set of of positive
measure within a probability space.

An important generalisation of Cauchy-Davenport’s theorem is Kneser’s (which in fact
implies Cauchy-Davenport

THEOREM 1.10 (Kneser). Given G a commutative group and A,B € G non-empty
subsets and let

H =Stabg(A+B)={he G, h+A+B=A+ B}
the stabilizer of the set A+ B under the translation action of G. We have
|A+B|>|A+ H|+ |B+ H| - |H|.

EXERCISE 1.1. Prove that the Cauchy-Davenport is not true for a composite N but
extends as follows

THEOREM 1.11 (Cauchy-Davenport). Suppose that 0 € B and for any b € B — {0},
(b,N) =1. We have
|A+ B| > min(N, |A| + |B| — 1).
EXERCISE 1.2. Prove that for A, B C [F),
{a+b, (ab) € Ax B, ab# 1}| > min(p, |A| + |B| - 3)






CHAPTER 2

Some applications of additive combinatorics

2.1. The sum-product phenomenon

Theorem 1.9 gives examples of sumset in IF,, whose size is growing multiplicatively with
the sizes of the summands. Notice that this construction (which is not explicit) makes
use of the existence of the multiplication in IF,,. The sum-product theorem discovered by
Bourgain, Katz and Tao indeed shows that the combitation of addition and multiplication
indeed conduct to growth:

THEOREM 2.1 (Sum-Product theorem). For any e > 0 there exists C,§ such that for
any prime p and any subset A C ¥ satisfying

C<|A<pt®

one has then
|A+ Al + |A.A| > |A]M°.

The sum product theorem state that in the commutative ring IF,, a subset exhibit poly-
nomial growth either under addition or multiplication with itself unless (perhaps) it is
already quite big (JA| > p'~¢). Moreover under iterated addition/multiplication A grow to
a polynomial size in p after only O(logp) steps (instead of a linear in p steps with CD).

While the sum-product theorem involves only the commutative ring F, this case be
interpreted in terms of the presence of growth in a non-commutative (but solvable) finite
group: namely the affine group of matrices

Affo(F,) = {(g ;’) Ly €FY, z €F,} = N(F,) x A(F,)

1 =z z 0
NE) = (e = (5 7). B AE) =l = (5 ). ver)
Indeed multiplication in N induces addition while conjugation by A in N induces multipli-

cation:

n(@)n(a’) = n(z + z), aly)n(@).aly)™ = n(y).

In fact the sum-product theorem viewed in this light was an important ingredient in the
work of Helfgott who exhibited polynomial growth for another (this time highly non-sovable,
in fact simple) matrix group:

THEOREM 2.2 (Helfgott). There exists k,d > 0 such that for any p and any A C SLa(F))
generating SLa(Fp,), one of the following holds

|AG)| > A1 or (AU AT U {Tdo})®) = SLy(F,).

13



14 2. SOME APPLICATIONS OF ADDITIVE COMBINATORICS

2.1.1. Application to Cayley graphs. Recall that given (G,.) a finite group and
A C G a non-empty subset, its Cayley graph Cayley(G, A) is the graph whose vertices are
the elements of G and whose edges are the pairs of the shape

(9:a.9), 9 €G.
The graph Cayley(G, A) is connected iff (4) = G and has no selfloop iff eq € A. Also we
say that A is symetric iff
Al ={a71 ac A} = A
Recall that a graph I' = (V| F) is equipped with a natural distance on V:
dr(z,y) := minimal number of edges necessary to connect x and y

and its diameter

diam(T") = d .
iam(I") Jnax r(z,y)

COROLLARY 2.3. There exists C > 1 such that for A C SLao(F,) a generating subset
(A) = SLa(F)) one has

diam(Cayley(SLa(F,), A)) < C(logp)©.

PROOF. Assume that A is symetric and Ids ¢ A (see the exercise for the general case);
we have |[A| > 2. Observe that for any symetric set B we have

(BU{e})™ c (BU {e})D).
Apply Helfgott’s theorem j > 1 times we have either
|A(3J)| > |A|(1+§)j

or _
(AG) U {1de})® = SLy(F,).

In particular for

i = log(EP) (1 +5)] + 1
we have ‘
(AB) U {Idy})®) = SLy(F,)
so that

diam(Cayley(SLy(F,), A)) < 3k = k(%)owa),

EXAMPLE 2.1. On can take (Exercise)

o) 6 () ()

since A; generate SLa(Z). In that case there is another proof using the theory of modular
forms to obtain a stronger result.
On the other hand one can also take

GG

since A3 (modp) generates SLy(F,) for any p > 3 but in that case the theory of modular
forms is not available (as (As) C SLy(Z) has infinite index in SLa(Z)).
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2.2. Fourier theory for finite abelian groups

Let (G, +) be a finite commutative group, the group of characters of G, 6, is the set of
group morphisms between G and the multiplicative group (C*, x):

G = Homg,(G,C%) = {x: G~ C*, x(g+4) = x(9)x(g)}-
This is a subgroup of the multiplicative group of functions F(G;C*).

THEOREM 2.4 (Fourier theory). Let (G,+) be a finite commutative group; its group of
characters G = Homg, (G, C*) is finite and has order

Gl =1a]

and in fact is isomorphic (non-canonically) to G.

Moreover G is an orthonormal basis of the Hilbert space F(G;C) when equipped with
the hermitian product

(f1, f2)c =G Zﬁ
geG
In particular we have
VXv’(/}EG |G|ZX E X'LZH Xa]- |G|2X = Ox=1-
geG geaq

For any f € F(G;C*) we have the Fourier decomposition

F=> (f0x

xeG

(f,x) = |G|Zf

geG
is called the x-th Fourier coefficient of f and the rescaled function

FixeG—I|GV2(f,x) = |G‘1/22f 9)x(g

The inner product

is called the Fourier transform of f.
The Fourier transform map

e fe F(G;C)— fe F(G;C)
1s an 1sometry: ie. we have the Plancherel formula

(fi, f2)a =G Zfl Zfl(X Falx = (f1. P2)g

g€G XGG

and after identifying (canonically) the bidual G with G via the evaluation map
eve i grrevg: X —evg(x) = x(g)

the Fourier transform is an anti-involution:
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PROOF. The group G act on itself by (right or left) translation and therefore act lineairy
on V := F(G;C): we denote by t, the corresponding action:

tof(e) = f(e+g).
Moreover by a change over variable the inner product (fi, f2)q is translation invariant:
Vg e G
(taf1.tgf2)a = (fr, f2)c-

In particular ¢, is adjoint (t; = t_;) and therefore diagonalisable. Moreover since all the
tg, g € G commute with one another, they are simultaneously diagonalisable. We write the
( orthogonal) eigenspace decomposition
C) =P
X

where V, is the common eigenspace associated with the system of eigenvalues noted x(g), g €
G:
Vi={f€eV,V9eq, ty.f = x(9)f}
Since tyq 4 =ty 0ty we have
x(g+9) =x(9)x(g), x(ec) =1

so that the eigenvalue function x : g — x(g) is a character of G. Moreover x € V,:
(o +

Vg € G, tgx = x(o+9) = x(9)x(e) € Vx.
conversely, given f € V, we have

ty f(9) = flg+9) = (tyf)d) = x(9)f(d)
so that

In follows that

and that

where G’ C @ is a subset of characters. Since any character ¢ € G is an eigenfunction of all
ty (with eigenvalues 1(g), g € G) we conclude that the eigenspace decomposition is made
of one-dimensional eigenspaces indexed by all the characters of G

V=EcCux.
xe@
From this we conclude that R
|G| = |G| =dimV
and that the set G form an orthogonal family (since different eigenspaces are mutually
orthogonal) and hence an orthogonal basis. Moreover

X X) |G’ > Ix(9)
e

since |x(g)| = 1 (this follows either from the fact that the x(g) are eigenvalues of isometries
or from Lagrange’s theorem X(g)|G‘ = X(g|G|) = x(eg) =1).
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The Fourier decomposition is a direct consequence of the fact that G form an orthonor-

mal basis of V. The Plancherel formula as well (since \@ | =|G|)
(fi 2 =D (Fx)(F )6 e = DD (i) (for )
X$EG x e
=) () (fx) |G] Zfl = (fi. P)g
x€G xe@G

Finally we have for ¢ € G
D00 = 1612 (W, x) = 1G] 26—

whose Fourier transform is given by

1 —
‘G’1/2 \@P/? Z Syp=xevg(X) = ¥(9) = ¥(—9g)
X

and we conclude ’p\y linearity.
The fact the G is (non-canonically) isomorphic to G follows from the fact that if

p:G~G1 X G
is isomorphic to a product then we have an isomorphism ¢ : 61 X ég ~G given by

P(x1,x2)(9) = x1(91)x2(g2)

where ¢(g) = (g1, 92) € G1 x Ga.
This reduce the proof to the case of G = g% a cyclic group (with generator g). Since a
character is completely determined by its values at g, the evaluation map

evg:x € G x(9) € pg
is an isomorphism and y g ~ Z/|G|Z ~ G. O

EXAMPLE 2.2. For the additive group of congruences modulo ¢, (Z/qZ,+) we have

Z//Q\Z: {eq(‘")a a=0,--- 7q_1}
where for h (mod q) € Z/qZ
eq(ah) = exp(2m'%).
q

We call these the additive characters modulo q.

Notice that e,(ae) depends only on a(modg) and the isomorphism Z/qZ =~ Z//q\Z is
given by

a (mod q) — eq(ae).

To see that we have indeed an isomorphism we observe that this is a group morphism
whose kernel is {0 (mod ¢)} so it is injective and since both groups have the same size it is
surjective.

For the multiplicative group of congruences ((Z/qZ)*, x) which has order ¢(q) the
group (mx/g the group of Dirichlet characters of modulo ¢q. They are is much less

explicit than Z/qZ.
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2.2.1. Convolution. We also recall the convolution operator: for fi, fo € F(G;C)

fix falg) == |G|1/2 > filg) falg2)-

g1+g92=g
We them have

f1*f2

~

S b @0x(9) = = S filg) fa(9)x(g1492) = HrOOBO).

1/2 1/2]2[1/2
e oo GIMIGIVE |

For instance if fi = 14, fo = 15 then
GI"*14 % 15(9) =7a,8(9) = {(a,b) € Ax B, a+b=g}|

and
mas(x) = |GIY*1a()1E(x)

La(x) |G|1/2 ZX

acA

where

By Plancherel formula (or a direct computation) we have also an expression for the additive

nrj:
B) = lras@P = lras()l IGIZ!lA IRITEN]
X

geG
2.2.2. Restriction to a subgroup.

THEOREM 2.5. Let G be a finite commutative group, G its group of characters, H C G
a subgroup and let

L={yeG, vheH, x(h)=1} c@G.
We have the exact sequence
(2.1) 1 H"—5G—H—1
where the third arrow is the restriction to H. In particular
H| = |GI/|H| = |G/ |H].
We have

|G|1/2
|H| Z ST (x) = 1y (0)-
More generally, for cmy function f: G — C we have
|H| )= > (0 =1G1"* > Fx)
heH xeEH+ xeEHL
REMARK 2.1. We have that
—~ _|H|
= gt

ie. the Fourier transform of the characteristic functlon of a sous-group H C G is proportional
to the characteristic function of a subgroup H+ C G. Moreover the larger H is the smaller
the support of the Fourier transform: H* has order the index of H in G.
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PROOF. It is clear that the restriction to H map
‘\H3X€é_>X|HEﬁ-

is a group morphism whose kernel is H+. Let us prove it is surjective.
Given any ¢ € H let

Vy:={f:G—C,VheH, thf =vh)f}

This space is non-zero: the function 1 extended by 0 outside H has this property. Moreover
this space is invariant under translation by elements of G: given such an f we have

ta(tgf) = tg(tnf) = Y (M)tyf
since t, and ¢, commute. In particular there exist in Vj, a common eigenspace V), for some
a character x € G and in particular x € Vy: for all h € H we have

x(h +g) = x(h)x(9) = ¥(h)x(9)
and therefore x|z = 1. From this we obtain the surjectivity of the restriction map hence
(2.1).
We have for any x € G
| Z eri
heH

Indeed y being contained in H+ or not is equivalent to X being a trivial character on H
or not.
By Fourier decomposition we have

|H|Zf Z >|H|ZX(h): > (fx)-

heH heH XEHJ-

2.3. Equidistribution and Exponential sums

Consider the ”circle” X = R/Z which we may identify with the semi-open interval [0, 1).

Suppose given a sequence of finite subsets (Hy)p>1, H, C X with |H,| — co. We often
would like to know how the ”image” of H,, C X evolves as n — oco. For instance given some
interval [a,b] C R/Z how many elements of H,, belong to I asymptotically as n — oo; it is
then natural to look on whether there is a limit to the sequence

P,([a,b]) := [{h € H"|7HZL|€ [a, b]}\’

the proportions of elements of H,, contained in [a, b].

DEFINITION 2.6. A sequence of finite sets (Hy,), becomes uniformly distributed on X
(or equidistributed modulo 1) if for any 0 < a <b <1

P, ([a,b]) = b—a = pres([a, b]).

EXAMPLE 2.3. For instance the sequence H,, = {h/n, 0 < h < n — 1} become equidis-
tributed modulo 1 as n — oco.
Notice that if (Hy,), becomes equidistributed then for any C' > 1 any sequence of subset
(Ch)n satisfying
C, C Hy, |Cp| <C
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then (H,\C)), becomes also equidistributed.
For instance the sets {h/n, 1 < h < n — 1} become equidistributed modulo 1.

Notice that the proportion can be rewritten

1
> () = b—a = pa(ljy)

Pn([a’b]) = |H |
™ heH,

where (1, denote the probability measure on X given by

1
pn(f) = m Z f(h)

heHy,

or in other terms the measure

1
= Op-

By approximating characteristic functions of intervals by continuous functions and continu-
ous functions by linear combination of characteristic functions of intervals we see (exercise)
that uniform distribution is equivalent to showing that for any f € C(X) we have

(2.2) () = /X F(2)dz = pa(f)s m = oo

in other term, this is equivalent to the weak-x convergence of the sequence of probability
measure (fip), towards the Lebesgue measure.

THEOREM 2.7 (Weyl equidistribution criterion). Given
H,CcX, n>1, |Hy| — co.
TFAE

(1) the sequence (Hy), becomes equidistributed.
(2) For any a € Z — {0}

1
T Z exp(2miah) — 0.
| H heHn,

PROOF. We need only to prove (2) = (1). By approximating continuous functions by
smooth functions it is equivalent to prove (2.2) for f € C*(X) a smooth function. By
Fourier theory we have

7(h) = Y Fla) exp(2riah)
a€Z
where (integration par parts)

‘ 1
fla) = /[0’1) f(@) exp(=2miaz)dr s = o

In particular
D Ifa) < oo
a€”Z

and since for any a € 7Z,

1

H,|

Z exp(2miah)| < 1

|pn (exp(2miae))| = \|
heH,,
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we have by Fubini
z fla T z exp(2miah) = z f(a)un(exp(%riao)).
a€’Z H heH, a€Z
Given € > 0 we have
pn(f) = F(0) + 2 a)pin(exp(2miae) + Y fla)un(exp(2mias)).
1<]al<1/ la|>1/e
The first term is

fo) = [ sy,
[0,1)

The third term is bounded by

| D 1f(@)llin(exp(2miae))| < 24,

la|>1/e
while for the second term there is n(e) such that for n > n(z-:) we have

V1< lal < 1/e, |pn(exp(2miae))| <
It follows that

] Z a)pn(exp(2miae)) 52]]‘ a)| L5 €.
1<]al<1/

This shows that
pn(f) — f(x)dx

[0,1)
O

2.3.1. Equidistribution of the multiplicative subgroups of F;. We now consider
the finite field IF,,. Any element of [F,, is a congruence class h (mod p) and we can associated
to it h

— (mod 1) € R/Z.
p

We know already that as p — oo the sets
h
{; (mod1), h e F,}
become equidistributed modulo 1, as does the image of the multiplicative group F
h
{5 (mod1), h e F)}.

We would like to understand equidistribution modulo 1 but for a (strict) subgroup of the
multiplicative group

H, C F)
satisfying |H,| — oo.

ExampLE 2.4. Take H), = U(F,) the subgroup of squares. If p is odd then |H)| = el

indeed H, is the image of the morphism z +— 22 whose kernel is {£1} (alternatively H;- =
{1, (;)} is the subgroup of order 2 generated by the Legendre symbol); however even if H),

is commensurable with the size of F,;, its equidistribution is not obvious.
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Notice that Hy, is cyclic (since F,, is a field): so
H, = {gg, n € 7Z}

and we want to study the distribution of
{ﬁ_p (mod1), n=1,---,|Hp|} C R/Z.
p

but this does not help much since it is hard to anticipate the variations of the function

n— -2 (mod1)
p

(even if &, is say 2 (mod p)).
THEOREM 2.8. For any p > 3 let H, C F); be a multiplicative subgroup of order
H,| > pl/2+e
then

{% (mod1), he H,} CR/Z

1s equidistributed as p — oo.

ProoOF. By Weyl equidistribution criterion, it would be sufficient to show that the
Weyl’s sum converge to 0, forall a € Z — {0}
1 h
— Z exp(2mia—) — 0.
| H| heH, p
P
Observe that N
exp(2mia—) = ep(ah)
p
is an additive character of [, in particular it depends only on a (modp). This character

maybe trivial but this is the case iff ¢ = 0(modp) so, as long as a # 0 and p > |al,
a # 0 (modp) and ep(ae) is a non-trivial additive character. We then have

THEOREM 2.9. Let H C IF; be a subgroup; given ¢ € IF‘; an additive character let

pr(®) = 72 v (h).

heH
If ¥ # 1 we have
1/2
(V)| < T
|H
In particular if
|H| > p1/2+5

for some € > 0 we have for any ¢ € F, — {1}
per () — 0.

REMARK 2.2. The sum pu (1)) is an average of complex numbers of modulus 1 so the fact
that pg (1) — 0 indicate the presence of oscillations in the values of the additive character
along the multiplicative subgroup H.
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ProoFr. We have

L= Y 0= Y =g 3 v,

heH xEH- xEHL zeF)
Set
G, xX) = Y Y(@)x(x).
z€Fy
For ¢ # 1 we have
G, 1) = =1, |G(,%)| = p'/* for x # 1.
Indeed if x # 1, G(v,%) is a Gauss sum (and a Ramanujan sum if x = 1).
This implies that

1/2 1/2

P gy _prmp-1 _p
()l < = = =] ~ |H|

1/2

O

REMARK 2.3. The character ¢ : F, — C* take values in the complex numbers of
modulus 1 and if ¢ # 1 satisfies
1
- QP xr)= 07
, > ()

z€lF),
hence it has a lot of oscillations has x varies in [F),.

