

This problem set is not representative of this class. We just want to collect some useful tools from functional analysis. Then we will move on!

Exercise 0

Make sure that you know the following notions, using, if needed, the library and Wikipedia:

- (i) the dual V^* of a normed vector space V ;
- (ii) the weak topology on V and the weak-* topology on V^* ;
- (iii) the norm of a linear map between normed vector spaces;
- (iv) the Hahn–Banach theorem for normed vector spaces.

Exercise 1

Let V be a Banach space. Define $\iota: V \rightarrow V^{**}$ by $\iota(v)(f) = f(v)$. Prove:

- (i) ι is well-defined, linear and isometric.
- (ii) ι is a homeomorphism onto its image when V has the weak topology and V^{**} the weak-* topology.
- (iii) $\iota(V)$ is weak-* dense in V^{**} .
- (iv) If $\lambda \in V^{**}$ is weak-* continuous as a map $V^* \rightarrow \mathbf{R}$, then $\lambda \in \iota(V)$.

Exercise 2

Let V, W be Banach spaces.

- (i) Given a continuous linear map $\alpha: V \rightarrow W$, define $\alpha^*: W^* \rightarrow V^*$ and check that $\|\alpha^*\| = \|\alpha\|$.
- (ii) Let $\beta: W^* \rightarrow V^*$ be a continuous linear map. Prove that $\beta = \alpha^*$ for some $\alpha: V \rightarrow W$ if and only if β is continuous for the weak-* topologies. *Hint: use Ex. 1(iv).*

Exercise 3

Let X be a set and define $\ell^1(X) = \{f: X \rightarrow \mathbf{R} : \|f\|_1 < \infty\}$, where $\|f\|_1 = \sum_{x \in X} |f(x)|$.

- (i) Make sure that you really understand the definition of $\sum_{x \in X} |f(x)|$ and deduce that $\sum_{x \in X} f(x)$ makes sense for $f \in \ell^1(X)$. Give a formal definition of $\sum_{x \in X} f(x)$.

Next, define $\ell^\infty(X) = \{f: X \rightarrow \mathbf{R} : \|f\|_\infty < \infty\}$, where $\|f\|_\infty = \sup_{x \in X} |f(x)|$.

- (ii) Given $a \in \ell^1(X)$ and $b \in \ell^\infty(X)$, we can define the number $\langle a, b \rangle = \sum_{x \in X} a(x)b(x)$. (BTW: why?) Use this to construct an isometric isomorphism between $\ell^\infty(X)$ and $\ell^1(X)^*$.

Additional question: why does it not similarly identify $\ell^1(X)$ with $\ell^\infty(X)^$?*