

Exercise 0. Check that the entire proof of the Banach–Tarski theorem holds more generally in \mathbf{R}^n for all $n \geq 3$.

What goes wrong for $n = 2$?

Exercise 1. The Banach–Tarski theorem states that the closed unit ball $B \subseteq \mathbf{R}^3$ is equidecomposable with every subset $A \subseteq \mathbf{R}^3$ that is bounded and of non-empty interior.

- (i) Give a precise proof that this fails for every A that is not bounded.
- (ii) Give an example to show that this fails for some bounded A with empty interior.
- (iii) Give an example to show that this holds for some A with empty interior.

Exercise 2. Let $G = \text{Isom}(\mathbf{R}^4)$. Let $B_3 \subseteq \mathbf{R}^4$ be the closed unit ball of \mathbf{R}^3 viewed as a subset of $\mathbf{R}^4 = \mathbf{R}^3 \oplus \mathbf{R}$; thus B_3 has empty interior.

- (i) Explain why it is still true that B_3 is G -equidecomposable to two disjoint copies of B_3 in \mathbf{R}^4 .
- (ii) Is B_3 G -equidecomposable to the unit ball B_4 of \mathbf{R}^4 ?

Exercise 3 (On $\text{SL}_2(\mathbf{Z})$, part IV). Consider the action of $\text{SL}_2(\mathbf{Z})$ on \mathbf{Z}^2 (by matrix multiplication) and write 0 for the zero vector in \mathbf{Z}^2 .

- (i) Prove that δ_0 is the only $\text{SL}_2(\mathbf{Z})$ -invariant mean on \mathbf{Z}^2 .

Hint: your solution to Ex. 1 in Problem Set 4 certainly contains the ingredients that you need.

- (ii) Consider the corresponding semi-direct product $G = \mathbf{Z}^2 \rtimes \text{SL}_2(\mathbf{Z})$. Deduce from (i) that $\text{SL}_2(\mathbf{Z})$ is not co-amenable in G .