The fact that )
] 2 Y =0
heH
if |[H| >1/2*¢ shows that some of these oscillation are still present when 1) is restricted to H
even if |H| is as small as p'/2t1/20%5 (since the given bound improves over the trivial bound
1). This is a feature of the additive nature of ¢ versus the multiplicative structure of H. For
instance, there may exist non-trivial multiplicative characters x for which »°, 5 x(h) = |H|
: the non-trivial characters in H= !

Using techniques from additive combinatorics Bourgain-Gilibichuk-Konyagin obtained a

considerable improvement on the possible size of H and showed that 1) continue to oscillate
even along extremely small subgroups.

THEOREM 2.10 (Bourgain-Gilibichuk-Konyagin). For any e > 0, there exists § > 0 such
that for any prime p, any non-trivial additive character ¢ and any multiplicative subgroup
H C F; satisfying
(2.3) |H| > p°
we have

pr () < p~°.

COROLLARY 2.11. Given any ¢ > 0. For any p > 3 let H, C F; be a multiplicative
subgroup of order
|Hp| = p°
then 5
{5 (mod1), h € Hy} CR/Z

1s equidistributed as p — 0.
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REMARK 2.4. This is all the more remarkable as the condition
’ H| > pl /2+e€

is a recurrent assumption in analytic number theory appearing in many contexts: it is called
the Polya-Vinogradov range.



CHAPTER 3

Growth in groups

In this chapter we introduce more sophisticated technique to identify growth for product
of subsets A, B C G in a finite group (not necessarily commutative).
We have already noted that if H C G is a subgroup

HH=H.

So H has no growth.

The converse is true:

PROPOSITION 3.1. If A C G satisfies |A.A| = |A| and e € A then A is a subgroup of G.

PROOF. Since e € A we have

Ae=ACAA
and since |A.e| = |A.A| we have A = A.A. In particular
A C H =Stabg(A) ={g € G, gA= A}

but He= H C A = A so that H = A. d

More generally we have the following proposition (left as an exercise)

PROPOSITION 3.2. Let G be a finite group, A, B C G non-empty.
Let
H = Stabg(B) = {9 € G, ¢B = B}
If |A.B| = |B| then there exists gy € G such that A C go.H and B= H.X for X C G.

We will show that a subset A exhibing a slow growth (like A®) or A®) is not much
larger than A) then A is ”close” to being a subgroup.

3.1. Approximate subgroups
DEFINITION 3.3 (Tao). Let K > 1 and G a group. A finite set A is a K-approzimate
subgroup if
(1) e A,
(2) A=A"1
(3) There exist X C A symmetric | X| < K such that

A.AC XA

REMARK 3.1. A l-approximate subgroup is a subgroup.
If G is finite any set A is a |G|-approximate subgroup. So interesting notions of approx-
imate subgroup occur when K > 1 and is small compared to |G|.

The following is obvious:

25
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LEMMA 3.4. Let A be a K approximate subgroup. We have
A™)] < K14
It is quite remarkable that there is a converse:
THEOREM 3.5. Ife€ A= A"! and
A®)| < K| A|
then A®) is a K'-approzimate subgroup with K' < 2K°.
REMARK 3.2. The important feature is that K’ is bounded polynomially in K.

REMARK 3.3. The exponent (3) is optimal and cannot be replaced by (2) excepted when
G is commutative (see below).

One general reason explaining why commutativity may play a key role is the following
situation: take A = H a subgroup and B = gH a coset; If G is commutative we have

HgH = gHH = gH

has order |H|.
On the other hand if G is not commutative then

HgH + H

excepted when g is in the normalizer of H.
The other extreme is when H N gHg~! = {e}: let us consider the multiplicities of the
elements in the double coset HgH. Suppose that we have

hlghll = h2gh/2a
we then have
ho hy = ghlyh, 'g7 = hy = hy, W) =H)

and therefore |HgH| = |H|?.
This argument show more generally that

|HgH| =|H|*/|HNgHg™"|.
A central tool in the proof of Theorem 3.5 is the notion of

DEFINITION 3.6 (Ruzsa distance). Let A, B C G be nonempty finite sets, their Ruzsa
distance is defined as

|A.B7|

VIA[ B

d(A, B) = log( )

or equivalently
|A.B™ = /|A||B|exp(d(4, B)).
This is not exactly a distance but allmost:
LEMMA 3.7. We have

d(A,B) >0, d(A,B) = d(B, A), d(A,C) < d(A, B) +d(B,C).
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PROOF. Non-negativity: since

A.B"| > max(|AL,|B]) > /[A][B]
so we have
d(A,B) >0
The symmetry follows from the fact that
[AB™Y| = |(AB))""| = [BA™Y].
For the triangle inequality, we have
d(A, B) +d(B,C) = log(|A.B~"[|B.C™"|/\/JA BPIC])
so proving that this is > d(A, C) is equivalent to showing that
|A.B7Y|B.C7| > |B||A.C7 Y.
To prove this inequality it suffice to construct an injection
AC'xB— AB ' xB.C™!
For this we choose a section of the surjective map

(a,c) € Ax C s ac™t € AC™!

ie. a map
s:u€ ACT! = s(u) = (a(u), c(u))
such that
a(u)e(u) ™! = u.
We then set

t(u,b) = (a(u)b™ be(u) ™) = (v(u), w(uw)).
This map is injective since
v(w)w(u) = a(u)b tbe(u) ™ = u, b= w(u)c(u).
O

REMARK 3.4. However the Ruzsa distance is not exactly a distance since it is often the
case that

d(A, A) = log(|A.A7|/|A]) # 0.

Moreover if A = gH for g # e and B = H then d(A, B) = 0 although A # B.
However notice A is symmetric and contain e we have

d(A,A) =log(|A.A|/|A]) =0<«= |AA| = |A| <= A A=A
so A is a subgroup.
For the proof of the theorem, we need two more results also due to Ruzsa:
LEMMA 3.8 (Controlled Growth Lemma). Suppose that e € A = A~ and let
K = |A®)|/|A|

then for any n > 3
|A™|/|Al < K™,



28 3. GROWTH IN GROUPS

PROOF. By induction: we have At = A(=1) AR and hence

(n+1) (n—1) (2)
(n=1)]| A(2)
< V2 IA\HA Lexp(d(ATD, 4) + d(A®), 4)
[AC-D[JAD)]  |AM)] AO] 1A s
A VIAR=D]A] \/JAD[A] 14| '

Here we have used that A = A~! so that
A= A7L = A(=D) g = A0,
O

EXERCISE 3.1. Under the assumptions of the Controlled Growth Lemma, prove that
for any sequence (&;)1<i<n the product set

AGiicisn — A1) ... glen)
satisfies
|AGi<isn| < K772 4.
REMARK 3.5. One cannot replace (3) by (2) and n — 2 by n — 1 in the above.
Let us take consider H and g such that ¢?> = e and
HnNgHg ' = {e}

so that |[HgH| = H? and suppose |H| can be taken arbitrary large.
Let
A=HU{g};

then A is symmetric, contain e and
A® 5 (HgugH)UH
has order 3|H| — 1 (we have HgN gH = {g}) so that
|A®)|/|A] = BIH| - 1)/(|H| + 1) < 3.
On the other hand
|A®|/|A] = |HgH|/(|H| + 1) > |H*/(|H| + 1) > |H]|/2.
This would contradict a generalization with (2) replacing (3) as soon as |H| > 18.

ExaAMPLE 3.1. For instance, one can take

H = Affy(F,) € GLo(F,), g = w = <(1) (1)) :

The final ingredient is
LEMMA 3.9 (Ruzsa Covering Lemma). Suppose that
AB| < K|4|
there exists X C B such that | X| < K and
BcC AT AX
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ProOF. Let X C B be maximal so that the Ax, x € X are disjoint.
We have
|A.X| = |A]|X]| < |[AB| < K|A4]
so that | X| < K. In addition by the maximality of X we have that for any b € B
AbNAX # 0.
In other terms for any b € B there exists a1,a2 € A and z € X such that
aib = asx.

Hence
b= al_lagx c AL AX.
O

PROOF. (of Theorem 3.5) Suppose e € A = A~'. Let H = A®). Wehavee € H = H™!

and
[AH®)| = |AD] < K?|A.
By the covering lemma there exist
XeH?
with | X| < K such that
H® c AT AX =AD X c ABX =X

(since e € A, A® c AB)),

If X is not symmetric we replace it with X U X~ whose size is bounded by 2K°. O

3.2. The commutative case

THEOREM 3.10 (Pluennecke). Let (G,+) be a commutative groupe. Suppose that
|A+ B| < K|A|
then for any m,n > 0
|mB — nB| < K™ | Al
In particular if |2A| < K|A| or |A — A| < K|A| then |[mA —nA| < K™T"|A|.
PRrROOF. (after Petridis) Let

K':= min |A/+B|/|A/|
0LAC A

We claim that for any A’ C A such that |A’ + B|/|A’| = K’ and any C' C G we have
|A+B+C|<K'|A + 0.
Let us prove the theorem assuming the claim: by induction we have for any n > 0
|A" +nB| < KA.
Now
\mB — nB| = \/|mB||nB| exp(d(mB,nB))
< V/|mB|nB|(exp(d(mB, —A") + d(nB, —A"))
We have

d(mB, —A') = log(|A' + mB|//ImBI[A7]) < log(K"™ \/[A]//[mB)
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and
d(nB,—A") = log(|A’ + nB|/\/|nB||A'|) <log(K""/|A'|/\/|nB])
we obtain
m-rn A/
|mB —nB| < K™ mmmm# < K™ Al
/ImB||nB]|

It remains to prove the claim. We proceed by induction on |C|. This is obvious if
|C| = 1 since then

|A'+B+C|=|A"+B|<K'|A'|=K'|A +C|.
Assume |C| > 2 Write C' = C’ U {c}. We have
A+B+C=(A+B+C)U(A+B+c)\(Ap.+ B+¢))
where
Be={acA, a+B+cc A +B+C'}.
We have by definition of A’,
|A .+ B| > K'|Aj
and by this lower bound an induction
|A"+B+C|=|A"+B+C'|+|A+B+c|—|Ap .+ B+
=|A"+B+C'|+|A"+ B| - |Ag . + B
< KA+ + KA = K| A
= K'(JA"+ C'| + |A .| = |4 ])

el

We have
A4+C=A+C"U{(A +c)\(A, +0))
where
A,={ac A atce A +C}c Ay,
and
A+ Cl = A"+ C'|+ |4 + | — AL+ ¢
=[A"+ '+ |4 - | Al
> |A'+ O+ A - |Ap -
Hence

A"+ B+ C| < K'(|JA + C'| + 4| — |A.]) < K'|A' + C|.

COROLLARY 3.11. Suppose that
A A< K|A]
then for any m,n > 0 there exists X C G with | X| < K™ "+ such that
mA—-nACA-A+X.
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PROOF. We have by Pluennecke formula
|A+mA —nA| < K™ 4]

so that by Ruzsa covering Lemma there exists X C mA — nA with |X| < K™ such
that
mA—-—nACA—-A+X.






CHAPTER 4

Growth vs Energy

DEFINITION 4.1. Let G be a group (not necessarily commutative) and A, B C G non-
empty finite subsets. The (additive/multiplicative) energy

E(A, B) = |{(a1,b1,a2,bg) € Ax BxAx B), arb; = a2b2}|.
We set E(A) = E(A, A) and the normalized energy is defined as

e )= E(A,B)
T (lAlBlE

4.1. Basic properties of the energy
4.1.1. Upper/Lower bounds.

E(A, B) < min(|A||B]*,|A]%|B]) < VIA[BPIAP[B| = (|4]|B)**.

(indeed once we choose 3 amongst (ay, by, ag, by) the fourth is determined). Notice also that
by considering the diagonal elements (a, b, a,b) one has

E(A,B) > |A[|B|, e > 1/V/|Al|B|.
In other terms we have
e(A, B) € [1/v/IATIB 1].
4.1.2. Energy and product sets. We also recall that
E(A,B) = (ras(9))? raslg) ={(a,b) € Ax B, ab=g}|
geG

so that by CS we have

(141IB)? = (Q_ran@)?= () lanl@ras9)’ < Y lasle) Y ras()

geqG geA.B geA.B geA.B

Or in other terms

2 2
Ap| > APIBE _ VIATB]

E(A, B) - e(A,B)
which we rewrite

Al B : |A.B]
or equivalently

4.1 e(A, B) > YT 2T S (A, B) !
(4.1) (4.8)> ¥ g > elAB)

In particular pairs of subsets with small energy exhibit growth.

33
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EXERCISE 4.1. Prove that if e(A, B) > 1/K, one has
K7?|Al < |B| < K*|A]
and that if e(A, A) < 1/K then
AP > KA.
4.1.3. Energy and symmetry. We don’t have
E(A,B) = FE(B,A)

in general, but since
a1by = ashy <— b;lagl = bl_lal_1

We have
E(A,B)=E(B™ ' A™).
Also since
-1 _ -1 -1, _ -1
we have

E(A,A Y =E(A A).

4.2. The Balog-Szemeredi-Gowers theorem(s)

It says that subsets with big energy are very structured. To get an idea let us look at
the maximal case.

PROPOSITION 4.2. Suppose that e(A, B) = 1, there exists a subgroup H C G and a,b € G
such that

A=aH, B=Hb
ProOF. If ¢(A, B) = 1 we have
min(|A[|BJ, |A]*|B|) = (|A||B])*?

so |A| = |B|. Moreover we also have E(A, B) = |A||B|%. Since E(A, B) count the number
of quadruples (a1, by, ag, by) satisfying

a)p = angbl_l
we see that any such quadruple is of the shape (azbzbl_l, b1, az,by). In particular for any
(az,b1,b2) € A x B x B we have

agbzbl_l € A.
In other terms

B.B™!' € H = Stabg.(A) = {h € G, Ah = A}.

In particular |A| = |B| < |H|. On the other hand we have |H| < |A] since aH C A and
|A| = |H| and A = aH. Moreover for any b € B we have Bb=! C H or B C Hb which
implies B = Hb. ]

There is an approximate subgroup analog of this result: it was first proven by Balog-
Szemeredi and improved by Gowers in the commutative setting and the present non-
commutative version is due to Tao:
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THEOREM 4.3 (Balog-Szemeredi-Gowers, approximate group version). There exists C,d >
1 such that if A, B C G finite with e(A, B) > 1/K for some K > 1 then there ezist a,b € G,
a K'-approzimate subgroup H with K' < CK?, such that
|H| < K'|A|, |A|< K'|AnaH|, |B| < K'|BnN Hb|.
In particular setting
A =AnaH, B =BNbH
we have
|A"B'| < |H| < K'|A] < |A[|B.

The approximate group version will be deduced from the following set-theoretic version:

THEOREM 4.4 (Balog-Szemeredi-Gowers, set-theoretic version). Given K > 1 and A, B C
G finite with e(A,B) > 1/K , there exist A” C A, B" C B such that
| A" > |A|/K, |B"| > |B|/K
and
|A’”.Bm’ < K8|A|1/2|B|1/2.

Here the implicit constant are absolute and explicitable.

To pass from the set-theoretic version to the approximate group version we will use the
following

THEOREM 4.5 (Approximate subgroup recognition criterion). There exists C,d > 1 such

that if A, B C G satisfy
|A.B| < K|A]'Y?|B|'?
for some K > 1 then there exist a,b € G, a K'-approzimate subgroup H with K' < CK?,
such that
|H| < K'|A|, |A| < K'|AnaH|, |B| < K'|BnN Hb|.
In particular setting
A'=AnaH, B = BnNHb
we have
|A".B'| < |H| < K'|A] < K'K+/|A||B|.
First we will slightly change the language.

4.2.1. Haar measure notation. We denote by p : F(G; C) — C the couting/uniform/Haar
measure (when G is equipped with the discrete topology): the measure which gives mass 1
to any g € G . In other terms

n({g}) =1, u(4) = [A]
and
uh)= [ Flag=3 10
G geG
so that
1(A) = p(1a).
This measure is up to scaling the unique left and right-invariant measure: if we note

g-f <= f(hg), fig:h v f(gh)
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the left and right translation actions, we have by a change of variable

p(f) = p(g-f) = u(fig)-

It is also invariant under inversion g — ¢~ !:

(AT = w(A), p(f) = w(f)
where
flg)=flg™h).

This measure induces L' and L? norms on F(G;C)

1£1le = w(FDs 1£15 = w1 £17)-
We have
£l 1 f 12 < I flloort(G).

Notice that the L?-norm comes from the Hermitian product
i, f2) o= plfi o) = /G f1(9)Fal9)dg = S Fi(0)alo):
g

(non-degenerate because p(g) > 0 for every g € G) and we have the CS inequality

u(fr-f2) P = (1, PP < IAIBIAIE = allf*) k() f2l)-

Proor. Easy Exercise. ([
The (left-invariant) Ruzsa distance is given by
p(A.B71)
d(A, B) =1 .
A I EITEY

It has the same properties as in the commutative case (same proofs) and satisfies for any
geG
d(gA, gB) = d(A, B) = d(Ag, Bg).

4.2.2. Multiplicative energy and convolution. Given two functions f1, fo € F(G;C)
their convolution is defined as

Axfalg)= > filg)fa(g)-
9192=9
REMARK 4.1. By comparison with §2.2.1 this definition of the convolution differs by a
factor u(G)Y/? = |G|Y/2.
PROPOSITION 4.6. The convolution operation x is
(1) Bilinear
(2) Associative: (fi1x fa)* f3 = f1* (fo* f3)
(3) The Dirac function 0. is a neutral element:
dexf=fxbe=F.
(4) % is not commutative in general but we have
fix fale) = u(fifo) = u(fofr) = fox file)
with )
frgm flg™h).
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More generally

foxfi=fixf
In particular multiplicative convolution give F(G;C) the structure of noncommutative
but associative unital algebra.

We then have as in the commutative case

ra,8(9) =1a*1p(9)

and
W(la*1p) = p(rap) = w(A)u(B), B(A,B) = u(|1ax15]).
Since
0 <ra,p(9) < min(u(A), u(B))
we have

(A, B) < min(u(A), su(B))u(1a % 1) < u(A)*u(B)>
and we retrieve the normalized energy
E(A, B)

H(APPu(B) © [1/p(A) 2 u(B)2,1].

e(A,B) =

4.3. The approximate subgroup recognition criterion
We will need the following
LEMMA 4.7. Let K > 1 and A C G such that
p(AA™Y) < Kpu(A).
There exists a symmetric set e € S C G such that
n(S) = u(A) /2K
and for anyn > 1
(4.2) (ASTATY < KL (A).
Let us first show how this lemma allows to prove Theorem 4.5.
4.3.1. Proof of Theorem 4.5. The main assumption of Theorem 4.5 states that
d(A,B™") < log K.
By the triangle inequality we have
d(A,A) < d(A,B™Y) +d(B™1, A) = 2d(A, B™Y) < log(K?).
We have therefore
P(AA™Y) < K2u(A).
By Lemma 4.7 there exist a symmetric set .S such that
p(S) = u(A)/2K?
and
HASPATY) < 82K p(A) < KM pu(A).
In particular
u(S), w(AS), u(8%) < KMpu(A) < K'%u(S).
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It follows that H = S3 is a K9M-approximate subgroup containing S. In particular
p(S.H) < KOWpu(H) < KOWp(A) < KOWp(8)2u(H)?,

This implies that d(S,H) = O(1 + log K) hence d(A,H) = O(1 + log K). By Ruzsa
covering Lemma there exists X such that |X| < K91 such that A ¢ X.H.H and X' with
|X'| < KOO with A ¢ X'.H. We also have

dB™' H) < 1+logK
and there exists Y’ with |Y’| < KO with B~! ¢ Y’.H. Taking
Z=Xxuy !

we have
ACZH, BCHZ

and by the pigeonhole principle we can find a,b € Z such that
ANaH, BNHDb

have the required properties.

