

Exercise 1

Let X be a set and $m \in \ell^\infty(X)^*$. Consider the following properties:

- (i) $m(f) \geq 0$ if $f \geq 0$.
- (ii) $m(\mathbf{1}_X) = 1$, where $\mathbf{1}_X$ is the constant function 1.
- (iii) $\|m\| = 1$.

Show that any two of these properties imply that all three hold.

Exercise 2

(i) Prove that the image of the Dirac mass map $\delta: X \rightarrow \mathcal{M}(X)$ is a *discrete* subspace.

From now on, we identify (abusively) this image with X .

Define βX to be the closure of X in $\mathcal{M}(X)$.

- (iii) Give a precise proof that $\beta X \neq X$ when X is infinite.
- (iii) Prove $\beta X = \{\mu \in \mathcal{M}(X) : \mu(A) \in \{0, 1\} \forall A \subseteq X\}$.
- (iv, optional) Prove that $\beta \mathbf{N}$ is a separable compact space but is not second countable.
- (v) Easier than last week: show that the sequence δ_n has no convergent subsequence in the compact space $\beta \mathbf{N}$.

Exercise 3

Let $f: X \rightarrow X$ be a bijection of a set X .

- (i) Show that there exists a (unique) homeomorphism $\beta f: \beta X \rightarrow \beta X$ extending f .
- (ii) Show that $\beta f: \beta X \rightarrow \beta X$ has a fixed point (if and) only if f does.

Hint: Show first that the extension to $\beta \mathbf{Z} \rightarrow \beta \mathbf{Z}$ of the map $\mathbf{Z} \rightarrow \mathbf{Z}$, $n \mapsto n+1$ has no fixed point, then try to generalize.

Moral of the exercise: invariant means in $\mathcal{M}(X)$ are generally not in $\beta X \subseteq \mathcal{M}(X)$.

Exercise 4 (On $\mathrm{SL}_2(\mathbf{Z})$)

Consider the elements $a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ of the group $\mathrm{SL}_2(\mathbf{Z})$.

- (i) Prove that a and b generate $\mathrm{SL}_2(\mathbf{Z})$.
- (ii) Prove that a and b satisfy a non-trivial relation.