

Exercise 1 (maximum principle). Let G be a group, $\mu \in \text{Prob}(G)$ and suppose that the support of μ generates G as semigroup (or as monoid). Prove the following *maximum principle*: If a μ -harmonic function f has a maximum on G , then f is constant.

What happens if we assume nothing on the support? or if we only assume that the support of μ generates G as a group? (For these two additional questions, \mathbf{Z} is good enough...)

Exercise 2. The action of a group G on a set X is called **paradoxical** if there is a partition

$$X = A_1 \sqcup \dots \sqcup A_n \sqcup B_1 \sqcup \dots \sqcup B_m$$

and group elements $g_1, \dots, g_n, h_1, \dots, h_m$ which lead to two new partitions

$$X = g_1 A_1 \sqcup \dots \sqcup g_n A_n \text{ and } X = h_1 B_1 \sqcup \dots \sqcup h_m B_m.$$

- (i) Check that this is impossible if $n + m < 4$.
- (ii) Suppose that $n + m = 4$; prove that G contains a subgroup isomorphic to F_2 .

*Note: the smallest possible integer $n + m$ is called the **Tarski number** of the action $G \curvearrowright X$.*

Exercise 3. Let G be a group acting on a set X and let $A, B \subseteq X$.

- (i) Suppose that there is a piecewise- G surjection $A \rightarrow B$. Prove that there is a piecewise- G injection $B \rightarrow A$.
- (ii) Show that the converse does not hold.