O
4.3.2. Proof of Lemma 4.7. We will construct S from s € G such that A N As is
large.
We have

w(ANAs) = /G 1a(g)1a(gs Vdg = 141 x 1 4(s).

In particular
| ntan agydg = way®
We also have (use (4.1))
@3) [ wanagrdg = [ (s 1aP o)y = Bla A > 0L
G G

Let
S:={seG, pn(ANAg) > nu(A)/2K}.
The set S is symmetric (u(AN Ag™!) = u((AN Ag)g!) = u(AN Ag)) and contains e.
Moreover we have

/ u(AN Ag)dg <
G-S

and using (4.3) we find

HA)
2K

/ (AN Ag)dg <
G

pu(A)?
oK

/ n(AN Ag)’dg >
S
and since (AN Ag) < u(A) we have

The inequality (4.2) follows from evaluating

IA,S,n = / 1AS"A—1(90"'Qn)dgo-~-dgn
(AA-1)n+1
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We have
IA,S,n < ,u,(AA_l)n—H < Kn-i—l'u/(A)n%-l.

On the other hand changing variable by putting

9=2490"""9n—19n;

we have
Lasn =/ (/ Laa-1(9n21 -+ 90 '9)dgo - - - dgn—1)dy.
AsnA-1 J(aa-1yn
Given any g € AS"A~! we write it as

g = apsy - Spln+1-

Making the change of variable (g;)o<i<n—1 <> (ai)1<i<n With

-1 -1 -1
go = apaq , g1 = a181G9 ,*** ,Gn—1 = An—1S5n—1Qy
we have
-1 -1 _ -1
In—1"""90 9 = AnSnQy_q

and

/ Laa1(g, - 951 9)dgo - - dgn—1
(Aa-1yn

n—1

- / st (9501 959) [T 1aac (96)dao - dgn1
" i=0

n
:/ 1AA—1(aoa,1_1)HIAA—l(aisia;Lll)dal---dan.
" i=1

If a1,-- ,a, € A and a151,---ans, € A the integrant equals 1 so the integral is lower
bounded by

/G [[1a(@)1a(aisi)das - - dan = [ (AN Asi) > (u(A)/2K)"

"i=1 i=1
so that
K™ (A" > Lasp > (u(A)/2K)" p(AS" AT,
Simplify we obtain
W(ASTATY) < 2 KL A)

4.4. Proof of the BSG Theorem (set-theoretic version)

We now prove a set theoretic version:
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4.4.1. First steps. We have by assumption

A 3/2 B 3/2
/(1A*1B(g))2d9 > M( ) Ig( ) )
G
Let / ,
AVV/2,,(B)/2
E:={geG, 1ax1p(g) > A 2;;( )
We have
A2, B)/2
[ by < [ 1asino)dg < [ 1ax16(9)ds = u(A)u(B)
E E G
that is
(4.4) u(E) < 2K u(A)2(B)V2
On the other hand we have
A)2u(B) H(AY (B
2 < 1 / _
| axtsPgag < B [ 14 15)0)dg S
and therefore
APPWB)Y? pw(APPu(B)Y? (AP u(B)P?
2 S 1( _ _
[ a0 0)dg > M2 S o

In particular E is non empty. Moreover since

1a* 15(g) < min(u(A), u(B)) < pu(A)*u(B)"?

we have
3/2 3/2
H(A) 2 (B) V2 / 14 15(g)dg > / (L % 15)2(g)dg > M 1B
. (A)u(B)
u(A)u(B
> M
/ElA*lB(g)dg/ e

We can rewrite this inequality
1

/A(/B 1E(ab)db)da>A(/B Scdb)da
Let

(4.5) A ={ac A, / Li(ab)db > p(B)/AK Y.
B

[ ]

/ (/ 1g(ab)db)da < p(A)u(B)/AK
A-A" JB

Writing again
and using that

we obtain

(4.6) / ( /B 1p(ab)db)da > p(A)u(B)/AK
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and since 1g(ab) < 1 we have

u(ANu(B) = p(A)u(B)/AK
W(A) > u(A)/AK.
Let
R i= u(A)/u(4) € [1, 4K).
From (4.4), we have
(4.7) u(E) < 2K RV (A2 u(B)?
and (4.6) becomes

pou({(ab) € &' x B, abe BY) > on(A)u(B).
We will prove below the following
LEMMA 4.8 (weak BSG). Let K, K' > 1 and A, B, E C G such that
WE) < K'n(A)2u(B)'?
and
p® p({(a,b) € Ax B, abe B}) > u(A)u(B)
then for any € € (0,1), there exists A’ C A and D C A.A~! such that

pA) ) o 2K

A > =/~ <
p(AY) 5 M .

1(A)

and
p@p({(a,d)e A x A, ad ' €D}) = (1—e)uA)

Using this lemma with

e =1/32K, (A,B,E) <+ (A, B,E) and (K, K') ++ (4K/R,2KR"?),

we find that there exists A” € A’ C A and D such that
uw(A”) > w(ANR/K = p(A)/K,

(4.8) wD) < K°u(A')/R < K°u(A")/R* < K°pu(A").

p@p({(a,d)e A" x A", a.d”" € D}) = (1 —1/32K)u(A")?

which we can rewrite this using the complement set as
/ wa € A", a ¢ D.a')da < u(A”)?/32K.

Let
A/// — {a c A”, ,U/(a/, c A”, a g D.a,) < /,L(A”)/16K}
For a € A” — A" we have

pla € A", a¢g D.a') > u(A”) /16K

41
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and therefore We have

IU(A”) " " / / " /
— (A" — A" a €A”, aé D.a)da
165 M )< ¢ D.a)
A//)?
< / " o < U(
\/H,u(a € A", a¢D.d)da < K
so that
/J,(A” _ A///) < /J,(A//)/2
and

u(A") = uw(A") /2> u(A)/K.
Since A” C A" we have (see (4.5)) for any a € A”

/ 1p(ab)db > p(B)/AK.
B
Hence (by Fubini)

/B(/U 1g(ab)da)db = /”(/B 1g(ab)db)da > %

A//
B" ={be B, / 1 p(ab)da > A

Let

" v
Considering again the complement B — B"” have

(A" ) u(B)
1
L B/// /// E ab da 8K

/ A / 1p(ab)da)db > % |

In particular B” is non empty and since [,, 1g(ab)da < p(A”) we have

so that

" ILL(B)
wB”) = o5
We have proven that
p(A") > u(A)/K, p(B") > 1B

It remains to give an upper bound for u(A”.B") (and to prove Lemma 4.8).

Given ¢ € A”.B" we have ¢ = a.b with (a,b) € A” x B"”. By the definition of A" we
have for a € A"

u({a € A", a(a)™ ¢ DY) < u(A") /16K
so that
p({ad € A", a(a')™' € D}) = u(A")(1 — 1/16K).

By the definition of B”, we have for b € B"”

A//
/ 1g(a'b)dd = p({a' € A', d'be E}) > MéK)'
Hence taking the intersection of the two sets above, we have that for (a,b) € A” x B"
1 1
/ " n—1 / _ _ " — "
p({a’ € A% a(@)™" € D, ab € E}) > (g7 +1 = 70z — Dul(AY) = o=n(A).
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Making the change of variable
z=ab, cx” ' =a(ad)!

we have for any ¢ € A”.B"”

1
1 > "
/GlD(CCC )1E(£C)d37 = 1D * 1E(C) = —16KM(A )

and .
1 1 d > A// A/”.B”, .

/1:4/// BIII D * E(C) c 16KM( ) ( )

Since
/ 1px1g(c)de < / 1px1g(c)dc = u(D)p(E)
A/// B/ll G
we obtain
1
Te A (A" B") < u(D)p(B) < K p(A")K pu(A) 2 u(B)2,

Hence

u(A”/.B”/) < KSM(A)I/QN(B)1/2.

4.4.2. Proof of Lemma 4.8. It remain to prove
LEMMA (weak BSG). Let K,K' > 1 and A, B,E C G such that
w(B) < K'u(A)Pu(B)'?

and
pou({(a,b) € Ax B, abe E}) > u(A)u(B)

then for any e € (0,1), there exists A’ C A and D C A.A™' such that

2
,u(A') > M u(D) < M

5K . p(A)

and
p@ p({(a,a) e A x A, a.d ' e D}) = (1 —e)u(A)2

Proor. We have

/B ( /A 1(ab)da)db > %H(A)M(B).

( /B ( /A 1(ab)da)db)? < u(B) /B ( /A 1 (ab)da)?db

/B ( /A 1 o(ab)da)2db > %M(A)QM(B).

By CS we have

so that

By Fubini we have
1
/ /(/ 1g(ab)1p(a'b)db)dada’ > —; u(A)*u(B).
AJa K
Let Q. € A x A be the set of (a,a’) € A x A such that

15(ab)1g(a'b)db < (B).

S

g
el
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Equivalently for (a,d’) € Q. we have

1

1 /
- P —
E/ 1g(ab)1g(a’b)db > 5 2,u(B)

hence

/Am(l - élgs)(/B 1p(ab)1 (a'b)db)dada’ > %M(A)ZN(B).

By Fubini we have

/ (1— 210, / 1 p(ab)1 (a'b)db)dadd’
AxA B

€
- / ( / (1 - 210 1p(ab)1 p(a'b)dadd’)db > —— u(A)*u(B)
B JAxA €

and there exists b € B such that

/AxA(l - élgs(a, a'))1g(ab)1g(a’b)dada’ > %M(A)z.
This b being now fixed, the above integral is supported in A’ x A’ where

A=A, ={ac A, abe E}

and the integrant is bounded by 1. We have therefore

pAY >

Z W’M(A)Q'

Moreover we also have

1

- / dada’ < / dadad’

€ JA'xA'NQ. Al A
or

u(A x AN Q) < ep(A)2.
Let
D = {a(d)7}, (a,d') € A" x A\Q.}.

We have

p@p({(a,d) e A x A, ad ' €D}) =peu(A x A\Q) > (1—e)u(A)2

It remain to upper bound u(D).
Given d € D; write
d=a(d)™, (a,d') € A" x A\Q..
Since (a,a’) & Q. we have
€
1g(ab)1g(a’b)db > ——u(B).
[ 1s@)s@bas > ()
hence writing e = a’b and ab = a(a’)"'e = de we have
/ 1 o(de)1 p(e)de > / 1p(ab)Lp(ab)db > —= ju(B)
a B 2K
and integrating over d € D we obtain

/D/GlE(de)lE(e)dedd> Q%M(B)M(D)
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and

/ / 1 p(de)1 p(e)dedd < / / 15(de)1 ple)dedd < pu(E)2.
DJG GJG
We have therefore -
2
WE)” = 5 mB)u(D)
Which gives
2(KK')?

wD) < ——

1(A).
d
The proof of the BSG theorem, approximate group version, follow from the set theoretic
version and by applying the Approximate subgroup recognition criterion to A”, B”" which
satisfy

|AW.B”/| < K8|A|1/2|B|1/2 < K9|A”/|1/2|Bm|1/2.






CHAPTER 5

The Sum-Product Theorem

The sum-product theorem discovered by Bourgain, Katz and Tao indeed shows that the
combitation of addition and multiplication indeed conduct to growth:

THEOREM 5.1 (Sum-Product theorem). For any § > 0 there exists C,n > 0 such that
for any prime p and any subset A C F) satisfying

C<|Al<p?
one has then

A+ A+ |AA| > A1

REMARK 5.1. The initial version of the Sum-Product theorem due to Bourgain, Katz
and Tao included the additional assumption |A| > p°. It was weakened to |A| > C by
Bourgain, Glibichuck and Konyagin. Here we will follow a very compact proof due to Ben
Green of the initial version.

REMARK 5.2. Here and after d(A, B) = d4 (A, B) and e(A, B) = ey (A, B) denote the
Ruzsa distance and the additive energy relative to the addition in IF,,. Not the multiplication
in FX.

P

5.1. Rough notations and Ruzsa calculus

Given K > 2 a parameter, X,Y A, B C (R,+) finite subsets of an abelian group. We

will write

X=<kY, Y>rgY
if there exists a (absolute) constant ¢ > 0 such that

X < K.
We will write X ~g Y if
X =2xY 2k X
and we will write
A~ B for |A— B| <k (|A||B|)"?

or equivalently

d(A,B) = O(log K).
In practice the values of the implicit constants ¢ are allowed to vary from line to line. If the

”roughness parameter” K is understood we will omit it from the notation.
With these notations we have the following;:

A~B=>ec(A,~-B)~1.

|A = B| < KvVI]A||B]

47
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we have by CS

VAl B|

K‘lg‘—g A,-B)< 1.

g <D

Conversely the BSG theorem (set-theoretic version) admits the following immediate Corol-
lary expressed in rough notations:

THEOREM 5.2 (BSG). Given K > 2. Suppose that
e(A,B) > 1/K
then there exists A’ C A, B’ C B such that
|A'| =~ |A|, |B'|~|B|, A~ B
Here are some general results in additive combinatorics expressions in rough notations:
THEOREM 5.3 (Ruzsa calculus). Let A, B,C C (R,+). Set
6(A) = 04(A) == |A+ Al/|A]

for the doubling constant of A. The following hold:

(1) Suppose that A~ B, B ~ C then A~ C.
(2) Suppose that A ~ B then

(5.1) A~ —B,|A|l~ |B|, 6(A)=§(B) =~ 1.
(3) Suppose that A ~ B ~ C then
(5.2) A~ B+C.
(4) Suppose that A ~ B, 6(C) ~ 1 and there ezists v € R such that
AN (z+ C)| = |A| = |B]
then
A~ B~C.
(5) Suppose that 6(A),d(B) ~ 1 and there exists x € R such that
AN (z+ C)| = |A| = |B]
then A ~ B.

For the proof the following proposition will be useful:

PROPOSITION 5.4 (Second Ruzsa inequality). Let (G,+) be a commutative group and
A, B C G. We have

d(A,—B) < 3d(A, B).
PROOF. Recall that
> raslg)=> ra-slg) =|AlB|
geG geqG
and also that
a+b=d +b<—=a—-b=d —-b
so that

E(Av B) = Z TA,B(g)Q = ZTA,—B(Q)Q = E(A7 _B)‘

geG geG
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By CS we have

(AIIB))* <|A=B| Y ra-l9)?=[A-Bl > ras(g)?
geEA—-B geEA+B
This implies that there exists g € A + B such that
Al B

> .
r ,B(g)/ |A—B|

Suppose the contrary: we would have

(A[IB)?<|A=B| Y ra-pl9’=|A-B| > ras(g)’
geEA-B geEA+B

AllB
<ja- BB s~ ) =

|A B B| gEA+DB

For g as above, let
Sg={(a,b) e Ax B, a+b=g}

so that
|A|| B

|A—-B|
Choose a section s = (s4,sp) (say) of the map

(a,b)) e AXxBr—a+be A+ B

Syl =

and consider the map
Sy x(A+B)— (A-B)x(A-DB)
given by
(a,b,2) = (a — sp(x),sa(z) —b).
This map is injective: suppose that
a—sp(r)=d —sp(a’), sa(z) —b=sa(2") =¥V
we have
a—sp(x) — (sa(x) —b) = a’ — sp(a’) — (sa(z)) = V)
and since a + b = da’ + b = g we obtain
sa(x) +sp(x) =2 =sa(2") + sp(a’) =2’

and then since s4(z) = sa(2’), sp(x) = sp(z’) we have (a,b) = (', V).
It follows from the injectivity that

[SyllA+ B| < |A - BJ?

and therefore

|A|l|B] 2

A B||A—|-B| < |A - B
so that

AvBl_ A-B|

(JA|[B)Y/2 = (|A]|B|)1/?

(|AllB])>.

49
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PROOF. (of Thm 5.3) The first property is Ruzsa triangle inequality.
For the second we have

|Al,|B| < |A - B| < (|A]|B|)"/?

which gives |A| ~ |B|. The fact that A ~ —B comes from Ruzsa second inequality. For the
third we have
d(A,—A) <d(A,B)+d(B,—A) = O(log K)

which gives
or

and likewise for B.
We leave the rest as an exercise. O

2. Warm-up: growth in [, under addition and multiplication

We recall the following Lemma which we have proven in the beginning of this course
using the probabilistic method.

LEMMA 5.5. Given |A| C F, non-empty; there is § € F) such that
|A+EA| > mln(lAIQ,P)
THEOREM 5.6 (Glibichuck-Konyagin). Given A C F,. We have
34 —340)] > mln(|A|2,p)

For the proof and after, the following notation will be very useful. Given A C F,, we set

A — A as
Q[A] = 1A {ag— ” a; € A, ag # as}.
(if A has <1 element, we set Q[A] = ()

PrOOF. Observe that given § € F); we have [A+£A| = |A|? unless ¢ € Q[A] (since then

a1 +&ay = az + §ag with (a1, a4) # (a2, a3)).
If Q[A] # IF,, there exists { = =% ¢ Q[A] such that 1 + ¢ ¢ Q[A] and therefore

az—ay
A+ (1+&A| = AP
We have
(ag — ag)(A+ (1 +€)A) C (ag — as)A+ (a1 — a3z + ag — ag)A € 342 —34@
and
134 — 34| > (4.
If Q[A] = F) there is { = =23 such that
|A+EA| > mln(|A|2 p)

and now we have
(ag — ag)(A+ (1 + E)A) c 24?) —24?) c 342 —343)
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where the last inclusion follows from the identity
b+a— (' 4+a)=b-1V
applied to b, b € 2A@ and a € A. O
COROLLARY 5.7. Given 6 € (0,1) and |A| = p°, there exists k = k(8), 1 = 1(6) > 1 such

that
kAD —1AD =T,

In particular if A is a subgroup of F; we have

kA — kA =T,.

PROOF. Iterating the above process k times we find that
1
140.3.4C0 — 413.4CD| > 3 min(|] A%, p)
so for I > 1/20 we have
148.3.4C0 — 413.4CD| > p/2.
Since p is odd we have [41.3.A®) — 413, A@D| > (p 4 1)/2. In particular for any ¢t € F, we
have
t—(48.3.4C%0 — 413 ACDY  (41.3.4C) — 41.3.4C0) £ ¢

so that

F, = (41.3.4%) — 413 AP0) 4 (41.3.4%) — 413 40) = 41640 — 416,42,

DEFINITION 5.8. Given K > 2 and A C F), we define
Algp(A):={be IF;, |A+bA| < K|Al}.

PROPOSITION 5.9. There is an absolute constant ¢ > 0 such that

(1) be Algp(A) = b~ € Algy(A).

(2) be Algi(A) = —b € Algy(A).

(3) bt/ € Algre(A), b# b = b+ V € Algg.(A).

(4) b0 € Algi(A), = b € Algg.(A).
PRrOOF. Exercise using Ruzsa calculus. g
From this we deduce the following consequence of Corollary 5.7

COROLLARY 5.10. Given 0 € (0,1/2), there exists n = ns > 0 such that for A,B C F),
with
P’ <|A| <P, B =)
There exists b € B satisfying
|A+DbA| > |AIM.
PRroOOF. Given K > 2 and assume that
Vb € B, |A+bA| < K|A|

that is B C Algg(A).
By Corollary 5.7, there exist k,l > 1 (depending on ¢) such that

kBY — kBO =T,
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By proposition 5.9 applied several times, there exists ¢ = ¢(d) such that
(kBYO — B\ {0} C Algjec(A)
and for any £ € F)' we have
|A+EA| < KA
On the other hand, by Lemma 5.5 there exists £ € F’ such that

A+ 4] > Jmin(AP.p) > 1A = LA,

2
and we obtain

1 _1
K> o |Aj,
1
In particular for K = ﬁ|A| <(1=9) there exists b € B such that

|A+bA| > 41%|A|1+7c<1i5>.

5.3. The BBSG theorem
The key ingredient is the following version of the BSG Theorem due to Bourgain:

PROPOSITION 5.11 (Multiplicative BBSG). Given K > 2 and A C F,, B C IF; such
that
Vb e B, e(A,bA) > 1/K.
There exists A’ C A, by C B’ C B satisfying
|A'| = |Al, |B| = |B]
and such that
Vb e B, bA' ~ byA'.

PROOF. By the BSG, for any b € B there exists A}, Aj C A such that |A}| ~ |A}| ~ |A]
and A} ~ bA} (where the implicit exponents of K are all independant of b). We would like
the A}, A} to not depend on b up to restricting to the b in a sufficiently large subset of B.

We will use the following

LEMMA 5.12. Let 6 € (0,1), S a finite set and S, C S, n < N be subsets of S such that
|Sn| = 61S].

There exists ng such that
1Sy N Su| = 6%
for at least [62N/2] n’s.

Proor. We have

DY 1s.(s) = d|SIN

n<N s€S
and by CS

52|S|2N?
D O 1s,(s)1s,(s) = Ll — 55| N2,
s€ES 1,j ZSES
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Hence

DD 180N S| = 8%IS|IN?.

n n'

In particular there exists ng such that

> 8o N Su| = 6%|S|N.
n

Consider the set N of n’s such that

5218
|Sne N S| = |2 |
We have
2
> [Snp N Sl < %N
ngNs
and therefore
52
> [Sny N Sl > LS’N.
nGNg
Since |Sp, NSy| < |S| we conclude that
52

We apply this Lemma to the family of subsets
Sp,=A,x A cS=AxA beB

with 6 = K¢ for a suitable absolute constant ¢ > 0. There exists by € B’ C B with
|B'| ~ |B| and such that

Vb e B',|(A, x Ay) N (A, x Ay)| =~ |A x A]
and therefore
| A N Apy| = [Ay 0 Ay | ~ Al
Since for all b € B’ we have
(5.3) Ay~ A AL~ by AL
and in particular by (5.1) from Ruzsa calculus we have
0(Ap, ), 0(Ay,), 0(Ay), 6(Ap) ~ 1.

It then follows from Thm 5.3 (5) that

Ay~ Ay, AY ~ AL
combining this with (5.3) we see that

Vb e B', byAy, ~ boAy ~ bobAj = bbo Ay, ~ bAy,

and we take A" = Ay . O
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COROLLARY 5.13. Given 6 € (0,1/2), there exists n = n5 > 0 such that for A C F,, B C
Fy with
P’ <|Al<p' Bl 2y
There exists b € B satisfying
e(A,bA) < |A|TM.

PrOOF. Let K = |A|" for n > 0 to be chosen sufficiently small (in terms of §) and
assume that for all b € B we have

e(A,bA) > 1/K.
In particular for any b € B we have
|A+ bA|
A

By the BBSG theorem there exists A" C A, by € B’ C B satisfying |A'| = |A|, |B'| = |B|
and

(5.4) <K = |AP.

Vb e B, boA ~ bA’.

The conditions |A’| ~ |A|, |B'| ~ |B| say that there exists an absolute constant ¢ > 0 such
that

A > [A['"=", |B'| > |B|A~.
In particular we have

pé—(l—é)cn < ’All—cn < |AI‘ < ’A‘ < p1—5 pé—(l—é)cn < ‘B"

Take n € (0, 2%) so that
P <A <A, P < B,
By the Corollary 5.10 applied to " (4, B,d)” = (A’, (bo) "' B’,§/2), there exists n/ = /() €
(0,1) and b € B’ such that
‘A, + bA/‘ > |A’]1+77’ > ‘A‘(H'??')(l_cn).
Suppose that 7 is chosen so that
(5.5) ‘A|(1+n’)(1—cn) > IA‘1+277
We have
A+ bA| > | A"+ bA'| > A1+

and we conclude that A+ bAl
+

> A
|A|

which is a contradiction with (5.4).
Let us see that we can pick n with this property: We have
lim(1+7)(1—cn)—(1+2n) =7 >0
n—0

so there exists 19 = no(c,n’) = no(c,0) > 0 such that for n € (0,70] we have (5.5). We then
take

. 5
7 = min(no, 2—6)-
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5.4. Proof of the sum-product Theorem

Let K = |A|" for n > 0 to be chosen sufficiently small depending on §.
We assume that
|[A+ Al |A.A| < K|A|.
In particular this means that a lot of the translates
bA, be A

have a rather large intersection.
Indeed by Lemma 5.12 (applied to S = A.A and the sets bA, b € A — {0}) there exists
bp € B C A — {0} such that
|B| > |A]/K*
and
Vb € B, |bgANbA| > |A|/K*.
We assume that n > 0 is chosen sufficiently small (depending only on §) so that
|Al/K? = |A]'"72 > p°2,

For any b € B let
Ap:=AN(b/by)A.

We have
[Ap| = |A]
and since
|Ap + Ap| < JA+ Al K< K|A] <Ay
we have

6(Ap) ~ 1
and therefore
e(Ap, Ap) =~ 1.
Since Ay C A we have
E(Ay, Ay) _ E(AA)  E(AA)
AP T AP T (A4
In other terms there exists an absolute constant ¢ > 0 such that for all b € B
e(A, (b/bo)A) > K¢ = |A]n.
On the other hand by Corollary 5.13 applied to (A, (1/by)B) using that
|Al,|B| = p?

1~ e(Ayp, Ap) =

= G(A, Ab).

there exists b € B such that

e(A, (b/bo)A) <p~"
where 7’ depends on ¢. In particular if we choose 1 such that e¢n < 1//2 we obtain a
contradiction.






CHAPTER 6

Growth in SLy(F,)

Let
SLy(F,) = {(Z Z) € My(Fp), ad — bc =1}
be the special linear group. It has order

| SLa(Fyp)| = p(p* — 1) =p° —p
(more generally for k a finite field | SLa(k)| = |k|(|k|> — 1)).

THEOREM 6.1 (Product Theorem for SLy(F,); Helfgott version). There exists k,6 > 0
such that for any p and any subset A C SLo(IF)) generating SLa(Fp) as a group, one of the
following holds

|AG)| > A1 or (AU AT U {Tdo})®) = SLy(F,).
This will be a consequence of the following:

THEOREM 6.2 (Product Theorem for SLy(F),); approximate subgroup version). Let K >
2, there exists an absolute constant C > 0 such that given any finite field k and any K-
approximate subgroup A C G = SLa(k) generating G, one has either

(1) [A] < K€,
(2) |A] > |GIK~=€.

We leave the proof of the implication
Thm 6.2 = Thm 6.1
as an exercise but this still require a ”finisher” due to Gowers.

THEOREM 6.3. There exists an absolute constant § > 0 such that for any subsets
A, B,C C SLy(F,) such that

|A||B|C| > | SLa(Fp)[>~*

then

(6.1) A.B.C = SLy(F)).
In particular if

|A| > | SLa(F,) [/
then
AB) = SLy(F,).
REMARK 6.1. As we will see, for p large enough one can take any § € (0,1/3).

57
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6.1. A spectral gap property for SLy(F,)

The proof goes via harmonic analysis on the group G = SLy(F,) which is recalled in
Appendix 7.5.
Consider the convolution

f=laxlpxlo:igr Y > L
abc=g

We need to show that if |A.B.C| is large enough then
VgeG, f(g)>0

~1 (which has the same size as C) it is sufficient to show

In fact, up to replacing C by Cg
that
flea) > 0.

For this we decompose f using non-abelian Fourier theory.
We have the Fourier decomposition (7.18)

Zdtr

7r€Irr

where

m(f) v € Ve Y f(B)m(h)v € V.
heG
The contribution of the trivial representation 7 : G +— 1 is

[AllBlIC]|
f(h 1= :
€] f; I,;{a;h T

We now bound the contribution of the non-trivial irreducible representations © # my. We
have

fh)y= > 1=(la*1p)*1lc(h)
abc=h
and the contribution of 7 can be bounded using (7.19)

dr . dr
@Kﬂ(lA)W(lB)m(lc))Hs! < @Hﬂ(lA)HHsHﬂ(lB)HHSHW(lc)HHs
on using the CS inequality, the sub-multiplicativity of the HS-norm,
lpodllus < llelluslvlus

and
Im(o)llas = llm(1c)llms-
By Parseval we have

Al =) [La(h)* = | | Y. doln’(L)llhs > dallm(La)lEs

heG ' €lrr(G)

so that
AllG Al|lG
el < (20 < (JAICL v,

Mily/ £y, dr
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We have therefore

S AlBliel 1 |AllG]

fleg) = )2 Y dalln(1p)l|mslin(1c) | as-

TH#TQ

‘G| |G| min’lr’;é'/ro d7T
By CS and Parseval we have

Y delr(@p)llaslin(le)lns < (Y dellm(lp)liFe) /(D dallm(lo)llis)

T#T0 TH#TQ TH#TQ

< (IGlIBN*(Glion?

wnd AIBIC] |AlIBICI(G]
flee) > ~ /2
|G| ming/ 4z, dr
which is > 0 as long as
P
AlIBIIC] > —

ming 4z, dr ’
A remarkable theorem of Frobenius states that SLy(F,) has no non-trivial representations
of small dimension (this is the spectral gap in the title of this section):

THEOREM 6.4 (Frobenius). For G = SLy(F,) the dimension of any non-trivial irre-
ducible representation w satisfies
p—1
de 2 ———.
2

Let us conclude the proof of Theorem 6.3. Since
| SLa(Fp)| ~ p°, p — o0
we see that (6.1) hold when
|A[|B[|C| > | SLa(F,)*~°
for any 6 € (0,1/3) as long as p is large enough. O

PROOF. Let
NE) = {n(@) = (g 7). 2 ey

The map x — n(z) is an isomorphism F,, ~ n(F,). The group SLy(F,) contains the group
of diagonal matrices

16, = (1) = (3 ,),) v )
and we have
ty)n(x)t(y) ™" = n(y’x)).

Consider n(1) (it generated N(F,)). If n(1) does not act trivially on V; then it has at least
one eigenvalue a # 1 and since n(1)? = Ids we have

a € pp(C) — {1}

(ie. is a non-trivial p-th root of unity). Moreover for any y € Z coprime with p, o¥’ is also
an eigenvalue of n(1) (since n(y?) = t(y)n(1)t(y)~! is conjugate to n(1), they have the same

eigenvalues). It follows that n(1) has at least ’%1 = |(F))?| distinct eigenvalues; gives the

p—1

lower bound d, > 7 -
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Suppose now that n(1) acts trivially on V;: we have n(1) € ker(r) and therefore N (F,) =
n(1)% C ker(r) and any conjugate of this group is also in the kernel (a kernel is a normal
subgroup): in particular the lower triangular unipotent subgroup

wN(Fy)w ! = (i ?) , € F,)

is also in ker(7). But we have the following Lemma

() (D) e

b . .
PROOF. Let g = (CCL d); we want to show this is a product of elements in the above

LEMMA 6.5. The set
generates SLa(IF,).

set.
We have

o (26 1)-6 )

so if a # 0 we are reduced to the case b = 0 and we have

o) 0= o)
- L)
EO6D-CD6HEY-(
G (i )

so we may force a = 1 and reduce to the case g = Ids.
If a =0, d # 0 we can replace g by ¢! and a and d are exchanged.
If a = d =0 we use (6.2) to make d # 0 and are reduced to the previous case. t

and we reduced to the case

We have

and

REMARK 6.2. Recall that PSLy(F,) = SLy(FF,)/{£Id2} is a simple non-commutative
group as long as p > 3. Frobenius theorem is in line with this property. In fact Landazuri
and Seitz have proven a generalisation of Frobenius’s theorem for simple groups of Lie type
and bounded rank.

For instance for n > 2 one has
min dr >n p" L
w€lrr(SLy, (Fp))
THTQ
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6.2. The Larsen-Pink inequalities

The product theorem is a classification result for the finite approrimate subgroups of
SLy(F,). A first step is to obtain a classification for the for the finite subgroups of SLa(F)).
In fact we will discuss more generally the classification of the finite subgroups of SLQ(F—p)
where IFT, is an algebraic closure of IF),.

Such classification is provided in much greater generality by the fundamental work of
Larsen and Pink [?LP]. A key point is the fact that SLy(F,) is an algebraic group.

6.2.1. Algebraic varieties and algebraic groups. Let k C k be a field with a choice
of algebra closure. The n-dimensional affine space k" is equipped with the Zariski topology
in which the closed sets are the subsets of the shape

Vo(k) = {x € &, P(x) =0, YP € T}

where I C k[X1,---, X,] is an ideal and the open sets are the complements.

A closed set is also called an (affine) algebraic variety.

The T is finitely generated (k[X1,---,Xp,] is noetherian) and if I is generated by at
most C' polynomials of degree < C' then one says that V7 has complexity < C.

6.2.1.1. Connected components. A subvariety is connected if it is connected for the
Zariski topology. One can show that a variety decomposes uniquely into a disjoint union
of connected subvarieties (the connects components) whose number is O¢(1) where C is a
bound on the complexity of V.

6.2.1.2. Irreducible components and dimension. A subvariety V is irreducible if it is not
the union of two proper subvarieties. One can show that any variety can be decomposed
(uniquely) into a finite union of irreducible subvarieties (called the irreducible components
of V') whose number is O¢ (1) where C' is a bound on the complexity of V.

The dimension, dim V', of an irreducible subvariety V is the maximal length of a strict
chain of irreducible subvarieties

DAV CVIC CVp=V.

The dimension, dim V', of a general variety V is the maximal dimension of its irreducible
components.

6.2.1.3. Variety defined over a field. Suppose that I = k.I is the ideal generated by
some k-ideal I C k[X1,---, X,]. We say that V is defined over k and we define the set of
k-points of V as

Vi(k) = {x € k", P(x)=0, VP €I} c Vi(k).
We can in fact in the same way V; (k') the set of k’-point of V; for any field extension k C k’

and more generally define the set of K-points V;(K) for any k-algebra (not necessarily
contained in k).

6.2.2. Linear algebraic groups. Let M, (k) be the k-algebra of n x n matrices. Tak-
ing elementary matrices as a basis we have the identifications
2

M, (k) ~ k", M, (k) ~ k" .

The group
GLy(k) = {g € My(k)} = {g € My(k), det(g) # 0}
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2

can be seen as the set of k-points of an affine subvariety of dimension n? in a space of

dimension n? + 1, namely:
GL, (k) ~ {(g,t) € M,(k) x k, det(g)t — 1 = 0}.
via the map
(g:1) = g.
In fact GL,, is defined over k. If n = 1, GL; is also noted G,,, and is called the multiplicative

group. We have
Gm(k) = k*.

DEFINITION 6.6. A linear algebraic group G (defined over k) is an affine subvariety
(defined over k) obtained from a system of polynomial equations
P(X,T)=0, P(X,T) € I(G), det(X)T —1 € I(G) C k[X11,-+ , Xpn, T

and such that G(k) C GLy (k) is a subgroup GL, (k).
EXAMPLE 6.1. Given m > 1 let
pm(k) ={p € k™, p™ —1 =0} C Gy ().
This is the group of m-th root of unity defined via the ideal of k[X, T] generated by
XT—1, X™—1.
SLa(k) C GLa(k) is a linear algebraic group defined over k via the ideal generated by
det(¢)T —1=0, T —1.

The Larsen-Pink inequalities provide a partial classification of the finite subgroups of
an algebraic group.

THEOREM 6.7 (Larsen-Pink). Let k be algebraically closed and G(k) be a connected
stmple algebraic group.

For any D > 1 there exists C = C(D,dim G) > 0 such that the following holds.

For any finite subgroup A C G(k), either A is contained in a proper algebraic subgroup
H(k) C G(k) such that [H : H] < C or for every closed algebraic subvariety V (k) C G(k)
of degree < D, one has

‘Aﬁ V(E)‘ < C‘A‘dimV/dimG.

This Theorem states that unless A is trapped inside some ”reasonable” proper subgroup
of G(k) then A intersects any reasonable algebraic subvariety in at most the right order of
point. It admits an almost-subgroup version initiated by Hrushovski:

THEOREM 6.8 (Larsen-Pink for almost groups). Let k be algebraically closed and G (k)

be a connected simple algebraic group.
For any D, K > 1 there exists C = C(D, K,dim G) > 0 such that the following holds.

For any K-approzimate subgroup A C G(k), either A is contained in a proper algebraic
subgroup H(ovk) C G(k) such that [H : H] < C or for every closed algebraic subvariety

V C G of degree < D, one has
|Aﬂ V(E)| < CKC|A|dimV/dimG‘
The proof of Helfgott theorem, we present here (which is a special case more general

results of Breuillard-Green-Tao and Pyber-Szabo) make use of very special cases of the
Larsen-Pink inequalities.
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6.3. Structure of SLy(k)

Let k be a field, k an algebraic closure. We write

G(k) = SLa(k), G(k) = SLa(k).
6.3.1. Elements and sous-groups. Let G = SLs and let
Given g € G, its eigenvalues are the roots of

Py(X) = X* —tr(g)X + 1.

— Semisimple: if tr(g) # £2 then g has two distinct eigenvalues \i, Ao € k (and even
in k if tr(g) — 4 is a square in k).

— In particular g is diagonalizable, ie. conjugate to a diagonal matrix with distinct
entries; the conjugating matrix is a priori in GLg(k) but can in fact be taken in
SLy(k) (by multiplying any conjugating matrix h by det(h)~1/2Idy).

— Central: if g = £Idy then tr(g) = +2.

— Quasi-unipotent regular: if tr(g) = 2¢, ¢ = +1 and g # lds then there is one

eigenvalue € of multiplicity 2 and €.g is regular unipotent
eg # Ida, (eg — Id2)2 = 0s.

Consequently g is conjugate to a matrix of the shape

1 =z x
5(0 1>,x€k

and the conjugating matrix can be taken in SLy(k).

6.3.1.1. Centralizers, normalizers. Given g € G(k), we note
Cent, (k) = {h € G(k), hgh™" = g}

its centralizer. B
If g is semisimple then Cent, (k) =: T} is conjugate to the group of diagonal matrices

T = Diagy(F) = {(3 tf’l) teR

and is called a maximal torus of G(k).
Let B
Nory, = {h € G(k), hT,h~' = T,}
denote the normalizer of T, then
Norp, =Ty UwyTy

2:

g Idy. For instance

where w

0 -1
Norp =T UwT, w= (1 0).

If g is regular unipotent then

Centy(k) =: £N,

where g C N, is conjugate to the group of unipotent upper triangular matrices

N:{(é gf),xeﬁ}



64 6. GROWTH IN SLa(Fp)

The group N, is called a unipotent subgroup.
The normalizer of a unipotent subgroup N,
By = Nory, = {h € G(k), hUsh™! = Uy}
is called a Borel subgroup is conjugate to the group of unipotent upper triangular matrices

X

B:{(é t_1>, ek tek ).

It is clear that maximal tori, unipotent subgroups and Borel subgroups are linear algebraic
subgroups of SLa(k) of dimensions 1,1 and 2.
6.3.1.2. The action by fractional linear transformations. Let

PL%)={0c LC&, dimL =1}

be the set of one dimensional subspaces in 5 (the lines passing through the origin).
Any L can be written

L={By = az, (a,8) # (0,0)}

and can be represented by its slope

s(L)z[a:mz{“/ﬁ P70

00 B=0"

The group SLs(k) acts on P(k) by fractional linear transforrmations: z € P!(k)

a b)zz azth 24 —dfc
c d o0 z:—d/c'

Its kernel is the center {#+Ids}. In addition we have

— This action is transitive. The stabilizer of a point z € P'(k) is a Borel subgroup
B, and conversely a Borel subgroup is the stablizer of a unique L (the common
eigenspace of the elements of B). For instance the upper triangulat Borel subgroup
is the stabilizer of co, By, and the lower triangular Borel subgroup is the stabilizer
of 0, 'B = By. In particular we have for any Borel subgroup an isomorphism of

SLa(k)-spaces

P! (k) ~ SLy(k)/B.
— In fact (check it) the action is 2-transitive: for any z; # 2z € P!(k) there is
g € SLa(k) such that
gz1 =0, gzo = 00.
The poinwise stabilizer of a pair of distinct points 21 # 2z € P!(k) is the intersection
of the two Borel subgroups B, N B,, which is in fact a maximal torus 7%, ,,. To see
this transform z1, z9 to 0, 00 and check that the stabilizer is the diagonal subgroup
T = Bs N By.
— Finally the pointwise stabilizer of three distinct points z1, 29, 23 (ie. the intersection
of three distinct Borel subgroups) is the trivial subgroup {+Ids}. To see this we
may assume that z; = 0, zo0 = 0o and any element stabilizing 0,00 and z3 # 0,00

would have to be a diagonal matrix (t t_1> and we would have t?2z3 = z3 which

implies ¢ = %1 (since z3 # 0).
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6.4. Special Larsen-Pink inequalities for SLy(k)

We will now prove some special cases of the LP inequalities for SLy(k) namely for V'

— A maximal torus 7' (of dimension 1),
— a unipotent subgroup U (of dimension 1), -
— The conjugacy class Conj(g) of a non-central element g € SLa().

The proper algebraic subgroup H will be Borel subgroups B.
6.4.1. Intersection with Tori and Unipotent subgroups.

PROPOSITION 6.9 (LP for tori). There exist constants C, D > 0 such that for any finite

subgroup A C G(k) satisfying |A| = D, one of the following holds
— For any mazimal torus T,
TN Al < C|AY3.
— There is a Borel subgroup B such that
|IBNA| > C71 Al

REMARK 6.3. The exponent 3 is the dimension of SL(k) as an algebraic subvariety of

M> (k) and 1 is the dimension of a maximal torus.
PROOF. Suppose that for any Borel subgroup B
|ANB| < C7Y A

Given any v € G(k), consider the intersection AN~vyB and suppose it is non-empty. The
group AN B acts on AN ~B by right translations: if g€ ANB and x =a=vb € AN~yB,
we have g = ag € A and xg = vbg € vB. The action is simple and transitive hence

|AN~yB|=|ANB| < C7YA

a b
g—(c d)eA

with abed # 0. Indeed the set of matrices

We claim that there exists

a b -
(c d) € SLa(k), abed =0

is the union of the cosets of B
By, By = wBsw, wBy, wBy
(corresponding to c =0, b=0, a =0, d =0). Hence if C' > 4 and |A| is large enough, we
have
‘A N (Boo U By U wBoo,wBo)] < |A’

hence g exists.
Up to conjugating A we may assume that

t 0 —x
r=((f ). te®
is the diagonal torus; let T4 = ANT. A priori it would be sufficient to construct an injective

map
@:TAXTAXTAC—)A
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for then

I Tal* = (T4, Ta, Ta)| < |Al.
In fact we don’t need the map to be exactly injective. It will be sufficient that its fibers
have uniformly bounded sizes or even that almost all of them have this property. We will

do this by producing a map defined via polynomials equations of bounded degrees.

Write

TA:AHT:{G] tf’l), te Ha)

for some finite subgroup H4 C k.
Given t1,t2,t9 € Hy we define

(t1, b, 15) = t1 O a b ta O a b ts3 O
L2, 08) = t7' ) \e a)\o ') \ec a)\o !
t1 0 a’ty +betyt acty +bdty M (ts 0
= -1 1 2,1 —1) €A
t acty + cdty ™ bety + d°t, 0 t3
Since abed # 0 there at most 8-values of to for which one of the entries in the middle matrix
is zero. Given any ty away from these values, varying t1,t3 € H4 we obtain |H4|? distinct

elements. In addition the product of the diagonal entries of the triple product does not
depend on t1,t3 and equals

o

o

(aPty + bety V) (bety + dPt5 1.

As to varies over H 4 this function takes > |H 4|/4 distinct values. In conclusion one obtains
at least > |H 4|3 distincts elements in A hence

Tal = |Ha| < |A[Y?
where the implicit constant is absolute. O

PROPOSITION 6.10. (LP for unipotent subgroups) There exist constants C, D > 0 such

that for any finite subgroup A C SLa(k) satisfying |A| > D, one of the following holds
— For any unipotent subgroup N,
INNA| < CJAIV3.
— There is a Borel subgroup B such that
|IBNA| > C7 Al

PRrOOF. Exercise. (hint: use a similar method but also involve the inverse of (Z b))
O

6.4.2. Intersection with conjugacy classes. Given g € G(k) we let
Conj(g) = {hgh™", h € G(k)}
the conjugacy class of g. This is an algebraic subvariety of G(k).
We have

— If g = +£1dy, Conj(g) = {4},
— If g is regular unipotent Conj(g) is the set of all regular unipotent elements.
— If g is semisimple, Conj(g) = {h € G(k), tr(h) = tr(g)}.
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Here we will use the upper bounds from Proposition 6.9 and 6.10 to obtain lower bounds on
the intersection with conjugacy classes using the orbit-stabilizer theorem:

PROPOSITION 6.11 (LP, large intersection with a conjugacy classes). There exist con-
stants C, D > 0 such that for any finite subgroup A C G(k) satisfying |A| > D, one of the
following holds

— For any g € A regular,
|Conj(g) N A| > C!|AP/3.
— There is a Borel subgroup B such that
IBNA|>C™1 A

PrROOF. We treat only the case g regular semisimple and leave the unipotent case as an
exercise.
We assume that for any Borel subgroup B, |[A N B| < C7!A| where C' > 1 is to be
chosen sufficiently large.
Consider the map
cg:h € Ars hgh™' € Conj(g) N A =: Conj(g)a.

Given any ¢’ € Conj(g) 4, the preimage of ¢’ by ¢4 is contained in a coset of

Centy(k) =Ty
the unique maximal torus containing g and therefore by Prop. 6.9
ey Vg DI < ClA]Y?
but this shows that
leg(A)] = CHAPP.

g
Now we prove the (upperbound) LP inequalities for conjugacy classes of regular ele-
ments:

PROPOSITION 6.12 (LP, small intersection with conjugacy classes). There exist constants
C,D > 0 such that for any finite subgroup A C SLa(k) satisfying |A| = D, one of the
following holds

— For any g € SLa(k), regular (either semisimple or quasi-unipotent)
(Coni(g) N A| < ClA]2*.
— There is a Borel subgroup B such that
IBNA| > C71 Al

PRrOOF. We prove the case semisimple and leave the quasi-unipotent case as an exercise.
A first basic observation is that for any h € SLy(k) we have

tr(h) = tr(h ™)
fa b\ (d b L .
(since e d =\_c 4 and therefore if ¢ is regular semisimple we have

Conj(g) = {h € SLa(k), tr(h) = tr(g)} = Conj(g)~" = Conj(g ).
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We assume that for any Borel subgroup B we have |B N A| < C71|A| where C > 1 to
be chosen sufficiently large!. We aim to prove that

AN Conj(g)| < ClA3.
For this we (following Larsen-Pink) consider the following map
¢ : (c1,c2,¢3) € Conj(g)® — (c1c2,c1e3) € SLa(k)?
or rather its restriction to Conj(g)? with
Conj(g)a == AN Conj(g) = {c € A, tr(c) =tr(g)}

(note particular Conj(g)4 contains only regular semisimple elements).

LEMMA 6.13. Given g € SLa(k) a regular element (semisimple or quasi-unipotent)
(a,b) € SLg(k)Q, the map
(c1,¢2,c3) = c1 = acz_1 = ch_1
a bijection
©"Y(a, b) ~ Conj(g) N bConj(g)~* N aConj(g)~".
If in addition g is semisimple we have Conj(g)~' = Conj(g) so that the bijection can be

written
cp(*l)(a, b) ~ Conj(g) N aConj(g) N bConj(g).

The restriction of ¢ to Conj(g)% has image in A?; we will bound |Conj(g) 4| by bound-
ing |Conj(g)3| = |Conj(g)al> and obtain the later by ”slicing” Conj(g)3 into the fibers
0= (a,b) N A3.

By the previous lemma, we have

|Conj(g)%| = > |Conj(g)a NaConj(g) 4 N bConj(g) |
a,be A

and we will bound |Conj(g) 4 NaConj(g)a NbConj(g)4| either pointwise or on average over
some suitable families of (a,b). For this we observe that the set

Conj(g)a NaConj(g)a NbConj(g)a = Conj(g) N aConj(g) NbConj(g) N A
is the intersection of A with

Conj(g) N aConj(g) N bConj(g)

which is an algebraic subvariety of Conj(g) C SLa(k) to which we may want to apply the
LP inequalities.

Let us do some rough dimensional analysis: the intersection Conj(g) N aConj(g) N
bConj(g) is the intersection of three 2-dimensional varieties in a 3 dimensional space so
one would hope that for most values of (a,b) the has dimension 0 ie. is finite absolutely
bounded (think of the intersection of three affine planes in a three dimensional space).
Hence we expect that for most (a,b) € A2,

|Conj(g) N aConj(g) NbConj(g) N A|

should be absolutely bounded and the contribution of such generic terms is < |A|%.
If Conj(g)NaConj(g)NbConj(g) is one dimensional then a and b are somewhat "related”
(for instance we could have a = b or more generally, as we will see, b is contained in a one

1As we will see the values of C depends on the ”C” in Propositions 6.9 and 6.10
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dimensional subvariety associated with a). Applying the LP inequalities to count the b in
that subvariety along with the trivial bound

|Conj(g) N aConj(g) N bConj(g) N A| < [Conj(g) N A

we obtain that the contribution of such special terms is bounded by

< > |A]Y3|Conj(g) a| < |A[**|Conj(g)al
acA

Finally if Conj(g) NaConj(g) NbConj(g) is two dimensional which basically means that
Conj(g) = aConj(g) = bConj(g)

which can occur only in very rare cases (such as a = b = Id) which are handled easily using
that |Conj(g)a| < |A].

Let us implement this strategy (we will proceed a bit differently however) and prove the
upper bound

|Conj(g)al* =] > [Conj(g)a N aConj(g)a NbConj(g) a| < |A]* + [A]*/*|Conj(g) al-
a,beA

If a = +Idy we use the trivial bound
|Conj(g) a N aConj(g) a NbConj(g)a| < |Conj(g) 4

so that
> " |Conj(g) 4 N aConj(g)a N bConj(g) 4| < |Conj(g)al|A| < |A[*.
beA

Same for b = +Idy and a = +b.

We may assume that +Ids, +a,+b are distinct and in particular @ and b are regular
either semisimple or quasi-unipotent.

Suppose that Ida,a=!,b~! are k-linearly dependent in the vector space My(k). This
implies that either, a and b are both regular and either both semisimple (and then b belong
to the unique maximal torus containing a) or both quasi-unipotent (and then +b belong to
the unique unipotent subgroup containing +a). In particular, by Prop. 6.9 or Prop. 6.10,
given any such a, the number of such b’s is bounded by C’|A|1/ 3 and the sum over such a, b’s
is bounded by

[ A|C|A["?|Conj(g) a| = C|A|**|Conj(g) al.

It remains to treat the case where Ids,a=!,b~! are k-linearly independent; they are in
fact k linearly independent (put the three elements in a k-basis of My(k), their determinant
is # 0 and so the four elements are still linearly independent in My (k)).

In this case

Conj(g)a NaConj(g)a NbConj(g)a = ANL

where
L= L(g,a,b) := {€ € My(k), tr(£) = tr(a0) = tr(b~10) = tr(g)}
is an affine line in MQ(E) (since Idg,a=!,b~! are k-linearly independent the three linear
forms m — tr(m), tr(a='m), tr(b='m) are linearly independent in the dual My (k)*).
If L ¢ SLo(k) then L N SLy(k) consists in at most two points : to see this use the
fact that SLo(k) is the algebraic subvariety of My (k) defined by the polynomial equation of
degree at most 2, ad — bc = 1 and use a parametrisation of the affine line

L:zek—ly+ 0z
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for L' € My(k).
Therefore the contribution of such a, b is bounded by

2|AJ2.

Suppose now that we are in the special case

L C SLQ(k).
Given {y € L, the shifted line £ L L contains Idy and admits a parametrization of the shape
x €k Idy + £y .

We have

_ 1+d b
det (05 ' L(z)) :det< C,;”” ) +fl,$>

=(1+d2)(1+dz)—bdz?
=1+ tr(ly )z + det (651 ¢)2? = 1
and therefore

tr(6y ') = det(¢5 1)) = 0.

This shows that £, 1¢/ is conjugate to a nilpotent upper triangular matrix (8 g) and

therefore £ 1L is conjugate to the group of unipotent matrices

N:{((l) ﬂ“), xEE}z{(é “1”) zek)
(note that u # 0 since L has more than 1 element).
Therefore there exists h € SLa(k) such that
ho'Lh™ = heg'h ' hLh ™ = N.
Setting ¢ = héoh™' o’ = hah™!, ¥ = hbh™! we have
(GN = {hmh™' € My(k),tr(m) = tr(a'm) = tr(b~'m) = tr(g)}

= {tyn, n = <(1] 3{) , x €k, tr(fyn) = tr(a’ " tn) = tr( on) = tr(g)}

tr((i D (é T)):s—kux—kv.

Since the traces are independent of x the lower left entries of £, a/, b’ have to be zero and
therefore

We have for any z € k

b, @, b € B
and in particular
a,be By, = h 'Byh
and
('L =h"'Nh = N.
Moreover Ny, is the stabilizer of one of the eigenvectors of a (since N is the stabilizer of the

first vector of the canonical basis) so given a, the unipotent subgroup NNj can take at most
two values as does Bj, (being the normalizer of Np,).
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Finally, let {t,t='} be the two eigenvalues of g (these are distincts since g is regular
semisimple). The diagonal entries of £, a’_l%, b'_l% are equal to either (t,¢71) or (t71,¢)
and those of a’ and b’ are either (t2,¢72) or (t=2,t?) or (1, 1); therefore given @/, V' is contained
in at most three cosets of Uy, or in other terms, given a, the element b is contained in at
most three cosets of Up. By Proposition 6.10, this implies that given a, there are at most
6C| A|'/3 possible values of b’s so the contribution of (a,b)’s such that Idy,a~! and b~! are
linearly independent is bounded by

2|A[? + 6C|Conj(A, g)|| A||A]/3.
O

Since the conjugacy class of a regular unipotent element g consists of all regular unipo-
tent elements, and the conjugacy class of the quasi-unipotent —g is — the conjugacy class
of g we have

COROLLARY 6.14. There exist constants C,D > 0 such that for any finite subgroup

A C SLo(k) satisfying |A| = D, one of the following holds
— There is a Borel subgroup B such that
IBNA| > C71 Al

— A contains at most 2C |A|2/ 3 quasi-unipotents elements. In particular A contains
at least (2C) Y A|Y3 — 2 regular semisimple elements.

COROLLARY 6.15 (Large intersection with tori). There exist constants C,D > 0 such
that for any finite subgroup A C G(k) satisfying |A| = D, one of the following holds

— For any g € A, regular semisimple contained in the maximal torus T, we have
IT,NA| > C7Y A3
— There is a Borel subgroup B such that
IBNA| > C7 A
PRrROOF. As usual we assume that we are not in the second situation. We have a map
a€ A aga~! € AnConj(g)
with image of size < C|A|?/ so there is ¢’ € AN Conj(g) with preimage > C~1|A|'/3 but

since all preimages are translates of one another, all have the same size > C~!|A|'/? and in

particular the preimage of g which is AN Centy(k) = AN Ty, O
This corollary admits a unipotent version which we leave as an exercise.

COROLLARY 6.16. There exist constants C, D > 0 such that for any finite subgroup
A C G(k) satisfying |A| = D, one of the following holds

— For any g € A, regular unipotent contained in the unipotent subgroup U, we have
U, nA| > C7Y AV
— There is a Borel subgroup B such that
IBNA| > C71 Al
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6.4.3. A rough description of the finite subgroups of SLs(k) over finite fields.
From Corollary 6.15 we see that if A is not roughly contained in any Borel subgroup then
for any maximal torus 7', the following dichotomy holds:

(6.3) either [ANT| < 2o0r |[ANT| > C~|A['/3

depending on whether ANT is contained in {£Ids} or contains at least one regular element.
This dichotomy can be used to prove the following classification result which we will
not prove in the live course unless we have time.

THEOREM 6.17 (Rough description of the finite subgroups of SLa(k)). There exist con-
stants C,D > 0 such that for k = F,, the algebraic closure of a finite field k and any finite

subgroup A C SLa(k) satisfying |A| = D, one of the following holds:
— there is a finite subfield k D T, satisfying
CAIY < [K| < CJA]Y3

such that A is contained in a conjugate of SLa(k) (in particular A has index < C
in that conjugate).
— There is a Borel subgroup B such that

|IBNA| > C'_l\A|.
PRroor. To be included. O

6.5. Larsen-Pink inequalities for approximate subgroups

We now prepare for the proof Theorem 6.2 by obtaining LP inequality for approximate
subgroups.

From now on, we assume that k is a finite field and that A C SLy(k) is a K-approximate
subgroup generating G(k) = SL4(k).

The main tool for the proof will be LP inequalities for A which are proving by using
the group theoretic versions from the previous sections.

6.5.1. Approximate subgroup versions of the orbit-stabilizer theorem.

LEMMA 6.18 (Orbit-Stabilizer for approximate subgroups). Let G ~ X be a group
acting on a set X and A C G be a set. We have for x € X

_ A
. Ang, s AL
(6.4) 44T Gl >

and for any B C G we have
(6.5) |BA| > |ANG,||B.x|.
Here G, = Stabg(z) denote the stablizer of x.
PROOF. We have a.x = a’.x <= da’a”! € G,. Hence for any y = ax € A.x we have
ray) = |{d € A, dz =y} =|Aa NG| <|AATI NG,

doraw = D 1=> >, 1=|4]

yEA.x yEA.xT o/cA a'cAyeA.x,a’r=y
a'z=y

We then have
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and

3 ra(y) < JA2l|[AATINGyl.
yeA.x
For the second inequality we observe that

BA| > |B.(ANG,)|

and that
B.(ANG;).x = B.x.
O

LEMMA 6.19. Let G ~ X be a group acting on a set X and A C G be a symmetric set
(A=Y = A). For any x € X and m > 1 we have

(m)
[A@ NG|

In particular if eq € A (so that AT < AHD) and |Am+D) | < K™|A| we have

(m)
NG| e
|A®) N Gy

PrROOF. We have by (6.5) and (6.4)

|AM) N G|
|A®) NGyl

|A(m+1)| >

|A™) N G|

AMAD > 14M) A Gl Az| =

|A® N G,||A.z| > |Al.
O

Applying this to the action G ~ G/H for H a subgroup and = = eg.H we obtain

COROLLARY 6.20. Let G be a group and A C G be a symmetric set (A~ = A). For
any subgroup H C G and k > 1 we have
|A™) N H|

(m41) 5 12 71

In particular if eq € A (so that AT c A+ and [AHD| < K™|A| we have

|A(™) N H|
< L
|A@ N H|

6.5.2. Escaping Borel subgroups. In the group theoretic version of the LP inequal-
ities a part of the alternative was that the subgroup A was not roughly contained in any
Borel subgroup.

In this section we develop a version of the LP inequalities when A is a generating
approximate subgroup. We first show that the Borel subgroup rough containment never
occurs (at least of k is large enough).

< K™,

LEMMA 6.21 (Escape from Borel subgroups). Let k, A as above. There exists an absolute
constant D > 1 such that for any C > 1, one of the following holds

— one has |A| < KP¢; B
— for any Borel subgroup B C SLay(k)

IA® N Bl < K~ C|A|.
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PROOF. We assume that |A| > KPC (in particular |k| > KPC/3),
Assume that for some B one has |A® N B| > K~¢|A|. Since A® is covered by at most
K-translates of A there exists a € A such that
laANB| > K~“71 A

We also claim (see below) that for |k| is sufficiently large there exists g € SLa(k) such
that gBg~! # B; since A generates SLa(k) this implies that there exists b € A such that

By :=bBb~! # B.

In particular since the two Borel subgroups B and B, are distincts BN B, = T} is a
maximal torus.

We have bA@ b1 N B, ¢ AW N By hence

IAD N By| > [bAPbnbBb ! = |AP N B| > KA.
Since A® = A®) A is covered by at most K successive translates of A there exists az € A®)
such that
lasA N By| > K~°73|A|.
Let
A1 =aANDB, Ay =a3ANDBy.
We have
D layxl,(g) = [Ai|Az] > K27 AP
g€SLa(k)

Since supp(1l4, * 1A2_1) c A®) we have
Jsupp(la, x 1,1)| < [A©] < K°|4],

and there exists ag € A®) such that

La, x1,-1(a6) = A1 NagAz| > K~207914).
Hence the product set

(Al N a5A2)*1.(A1 N a5A2)

which is of size > K *20*9\A| is contained in the intersection of

Aa'.a.A=A® B.B=Band B,.B, = B,
and therefore

[ADNT| = AP N BN By| = K279 4.

We claim again that there exist g € SLa(k) such that g7pg~! # T}. Indeed such a g would
have to be in the normalizer of T} which is Tj U w1}, and so would have to be semisimple
but if & is large enough SLa (k) contains regular non-semisimple elements. Since A generates

SLa(k) this implies that there is ¢ € A such that T}, . = cTye™! # Ty, and therefore (since we
are intersecting distinct maximal tori)

Tb,c NT, = {:l:Idg}.
On the other hand the same reasoning as above shows that
AP N TN T > K2COH79)4]

which yields a contradiction if A is large enough. O
It remains to prove the claim which we leave as an exercise.
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LEMMA 6.22. There exists an absolute constant D such that for any finite field k satis-

fying |k| = D, any Borel subgroup B C SLa(k) there is g € SLa(k) such that
gBg~' # B.

PRrOOF. (hint) Use the fact that B = B, for some z € P!(k) to show that any g € B,
has its matrix entries satisfying a linear equation (depending on z and with coefficients in

k). Show that if |k| is large enough there is some g € SLy(k) not satisfying this equation
(because |SLa(k)| > |k[?). O

6.5.3. A series of LP inequalities. We can then use this Fscape from the Borels
”wildcard” lemma to obtain approximate subgroup versions of the Larsen-Pink inequalities.

PROPOSITION 6.23 (LP for tori (App. subgroup version)). There exist a constant C > 0
such that for any generating K -approzimate subgroup A C SLa(k) and any mazimal torus

T C SLa(k), we have
TN A®| < KAV,

ProOOF. We may assume that |A| > K¢ for D the constant in Lemma 6.21 and C' to
be chosen sufficiently large, for otherwise the trivial bound

70 A®)| < K4]
will suffice (since K|A| < KC|A|Y/3 if |A| < K3(C-1).

Moreover, by Lemma 6.21 and our assumption |A| >
subgroup B C SLa(k)

(6.6) A® N Bl < K~CA|.

Up to conjugating 7' (and A would then generate a group conjugate to SLa(k) C SLa(k)
but this does not change the argument) we may assume that

T:{(é t(_)1>, tek"}

KPC we have that for any Borel

is the diagonal torus. Let
Tx =TNA® = {(t t_1> , t € Hy}

for Hy C k. If |[Ha| < K€ we have
as long as D > 3.

By the same reasoning as in the proof of Prop. 6.9, using (6.6) there exists g = (Z Z) €

A®) whose four entries satisfy abed # 0 (as long as K¢ > 4). We then have
TagTagTa C A1
so for all t1,t9,t3 € Hy

. tl 0 a b t2 0 a b t3 0
go(tl,tg,t:g)—( tl—l) <C d) (0 t2_1> <c d) (0 tgl)

_(t 01 a2t2+bct2_1 act2+bdt2_i ts 01 ¢ 400)
0 t7 ) \acta +cdty" bety + d*ty 0 t3

@)
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and by the same reasoning as in Prop. 6.9 we find that
TN ADP = [HaP < |AY)] < K4
where the implicit constant is absolute. O

COROLLARY 6.24. Assumptions as in Prop. 6.23. For any m > 1, there exists Cy, > 1
such that one has

|A(m) mT| < KCm|A|1/3
PRrOOF. Exercise (use §6.5.1). O

PROPOSITION 6.25. (LP for unipotent subgroups (App subgroup version)) For any m >
exist constants Cp, > 0 such that for any generating K -approzimate subgroup A C SLo(k

and any unipotent subgroup N C SLa(k) one has
IN N A™| < KO A3,

1
)

PROOF. Exercise. O

PROPOSITION 6.26. (LP, large intersections with conjugacy classes (App subgroup ver-
sion)) There exist constant C' > 0 such that for any generating K-approzimate subgroup
A C SLy(k) and any g € A regular, one has

(Conj(g) N A®)| > K~C|A]*/*,
PROOF. Exercise. O

PROPOSITION 6.27. (LP, small conjugacy classes (App subgroup version)) There exist
constant C > 0 such that for any generating K -approzimate subgroup A C SLa(k) and any

g € SLa(k) regular one has
|Conj(g) N A®)| < KC|AY3,
ProOF. Exercise. O

COROLLARY 6.28. For any m > 1, there exist constant Cp, > 0 such that for any

generating K -approximate subgroup A C SLa(k) and any g € SLa(k) regular one has
|Conj(g) N A™)| < KO |A]2/3,

ProOF. Exercise. ]
Using that the conjugacy class of a regular unipotent element is the set of all regular
unipotent elements one has

COROLLARY 6.29. (LP, unipotent bound (App subgroup version)) There exist constant
C > 0 such that for any generating K -approximate subgroup A C SLa(k), A contains at
most 2KC|A|>/® quasi-unipotent elements and at least (2K€) = A|'/3 =2 regular semisimple
elements.

PROPOSITION 6.30 (Large intersection with tori (App subgroup version)). There exist
constant C > 0 such that for any generating K -approximate subgroup A C SLo(k) and any
g € A® reqular semisimple with associated mazimal torus T, we have

1T, N A®)| > K=C|A|Y/3.
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PROOF. Given g € A® regular semisimple, the map
cgia€ A agat € A™ N Conj(g)

has image of size
leg(A)] < [AW N Conj(g)| < KC|AP/?

(where C' = Cy from Cor. 6.28) so there exists some ¢’ = a’ga’~! € cg(A) whose preimage
is large:

V(g = [{a € A, aga™ = g'}| = K~C|A]/?

but then any element of o’ _10_5]_1)({9’ }) € A® centralizes g so is contained in T}; therefore
|1A® N T,| > K—C|A|'/3. O

DEFINITION 6.31. Let T C SLa(k) be a mazimal torus. We say that T is involved with
A if

TNA? ¢ {£1dy}.
In this case, from Prop. 6.30, we have
ITNA®| > K=C|AY3.

LEMMA 6.32 (Key lemma). For K and A as above, one of the following holds
- |A| < KC;
— If T is involved with A then for any a € A, aTa™' is also involved.

PRrROOF. If T is involved then |A® NT| > K~C|A|'/3 and conjugating by a € A we have
K CIAI? <1AD NT| < |aAP e naTa™| < |AW)
and since A is covered by K translates of A there is g such that
lgANaTa ' > K~¢73|A|'/3
but then the product set
(Ag ' naTa™Y).(9gANaTa™') c A® naTa™?

and has size > [gANaTa | > K~¢3|4|'/3 so that

|A® NaTa™| > K~C73 413

If we are not in the first case (up adjusting the definition of C') then K~¢~3|A|'/3 > 2 and
aTa™! is also involved. O

REMARK 6.4. It is important that the definition of a torus 7" being ”involved” is
TNA?| > 2

instead of |T'N A®)| > K~C|A| (the consequence of Prop. 6.30) because as we have seen in
the proof, we obtain upon conjugating by a the lower bound |A®) NaTa~t| > K~¢=3|A|'/3
which gets weaker and weaker if we perform more and more conjugations (as we will do
below). On the other hand, once we know the much weaker lower bound statement |[aT'a™*N
A®)| > 2 we automatically get |aTa*NA®)| > K~C|A|'/? (with the same C and not C'+3).
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6.5.4. Proof of Theorem 6.2. (Note: all the implicit constants involved in the sym-
bols > or &~ below are absolute).

Assume that |A| > K. From Prop. 6.29 A contain > K~¢|A|'/3 — 2 > 0 semisimple
regular elements (for D large enough) and therefore A admits at least one involved torus.
Since A generate SLa(k), the set of all involved torus is SL(k)-invariant under conjugation
(reflect on Remark 6.4). Since |SLa(k)| > |k|? and for any torus T, |SLa(k)NNorr (k)| < 2|k|
(for instance conjugate T to the diagonal torus to see this) there are at least > |k|?/|k| =
|k|? = |SLa(k)|?/3 involved tori.

For each such torus 7" we have

|[A® NT| > K~CA]3
which implies that (since two distinct tori intersect only in +Id)
|A®)| > K72C|SLa(k)[*/?|A'/?
and since
K|A] > [AP] > K2C|SLy(k)*/?| 4]/
we have
|A| > K~ CCFD3/2 |51,y (k).



CHAPTER 7
Expansion in SLy(IF,)

7.1. Basic on graphs

We recall that a (finite) graph G = (V| E) where V' = V5 is a finite set of ”vertices” and
E=EgCV xV —V?2is a set! of "edges”.

— If (v,w) € E we say that w is directly connected to v or that w is adjacent to v or
that there is a path of length 1 between v and w which one write v — w.

We say that w is connected to v by a path of length [ > 1 if there is [ edges
e; = (Uz#la'Ui) € F, i < such that

vo=v, yy=w, Vi=1,--- 1 —1, v; = vjy1.

We say that w is connected to v if there is a path of some length between the two.
If for any v, w € V one has

(v,w) € E <= (w,v) € E

we say that the graph is undirected (and otherwise it is a directed graph).

From now on we assume that graphs are undirected. This implies that the relations
being ”directly connected” or being ”connected” are symmetric and transitive (but
not necessarily reflexive).

The set of w directly connected to v is the set of neighbours of v, Neig(v). The
set on w connected to v is the connected component of v, Conc(v). A graph is
connected if it has only one connected component.

The set of vertices is equipped with a distance distg : V' x V +— N U co defined by
distg(v,v) = 0 and

distg(v, w) = minimal length of a path connecting v to w

(defined to be oo if v is not connected to w).
One define the diameter of G to be
diam(G) = Jnax, distg (v, w).
The cardinality d, := |Neig(v)| is the degree of G at the point v. If d, =d > 1 for
every v we say that G is regular of degree d.

We will write G, 4 to denote a d regular graph with n vertices.

7.1.1. Example: Cayley graphs. Let G be a finite group of order n and S C G
a symmetric subset of G of order d not containing eg. We define the (left) Cayley graph
Ga,s, = (G, Es;) where

ES,l = {(9789)7 ge&g, sc S}

The graph is connected iff S generates G.

sometimes F could be a multiset

79
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We will often write a Cayley graph in the form
G = (G, Eg;) = Cayl(G, S) or simply (G, S).
REMARK 7.1. Likewise we can define the right Cayley graph Gg s, = (G, Eg,) where

Es, =1{(g9,95), g€ g, s€ S}

7.1.2. The adjacency operator. Suppose that G is d-regular undirected.
Let L?(V) be the space of functions on V equipped with the inner product

(fr,f2) =D H()F

veV
The (normalized) adjacency operator A : L?(V) — L?(V) is the linear map defined by
f=Af v Z f(w)
(v,w)eE

To each vertex v, Af(v) is the sum of f at the immediate neighbours of v.
More generally iterating the above we see that for any ¢ > 1

(7.1) Alfy= D" flw)

(we)ege
wo=v

is the sum of the values of f at the end-points of the paths of length ¢ which start from v.
The adjacency matriz (also noted A) is the matrix of A is the basis

{61117 e ,(Svn}

where n = |V| and {v;, i < n} =V is an enumeration of the set of vertices of G.
Writing the matrix A = (A;;) then have

Aij = Owi))eE
and for any ¢ > 1
(Az),»j = number of paths of length /¢ joining v; to v;.

The adjacency operator is self-adjoint (because the graph is undirected):

(AN =0 flw Zf > Fw)=(f,Af)

v (vyw)EE (wyv)eE
so is diagonalizable with its (multiset) of eigenvalues being real numbers which we write
Spec(A) = Spec(G) ={ X=X =- = A\po1 = A1 )
The structure of Spec(G) contains some of the geometry of G. For instance we have
LEMMA 7.1. We have \g = d and
d=Xo =X -2 A1 = —d.

Proor. We have
A(l) =d.1
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and for ¢ # 0 any eigenfunction (using that |uv| < 3(|u|? + |v|?)) we have

1M, ) = [(Ap, o I—IZZw ZZIw )+ lp(v)?

(v, w)EE (v, w)EE

= 5 o)+ Sleld) = de.)

In the sequel we denote by B a ONB of eigenfunction
B ={pi, Api = Xipi, i=0,---,n—1, }
and take
o =1/n'/?
the constant function. We will write
Bo=B-{¢eo}={pi,i=1,---,n—1, }

which is an ONB of the subspace of function with mean values 0:

L*(V)o = (Cgpo)* = {f € L*(V => f(

veV

We recall the following basic results of graph theory:

PROPOSITION 7.2. The multiplicity of A1 = d is the number of connected components
of G.

Suppose G is connected. We have A\p—1 = —d iff G is a bi-partite graph: there exists a
decomposition V- =V, U V_ with |Vi| = |V_| and

(v,w) € E <= (v,w) € Vo x V_, e = +1.

In that case Spec(G) is symmetric relative to the origin: Spec(G) = —Spec(G) and the (one
dimensional) eigenspace with eigenvalue —d is generated by

Ty — 1y

PROOF. Exercise. O

In particular the graph G is connected iff A\ = d has multiplicity 1 or in other terms
Ao > A1

DEFINITION 7.3. The graph G has a (one-sided) spectral gap iff
AL <d
The graph G has a two-sided spectral gap iff iff
—d < A1, A <d.

A graph with a one-sided spectral gap is therefore connected and a graph with a two-
sided spectral gap is non bi-partite connected graph.
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7.1.3. The averaging operator. It is useful to to normalize A and to consider instead
the averaging operator

M= —
d
so that

Mi@) =5 3 fw)

(v,w)ERE

is the average value of f along the immediate neighbours of v (M is for ”mean” or ”moyenne”).
We then have

Spec(M) ={po=12p1=M/d > = pp-1 = Ap—1/d} C [-1,1].
The graph has then a one(resp. two)-sided spectral gap iif
Spec(M) —{po} ={p1 = -+ = pn—1} C [-1,1), Tesp. C (-1,1).
REMARK 7.2. One also define the Laplace operator
A=Id—M
whose eigenvalues are non negative

Spec(A)={0=1—pg<1l—p1 <, 1—pp_1} C[0,1].

7.2. Expander graphs

The notion of expander graph is a quantification of the notion of graph with a spectral
gap:

DEFINITION 7.4. Given ¢ € (0,1), the graph G is a (one-sided) e-expander iff
M < (1—e)d
or equivalently
Spec(4) —{Ao} C [=d, (1 = ¢€)d] or Spec(M) — {po} C [-1,(1 —¢)].
The graph G is a two-sided e-expander iff
Vi=1,---,n—1, [N <1 —¢e)d or|p]| <(1—¢)
or equivalently
Spec(A) — (o} € [~d(1 — ), (1 — £)d] or Spec(M) — {po} © [~(1 —e), (1 - &)].

REMARK 7.3. Of course any graph with a spectral gap is automatically an e-expander
for some € > 0. This notion is really interesting as long as € is not too small compared to
either d or n. For instance this notion is interesting when & does not depend on n (and d
remains small compared to n).

DEFINITION 7.5. Given € € (0,1) and d > 1 a family of (d,e) expanders is a sequence
(Gn,.d)ien of d reqular connected graphs satisfying n; — oo and which are one or two-sided
e-expanders.
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7.2.1. Equidistribution and Mixing for expanders.

LEMMA 7.6. Given Gnq be a regular graph and B = {n=/2} U By an ONB for M
containing the constant function gy = n=1/2,
We have for any fi, fo € L*(V)

(f1, M fo) = W + Y b @), fa)-

peBo

PROOF. We have (since M is self-adjoint)

(fo M fa) = (fro o (M fay0) = Y (fro9)(fa, MO) =Y pl(fr.0)(f2, )

peB peB peB
f1, 1){fo,
=L—JL——+§:%fupﬁ,>
w€Bo
O
Since
S ) £2)] < fillall foll
peB
we obtain

COROLLARY 7.7. Let Gy 4 be a two sided e-expander. For any fi, fo € L*(V) and any
?>1 we have

VDD < (1= ol ol

[(f1, ME fo) —

where the implicit constant is absolute.

7.2.1.1. Equidistribution. Take fo = d,, for some vg € V and let f; = 1y be the
characteristic function of some subset W C V' we have from (7.1)

1 w , Wy =vg, wp €W
(L, M%6,,) — y S T () = { (we)e<e Ode 0, We }
s

is the proportion of the paths of length ¢ in the graph that start from vy and end up in W.
By Corollary 7.7, we obtain
{(wi)e<e, wo =vo, we €W} _ |[W|
dt n
REMARK 7.4. Notice that the implicit constant is absolute. In particular it does not
depend on vyg.

+O((1 =) |W['?)

In other terms as ¢ — oo, the probability that a path of length ¢ starting from vy ends
in W is asymptotic to |W|/n the measure of W relative to the uniform probability measure
on V; moreover, we are sure that some of these paths will end-up in W as soon as

log(n/|W|'/?)

(7.2) {> m
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Let us generalize this result slightly. Given any probability measure vy on L%(V): ie. a
non-negative linear form vy : f — vo(f) (v9(f) = 0 whenever f > 0) such that (1) =1
or equivalently a convex linear combination of Dirac masses

vy = Z vo(v)dy s.t. vo(v) >0, Z vo(v) = 1.
veV veV

We can then define the sequence of probability measures
V< f s wp(ME(F).

For instance vy = dy,

O = M) = 5 S fu)

(wt)e<e
wo=v0

is the average value of f along the end-points of the paths of length ¢ in G starting from wvy.

Corollary 7.7 then state that the sequence of measures v() weak-x converge to the
uniform probability measure uy on V' which assigns mass 1/n to any vertex: for any W C V

_ "

n

pv (W)

We can interpret this as a random walk along the graph G: VQ(,? is the distribution
function of the random variable which is the end of the following process:

— Start from some vy € V' chosen randomly according to the probability measure 1.
Choose uniformly at random a point v; at distance 1 from vy;
choose uniformly at random a point vs at distance 1 from vy,

s

iterate ¢ time and obtain v;.

The previous computation shows that this process converge in law to the uniform random
variable on V' and in > log(n) steps will get very close.

REMARK 7.5. This a special case of the convergence of irreducible Markov chains in a
space with finitely many states. Recall that for such Markov chains, the key ingredient is
the Perron-Frobenius theorem. Instead we have used the spectral theorem for the self-adjoint
operator M.

7.2.2. Geometry of expanders. It turn out that expander graph have nice geometric
properties that can be extracted from the properties of their spectrum.

7.2.2.1. The diameter of an expander. Let us return to the discussion in §7.2.1.1and
take W = v for any vertex v € V, from (7.2) we see that v can be reached by a path of
length ¢ starting from vy as soon as

log(n)
log(1/(1— <))

or in other terms if G is a two sided e- expander we have

>

log(n)

(7.3) diam(G) < Toe(1/(1—2))"

We will slightly improve this bound:
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THEOREM 7.8. Suppose that G = G, q s a two sided e-expander. We have

log(2n)
1+(1-(1—¢)?)1/2 "
log(HHI=20)
REMARK 7.6. In particular when ¢ is small
1+ (1—(1—¢)?)l/2
o LH A==
1-¢

diam(G) <«

) =2+ 0(e)

and
log(2n)

c1/2

diam(G) <

Proor. Let
B={po=1/n"? o1, o1}
be an ONB of L?(V') made of eigenfunction of A with eigenvalues A,. We have
<A(5v); 5w> = Z )‘LP(P(U)@(U})

peB

and more generally for any polynomial P(X) € C[X]
(P(A)(8,):0u) = Y POAp)p(v)p(w).

peB

Suppose dist(v, w) > N then for deg P < N we have
(P(A)(6v),6w) =0

because P(A) is a linear combination of A¢ for £ < N and for each such £ (A%,,8,) = 0
since v and w are not connected by any path of length /.
We have therefore

@ = P(M)po(0)Bo(w) = — Y P(Ap)p(v)p(w)

PF#Po

<( sup  [P@)]) Y le(v)p(w)]

lz[<(1—e)d
< sup |P(x)|)= p(v 24 p(w 2
(|z|<(1—5)d| (@)1)3 > o) + lp(w)]

< sup [P(z)].
lal<(1-e)d

We apply this to
P(X) = Py(X) =Tn(X/(1 —€)d)
where T (X) is the N-th Chebycheff polynomial of the first kind

Tn(X) = cos(N arccos(X)) = %((X + VX2V (X — VX2 -1)N).
We have for |z| < (1 —¢)d
[Py ()] = [Tn(z/(1 —e)d)| < 1

so that



86 7. EXPANSION IN SLa(F)

On the other hand, since d/d(1 —¢) > 1 we have

1 . — N
Py(@) = Tu(@/1- ) > 3 (- + VT=57-1)

Combining the two inequalities, we have

log(2n)

 log(HUHLEINE)

O

EXERCISE 7.1. Prove an analogous result when G is an e-expander bipartite graph (hint
consider A2).

7.2.2.2. Independence number.

DEFINITION 7.9. An independent set of a graph G is a subset of I C V with no two

adjacent vertices. The independence number i(G) of G is the largest size of an independent
set.

PROPOSITION 7.10. If G, 4 s a two sided e-expander one has
i(G) < (1—¢e)n

PROOF. Exercise. O
7.2.2.3. Chromatic number.

DEFINITION 7.11. The chromatic number x(G) of a graph G is the minimum number of
colors needed to color V' so that in a set of a given color no two elements are adjacent.

REMARK 7.7. One has x(G) < n by coloring any vertice with a different color!
PROPOSITION 7.12. If G, 4 s a two sided e-expander one has

X(G)=(1—-e) "
ProOF. Exercise. ]

REMARK 7.8. One can show that

o S —
l%nl)gfrgax(|)\1|,|/\n,1|) >2vd— 1.

n,d

A graph achieving max(|A1], | \n—1]) = 2v/d — 1 is called a Ramanujan graph. Such graphs
(which are optimal expanders) exist and are called Ramanujan graphs. The theory of
modular form furnished examples of Ramanujan graphs (see [6]).

7.3. Expansion in Cayley graphs

We assume now that G = (G, S) is a (left) Cayley graph for a generating set S C G (in
particular the graph is connected); let n = |G| and d = |S| and

G = {gl =€qGg, 7gn}'
We can rewrite M as a convolution operator

Mf=pxf:gm > p(g)f(g2)

9192=4g
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where

Indeed since S is symmetric

e f(g Z Zglsfgz |S|Zf sy |S|Zfsg

gig2= 9 SGS seS seS
Likewise
MYf =p®«f
where 9 is the (-times self convolution of 4

1 .
n® = 1S]¢ Z Osy.590.5, = b * -+ x pu (€ times).
(81,527 ,5¢0)€S*
Our aim is to discuss Cayley graphs which are expanders; in particular we hope to explain
the proof of the following:

THEOREM 7.13 (Bourgain-Gamburd). Let S = {s1,---,s4} C SLa(Z) —{Ida} be a finite
symmetric set of d elements not containing the identity; for any prime p let
Sp = {s1 (modp),---,sq(modp)} C SLa(Fp)

be the set of reductions of elements of S modulo p (for p large enough, S, has d elements
and does not contain Ida). There exists € = €(|S|) > 0 such that for p sufficiently large and
such that S, generates SLa(F,), the Cayley graph (SLa(F)), Sp) is a two sided e-expander.

ExAMPLE 7.1. The following sets have the property that their reduction modulo p
generate SLy(F,) for p large enough: for k > 1 let

w6696
(with ((1) ’1“>_

1 -1
1 -k 1 0 1 0
— (0 1) and (k 1) = (—k 1)) Then S(k) (mod p) generates

SLy(F,) for p > k (so that k (modp) is invertible).
Globally the set S(1) generates SLy(Z) and S(2) generates the finite index (congruence)

subgroup
re)= (¢ 5)=(p 1) (o) csta@),

For these sets the expansion property can also be deduced from the theory of modular
forms.

One the other hand for & > 3 the set S(k) generate a subgroup Ly C SLo(Z) (the
Lubotsky group) of infinite index and which is a free group of rank 2. Moreover for p [k
Lj, (modp) generates SLa(IF,,).

REMARK 7.9. A group F; is said to be free of rank r if F' is generated by a symmetric
set of 2r (distinct) elements
S(T) = {517"' 737'a51_17"' as;l}
such that any g € F, — {e} can be written uniquely in a reduced form in the elements of
S(r):
g =wi. - wy for some ¢ > 1 and w; € S(r), wiy1 # wi_1
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7.3.1. A expansion criterion for Cayley graphs. To produce expanding Cayley
graphs we have to study the spectral properties of the convolution operator
feL*G)— uxfeLl*q).

This will depend on the methods discussed in Appendix 7.5 on representations of G
Let

7.4 dg = i di
( ) ¢ 7‘€Ir1r1(nG%)r,1 r#1 lm('l“)

the minimal dimension of a non-trivial irreducible representation of G.

PROPOSITION 7.14 (Bourgain-Gamburd). For any p € Spec(u) — {1} and any £ > 1 we
have

G|

ol < @y

PROOF. Since {4y, i < n} is an OBN of L?(G) we have for any ¢ > 1
Zp = Z 5917691>

=1

B |paths of length ¢ starting and arriving at g;|
- Z d’
i=1
Observe that by translating by g, L on the right we have
|[{paths of length ¢ starting and arriving at g;}|
is equal to
|{paths of length ¢ starting and arriving at eg|} = [{(s1,--- ,s¢) € S, s159.--- 50 = eg}|

and therefore

s¢) € St 5189 80 = ec}l

() = gL

dé
In particular we have
14 ! /
y H{(s1,--,80), (81,---,80) €5, s159.---5p = 8155.- 5}
tI‘(M2 ) — ‘G| 9 ) 9 9 ’ d% )

which we can rewrite

Zp =G, ).

Since all the terms in the sum on the left are non—negative, we obtain the upper bound

il < (IGHH®Y, u) 2.

However one can do better. Given p € Spec(M ) — {1}, let L*(G), be the corresponding
eigenspace. Since M = u x e is a convolution operator defined by left multiplication, the
eigenspace L?(G) p is invariant under the right multiplication action of G

rof : h— f(hg)
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and is therefore is a (sub)representation of the right regular representation of G. Moreover
this representation does not contain the trivial representation (which is the representation
spanned by the constant functions). It follows that

dim L*(@), > dg.
We have therefore
dg.p* < dim L*(G),.p* < tr(M*) = |G|(u), u®).
O

COROLLARY 7.15 (Bourgain-Gamburd expansion criterion). Assume that there ezists
C >1, and o, f > 0 satisfying 0 < f < a/2 < 1/2 and such that the following hold

(1) da > 1G|%,
(2) There ezists 1 < ¢ < C'log |G| such that

112 < C|G/2 8,

Then for |G| sufficiently large (depending on C,a, ) there ezists € = €(C,a,3) > 0
(not depending on |G|) such that (G,S) is a two sided e-expander.

PrOOF. We have for any p # 1

Gl w2 1/2¢ log |G| log C
< < —(1l—-a—-1+2 2——
—log |G| log C a—203

= exp( 57 (a—2ﬁ—210g|G‘))<exp(— 50 yi=1—¢

for (say) g’ = 5+Tm < «/2 and as long as |G| is sufficiently large in term of C' and
a/2 -0 O

REMARK 7.10. One can see quickly that graph (G,S) is not bipartite: if (G, S) were
bipartite the —1-eigenspace L?(G)_; would be one dimensional but is also a non-trivial
representation of G so of dimension > dg > 1.

REMARK 7.11. Note that the function
¢
0o 16§

is a decreasing functions. Indeed

/+1 l Y4
1S o =l 2 < lx o169

where ||i * o] is the operator norm which is < 1 (since Spec(M) C [—1,1]). Moreover for
any probability measure v we have by CS

1= v(g9) < Supp®)?|lv|2
g
or

(7.5) Supp(v) = 1/||v|l3
so the fact the || ug)Hg converge to 0 shows that u(se) is "spreading” through G which is in
line with the equidistribution property for expanders.
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7.4. The Bourgain-Gamburd expansion machine

The proof of Theorem 7.13 depends on a general expansion criterion called the ”Bourgain-
Gamburd expansion machine” whose properties can be verified for the Cayley graphs

(SLa(Fp), S (mod p)).
THEOREM 7.16 (Bourgain-Gamburd). Let G be a finite group and S a symetric set of

d generators and let
1
B=ps = a7 Z ds-
|S| seS
Suppose there exists constants 0 < o < 1 < A such that
(1) (Representation gap) dg > |G|*.
(2) (Product Theorem) For any & > 0 there exists &' > 0 such that setting K = |G|*,
any K-approzimate subgroup H C G satisfying
G < |H|<|GI'°

generates a proper subgroup of G.
(3) (Non-concentration along proper subgroups) There exists ¢ < 1Alog|G| such that
for any proper subgroup H C G
S1.- - 825) S S%, S81.°-- .89y € H}|
q20
There exists € = e(d, a, A) > 0 such that (G, S) is a two sided e-expander.

<|G|™*.

REMARK 7.12. For G = SLy(F,), (1) is Frobenius Theorem 6.4 while (2) is a consequence
of Helfgott product Theorem 6.2. It "remains” to discuss the verification of (3) for SLo(F))
and the proof of the ” Expansion Machine” Theorem 7.16.

7.4.1. A weighted BSG Lemma. To be able to exploit Condition (3) we will need
a new version of the Balog-Szemeredi-Gowers lemma; here is a direct consequence of the
Approximate subgroup version of the BSG lemma Theorem 4.3 (take A = A~! = B)

THEOREM 7.17 (Balog-Szemeredi-Gowers, approximate group version). There exists
C > 1 such that for any K > 2, any finite group G and any A = A~ C G finite symmetric
set whose self-normalized energy satisfies

e(AA) > 1/K.
There exist g € G, a K€ -approzimate subgroup H, such that
(7.6) |H| < K€|A|, K~C|A| < |ANngH]|.
Remember that the energy can be written in terms of a convolution

Ay ax 1y X [taxLalg)l
A= T AP

The following generalization (called the BSG weighted lemma) recovers Theorem 7.17 when
the measure probbility measure v below is the uniform measure

14
Vg = .
A4



7.4. THE BOURGAIN-GAMBURD EXPANSION MACHINE 91

LEMMA 7.18 (BSG weighted lemma). There exists an absolute constant C' such that for
any K > 2, any group G and v : G — Rxq any finitely supported probability measure on G
(>_gec V(9) = 1) which is moreover symmetric (Vg € G, v(g) = v(g™1) ) which satisfies

v xvll2 = [v]l2/ K,
then there exists a K€ -approzimate subgroup H C G and g € G such that
|H| < K/ |vl3, v(gH) > K€
For the proof it will be useful to recall a special case of Young’s convolution inequality:

LEMMA 7.19 (Young’s convolution inequality (for (2,1,2))). Let G be a group and i, v :
G +— C be finitely supported functions.
We have

% vz < llull2llv]l

Il =" v(9)l-

geG

where

REMARK 7.13. Using Holder inequality one can obtain a family of Young inequalities:
Given p, q,r € [1,00) such that

one has
[ * vl < [lpllpllvllg
where

il = O lu(g) )7

geG
and ||p* V||, |[v|q are defined similarly.

Proor. Taking absolute values, we may assume that u, are non-negative.
We have

x5 =YY wlgvg)wxv)(g) = > ulg)vggr ") (w*v)(g)

geG 9192=g g1,9€G

= D wlowlagy )P (nxv)(g)viger )Y
91,9€G

<Y wg)vlggr N (wrxv)*(9)vlger )Y
91,9€G 91,9€G
1/2 1/2

= llull2llwlly e x vliallvlly™ = llull2liv il v
We can now prove the the BSG weighted Lemma.

PROOF. Let
W = width(v) := 1/||v|3
(recall that Supp(v) > W and for A C G a finite set and v = v4 we have W = |A]) and let

V=Vg t Vst s
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where

ve = V.1, c1/100k2ws Vs> = V- 1ls100k/ws V< = V117100 K2W <o <100K /W -
We have
vl = > v(9)|* < (100K2W Z = (100K*W)~*
v(g)<1/100K2W

By Young’s inequality we have

lve % vllz < llv<llzllvlln < (LOEW) 712,
By symmetry of v we also have

v * vells < (LOKW) /2,

and therefore we have
s *vlla = v *vs 2 < llvs vl < (10EW2)7!

By assumption we have || v||s > 1/KW?'/2? and from this and the previous estimates, we
conclude that

e vz > (KW/2)7!
Let

A:={ge G, v(g) > (100K*W)~'}.
We have by Young’s inequality
1A% Lalla < [[Lall2fLall = [A]*2
and
14 % Lall2 = (100K /W) 72 ||lve * vl > K—oW3/2
and in particular
|A| > KW

On the other hand we have

1> v(A) > |A|/100K?W
and we conclude that

KW < |A| < 100K%W.
The upper bound implies that

1145 Lallz > K542,

By the BSG theorem there exists C' > 1 and a K%-approximate subgroup H and g € G
such that
|H| < K€|A] and K~C|A| < |AN gH)|
and therefore
|H| < KW = K%/ ||v|3
and

v(gH) > v(gH N A) = (100K*W) " gH N Al > K~C72|A|/W > K~ (¢+10),
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7.4.2. Proof of Theorem 7.16. In this section we assume that the assumptions (1),
(2), (3) of Theorem 7.16 hold.
We have to show that there exists C' > 1 and 1 < ¢ < C'log |G| such that

14 _
(7.7) 112 < |G|/

for some 3 < a/2.
The next Lemma shows that the non-concentration inequalities (3) a priori valid for a
single ¢ = O(log |G|) in fact hold for a whole range of large £’s:

PRroPOSITION 7.20. For any £ > %A]og |G|, any proper subgroup H C G and any g € G
we have

(7.8) sup u(gH) < |G|/,
geG

We also have

(7.9) 1119 |00 = sup 49 (g) < |G|~/
geG

and

(7.10) 112 < [ |oo O < |GI7/2.

PrROOF. By Assumption (3), there exists ¢y < %Alog|G| such that for any proper
subgroup H C GG we have

u0) (i) < |G
By positivity and symmetry, we have for any g € G,
pPO(H) = pl) 5 ) (Hgg™ H) > ) (Hg)p") (97 H) = p“) (Hg)?
and therefore, for any proper subgroup H we have

sup 10 (Hg) < |G|~/
geG
as and

sup ¥ (gH) < |G|~/
geG

by writing gH = gHg ‘g = H'g.
Given £ > %Alog |G|, for any g € G we have
p(gH) = 1) w o) (gH) < |G|~/

by averaging the previous upper bound over the various products of £ — ¢y elements of S:
this gives (7.8).
Taking H = {e} we obtain that
119 loo = sup u(g) < |G|~/
geG
so that
1112 < ool @ N = 169 ]lo0 < G172,
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LeEMMA 7.21 (Flattening lemma). Let £ > 1Alog |G| such that
11Oz > |G| ~/2 e/
then there exists n = n(a) > 0 such that
1129l = (16 % p Ol < 1G]
PROOF. Suppose instead that
11 % 1 Ol2 = G176
for some 7 > 0 (to be chosen later). Set
K =|G|".

By the weighted BSG lemma, there exists C' > 1, a K¢-approximate subgroup H C G
and g € G such that

[H] < KO/|uO)3 = [GI°/ |a O] < |GI'-e+On
and
M(e)(gH) > K¢ = |G|~
By (7.9) we have
1169|oe < G702

so that
|H| = |gH| > |G|*/>~"
and
G20 < |H| < |G e,
Let

d=a/d
and let 0’ > 0 be the exponent occurring in Assumption (2).
Let n = n(c,C) > 0 be small enough such that

a/i<a/2—-Cn<l—a+Cn<1-46, 0<Cn<min(d,a);

By the Product Theorem assumption (2), H generates a proper subgroup H' of G and we
have

pO(gH") = O (gH) > |G|7" > |G|
but this contradicts Assumption (3). O
Let us conclude the proof of Theorem 7.16: let
1
by = [§A10g|G|] +1
and let
6> = |61

notice that have

Yo = af2.
If 7o < 1/2 — /2, we can apply the Flattening Lemma and obtain

11l < |G|,



7.5. IMPLEMENTING THE BOURGAIN-GAMBURG EXPANSION MACHINE 95

If 9 + 1 < 1/2 — a/2 we keep applying the Lemma until we can’t that is until v + kn >
1/2 — /2. We need to do this at most

k<(1/2—a/2—v)/n=0(1/n)
times and we then obtain
Il < G2

for some < /2. O

7.5. Implementing the Bourgain-Gamburg expansion machine

We want now to describe the proof of Theorem 7.13.

As already explained Assumption (1) and (2) of Theorem 7.16 follow from Frobenius
Theorem and Helfgott product Theorem.

It remains to verify Assumption (3).

For this we will use the assumption that the generating set is of the form

Sp = S (modp)
for
S ={s1,-,84} CSLa(Z) — {Id2}
a fixed set.
One (ie. Bourgain-Gamburd) use this property in the following way: given g = (Z 2) €
SL2(Z) define
19lloo = max([al, [b], ||, |d]).
LEMMA 7.22. Given g,q € SLa(Z) such that ||g|lec, |9 |lcc < p/2 then
g=g (modp) <= g=g.
PROOF. Indeed if g = ¢’ (mod p) we have
a—d=b-V=c—c=d—d =0(modp)
but since
lg = 9'llsc < llglle + llg'llcc < P
we have
la—d|, b=V, le=C|, |[d=d|<p
which implies (since the only integer < p and divisible by p is 0)
a—ad =b—-b=c-=d-d =0.

Let us pursue this discussion for the special (but representative case) of

o6 409"

As was explained before (Exercise) for k > 3, S(k) generates a free group in SLg(Z) of rank
2 which implies that for any (sy,--- ,s,) € S(k)*

s, sy =1dg =4 =20'Vi>1, s; = SQ_z}—i—}—l'
For g € SLa(Z) let

llg.x]|2
J|lo = max
Igllo x£0,0) [|1x[|2
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be the operator of ¢ acting on R?. Recall that this norm is semi-multiplicative

lg192]l0 < llg1llollg2llo
and satisfies

19l < [lgllo;
indeed
max(|al, |e]) < (af* + [¢[*)"/? = [[(a, )| = [|g-(1,0)[13 < llgllo-1
and
max(|p], [d]) < (]b]* + [d[*)"/* = [|(6, )| = [|g-(0, D13 < llgllo-1.
This implies the following

LEMMA 7.23. Let

Smaz = max ||s]|o-
seS(k)

For t < %log(ﬁ) the map

(51, ,50) € S(k)* = s1.59.- - .87 (mod p) € SLy(F,)
18 1njective.

PROOF. Suppose that

§1.89.++ .8 = 87.85.-++ .5y (mod p)
we have
$1.89. - .50.8'7 .o+ 87" =1dy (mod p)
but
o .. /_1 “ .. /_1 “ .. ,_1 .. /_1 QZ
Is1.52.- - .sp.8"p .o+ .8 oo < ||S1.82.-+ - w5087y -+ .S o < Siae < P/2

From the previous lemma we conclude that
51.89.- - .55.5?1. . .slfl = Idy
and therefore s; = s}, i < £ since we are in a free group.
COROLLARY 7.24. Suppose that
")
2Smaz’

1
(< 5103;(

we have
11Oz < ()72

Proor. We have

1 1 1
HM“W%ZW > l= % > =

51.52..5¢=5].55.-+ .5} (mod p) 51.52. .80=58].55. .8
since in a free group
§1.89. ¢ .Sg = 81.85. .8}
implies that
S1 :8,1,“‘ ,SZZSZ.

In particular since |[SLa(F,)| < p® we see that for any ¢ satisfying
log(|SL2(Fp)|) < £ <, 10g(|SL2(Fp)|)
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we have

(7.11) 1113 < n®3 < ISLa(Fy)| 2

for some absolute 0 < .

In particular we have the non-concentration inequality for the trivial subgroup H = {eg}
and more generally for H any subgroup of SLy(F,) of absolutely bounded size.

For the other subgroups, we have the following classification:

THEOREM 7.25 (Dickson). Forp > 5. Given H C SLa(IF,) a strict subgroup, one of the
following holds

— H/{£lds} = U4, S4 or As
— H is a subgroup of a dihedral subgroup of order 2(pi1)

p( 1)
— H is a subgroup of a Borel subgroup of order ? p2

COROLLARY 7.26. For p > 5. For any H C SLa(F,) a strict subgroup with |H| > 120
we have for any g1, g2, 93,94 € H we have

[l91. 92]. 93, 94]] =
We then have for any ¢ < log(|SLa(F))|)

1
M([)(H) — = Z 1

wy (mod p)eH

where wy = $1.89. -+ .s¢ range over all the words of ¢ letters in the alphabet S(k). We have
1 1
@4 = — il
po(H) = g Z 1<d4e Z L.
i=1,2,3,4 we i, i=1,2,3,4
we€H [[we,1,wg 2], [we,3,w¢ 4]]=Id2 (mod p)

The commutator [[wy,1,we 2], [we3, we4]] is a word in the alphabet S(k) of length 16/ so if

1 P
(< —1
< 33 108(55—)

we have
[[we,1, we2], [we3, we4]] = Id2 (mod p) <= [[we,1, wy,2], [we,3, we4]] = Ida.
We have the following result (see [2, Prop. 8])

PROPOSITION 7.27. In the free group of rank 2 the number of quadruples (w1, we 2, W3, We 4)
of words of length 2¢ satisfying

[[we,1, we 2], [we3, weal] =1
is bounded by < (5.
It follows that for ¢ < 55 log (52— £—) one has
O < o
K dae
or equivalently
© 63/2
p (H) < i

This establishes the non-concentration inequality for strict subgroups of SLa(F)).






Appendix : Harmonic analysis for finite groups

7.6. Representations of a finite group

DEFINITION 7.28. Let G be a finite group.

— A (finite dimensional) representation of G is a group morphism
m: G — GL(V;)

where Vi # {0} is a finite dimensional complex vector space. In other terms a
representation is a linear action of G a finite dimensional complex vector space.
The vector space V. is also called a G-module.
— A morphism of G-modules (or G-morphism) ¢ : (7,Vz) = (p,V,) is a linear map
¢ : Ve =V, such that
pom=pog.
We denote by Homg (m, p) the space of all G-morphisms.
We define injective, surjective, bijective/iso/auto G-morphisms in the evident
way.

— A submodule (sub-representation) W C Vi is a subspace stable under mw(G) or
equivalently such that the inclusion ¢ : W C Vi is a G-morphism.

— A representation (m, V) is irreducible iff Vx has no non-trivial G-submodules (no
submodules distinct from {0} and Vy). Otherwise it is called reducible. We denote
by Irr(G) the set of equivalence classes of irreducible representations.

— A representation is unitarizable if there exists an inner product (e,e), on V such
that m(G) C U((e,®)r) (the unitary group of the inner product): for any g €
G, v,v' eV,

(o), p(t))x = (0,0}

Such inner product is called a unitary structure for the representation.
THEOREM 7.29. Any representation (m, V) is unitarizable.

PRrROOF. Fix any inner product (e, e) and define

N é D {gv,g0), g = plg)(v)

geG

(v,9")x

0

EXAMPLE 7.2. The regular representation is the |G|-dimensional representation of G x G
on F(G;C) via left and right translations:

reg(g.9)(f) : b (9.9).f = f(g' 'hg).

It restriction to G x {eg} (resp. {eg} x G) is called the right (resp. left) regular represen-
tation and is noted rg (resp. lg).

99
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For the regular representation (reg, F(G;C)) the unitary structure is the usual inner
product

(e = g 3 HloPlo) = 7 [ )P

geG
where dg denote the counting measure.

COROLLARY 7.30. Any representation is completely reducible: ie. decompose into a
direct sum of irreducible representations. Moreover this decomposition is unique up to per-
mutation of the factors.

PROOF. Let (e, ), be a unitary structure. If W C V; is a submodule then
Wt = {veV,YweW, (v,w) =0}
is a G-submodule and we have the decomposition into G-modules
Ve=Wawt
and we iterate. Uniqueness can be obtained from the following ” Lemma”. 0

THEOREM 7.31 (Schur’s Lemma). Let 7, p € Rep(G).
If 7 is irreducible, any G-map
o: Ve =V,
18 zero or injective.
If p is irreducible, any G-map
o:Ve—=V,
1s either zero or surjective.
If m and p are irreducible, on has

dimc Homg (7, p) = drmgp-

PROOF. Suppose 7 is irreducible and let ¢ € Homg(Vz,V,) non-zero then the kernel
is G-invariant so the kernel is either {0} or V; but cannot be V;: ie. ker¢ = {0}. Same
reasonning if p € Irr(G) with the image.

In particular if 7, p € Irr(G) and 7 % p then

Homg (Vr,V,) = {0}.

If 7 ~ p we may assume m = p. Given ¢ € Homg(V;, V) — {0} and A € C an eigenvalue
of ¢ with eigenspace V). Since V) is a non-zero G-module we must have V), = V; and
v = AId,. O

7.7. Matrix coefficients

DEFINITION 7.32. Given a unitary representation (mw,Vz) and v,w € Vi; the (v,w)
matriz coefficient of 7 is the function

<I>7r,v,w(.) :g = <g'v7w>ﬂ"

REMARK 7.14. The term matrix coefficient come from the fact that if v, w are unitary
and contained in an ONB of V., (g.v, w) is the (v, w) coefficient of the matrix representaing
m(g) € GL(V;) in that basis.
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Matrix coefficients allow to construct maps between different representations: given any
w € V; the map

Crew:VE Ve Oryy € F(G;C)
is linear and satisfies for any v
(I)ﬂ,g.v,w(g,) =(¢".g.v,w)x = (I)w,v,w(g/g) = rG(g)(CI)mv,w)(g/)

and so is a G-map relative to the right regular representation. If particular if @, ,,, is
injective, the right regular representation will ”contain” 7 as a sub-G module.
More generally given 7, p € Rep(G) and w € V, w' € V, the map

(7.12) P 1V E Vi / Drvw(9)g Hwdg = / (gv,w)rg tw'dg €V,
G G

is G-equivariant: for any h € G
O (h.v) = / (gh.v,w),rg_l.w'dg = / (g'.v,w),r(hg'_l).w'dg
G G

= h(/ (g v, w) g~ w'dg) = B0 (V).
G

EXAMPLE 7.3. In particular for 7 € Irr(G) and w € V; — {0} we have an injective
G-map
Drow:vEVr— Oy € F(G;C)

and we can identify V; with a subrepresentation of (the right regular) representation
F(G;C). We denote the image by

(7.13) Vi C F(G;C).

THEOREM 7.33 (Orthogonality of matrix coefficients). Let , p € Irr(G) non-isomorphic
and of dimension dr, d, and v,w € Vy, v',w' € V,. Let

(Dﬂ*,v,wy (I)p,v’,w’ € ]:(Gv (C)
be the corresponding matriz coefficients. We have
(q)w,v,wa q)p,v’,w’>G =0 Z'fﬂ- ¢ 4
and for m=p

(w,w') (v, ")«

™

<(I)7r,v,wa (I)ﬂ',v’,w’>G =
Proor. We have

(sow,wf(v),v’>p=/G<g-v,w>7r(g_1w’,v'>pdg
— [ (g0 )t ) g
G

:/(g.v,w},r(gv’,w’>pdg
G
= |G|<(D7T,v,wv (I)p,v’,w’>G~

S0 (Pr v Ppww ) # 0 implies that the G-map ¢, in (7.12) is non zero and 7 and p
are isomorphic.
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Assume that m = p and write V for V.. We have for v,v", w,w’ € V
<90w,w/ (U)7U/>7T = |G|<(I)7r,v,wa ‘I)p,v’,w’>G'

By Schur’s lemma we have
O = AMw, w')Idy
for some A\(w,w’) € C and
{(Pw,w (0), V") = Mw, w"){v,v")7.
Moreover its trace equals
tr(Yww ) = Mw,w')dx.

Let {v1,--- ,v4} be an ONB. We have

d

tr(‘Pw,w’) =Z<‘wa’ Uz /Z g.vi, w g ! Uz> dg

i=1
= [ S guielgw)dg = / (', w) g = |Gl T,
a5 a
Indeed for any g € G, {g.v;, i < d} is an ONB and for any ONB {v}, i < d}, one has
Z(w,,%)ﬂ@g,w)ﬂ = (w', ).

Hence

and

(0, V") 7 (w, w')

|G|<(I)7r,v,w7 (I)p,v’,w'>G = |G| d o
7r

A direct consequence of Theorem 7.33 is the following.
THEOREM 7.34 (Fourier Theory for finite groups). For any w € Irr(G) let
B, = {’Ul,"' 7wa}
be an ONB of V. and for j < d let
Vi, = {®rv0;, v € Va} CF(G;C)
be the G-space defined in (7.13) and let
(7.14) Br, = {dY*®r 1,0, } C F(G;C).

The set Bﬂ,vj is an ONB of the space Vw,vj and we have an orthogonal decomposition
into irreducible representations
D D Ve

welrr(G) j<dx
In other terms the reqular representation contains each irreducible representation Vy, m €
Irr(G) with multiplicity d. and have
|G| =dimc F(G:C) = > d2.
welrr(G)
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In addition, the set
Bg = {d}r/zq)mvi,vj, 7 € Irr(G), vi,vj € By}
form an ONB of F(G : C) and for any f € F(G : C) we have the Fourier decomposition
f— Z dr chwz,] 7rvi,vj
welrr(G) 1,j<dx

where

Cﬂ',i,j(f) = <f7 (I)ﬂ,vi,vj G = |G| Z f D, V3,05 )
geG
We also have the Plancherel-Parseval formula

S IF@E =161 e = X @ 3 L Brn, ol

geG 7r€Irr(G) 1,j<dr

Z de Y 1 F(9) P, (9)1

7r€Irr(G) i,j<dr g€G

PRrROOF. The only point which is not ”mechanical” is the fact that the orthonormal set
B generate F(G;C). If not the space orthogonal to C.(Bg) is G-stable hence a subrep-
resentation of F(G;C) which contains an irreducible representation 7. But any ONB of it
gives matrix coefficient which would have to be contained in the space generated by Bg. O

REMARK 7.15. Let mp : G — 1 be the trivial 1-dimensional representation. Its only
matrix coefficient is the constant function 1 and and the contribution to the Fourier decom-

position is
Z flg
gEG
and to the Plancherel-Parseval formula is

—|Zf

gEG

7.7.1. Interpretation in terms of linear maps. Given f € F(G;C) and 7 €
Rep(G) we define the endomorphism 7 (f) € End(V;) by

m(f) v eVer > flg)m(g)
geG
For instance for g € G
7(9) = 7(1gg})-
The coefficient (7, j) of the matrix of w(f) in the basis B, are given by

< vlavj Zf gvpvj Zf wvz,v] )

9eG geG
From this we see that
ST F @) Prin; @) = I7(H)llrs
1,j<dr g€G

where || @ ||z denote the Hilbert-Schmidt norm on End(V;), ie.
IX1Ers = (X, X) s = tr(X.X7)
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where X* is the dual (whose matrix is the conjugate transpose).
The Parseval formula can then be rewritten in a more compact form

(7.15) o)l = Z drll7 ()|

geG 7r€Irr
and more generally
(7.16) D h@h@ =g > dm(f),(f)us
geG 7r€Irr (@)
where
(X, Y>HS = tr(XY*).
Likewise the Fourier decomposition formula can be rewritten

(7.17) | Z r( (9))us

7T€II‘I‘(G)
(directly or by taking f1 = f, fo = 1(4})-
Also since f(g) = g.f(eq) where
9-f + h = f(hg)
we have

(7.18) | Z dr(m(g.f),1dy. Vg = Z dptr(m

wEIrr(G) 7r€Irr (@)

7.7.2. Convolution. The space F(G;C) is a non-commutative C-algebra relative to
the convolution product

fixfarge Y filg)fa(ge)
9192=9
with unital element ;) and the map

f e F(G;C)— n(f) € End(V;)

is an algebra morphism:

m(fixfo)= Y filg)falg2)m(g192) = 7(f1) o w(fa).

91,92€G
This algebra is equipped with an (anti-)involution

fefrge flg™h

and (7.18) can be rewritten

(7.19) fix faleq) Z r ©(f2))us

7r€Irr (G)
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