

## Abstract Analysis on Groups

---

The (integral) **Heisenberg group**  $G$  can be defined as the set  $\mathbf{Z}^3$  with the following multiplication:

$$(x, y, z)(x', y', z') = (x + x', y + y', z + z' + xy').$$

This looks like the usual group structure of  $\mathbf{Z}^3$  perturbed by the term  $xy'$ ; for those who know cohomology, the latter term is a “2-cocycle”. Observe that  $G$  is not commutative:

$$(1, 0, 0)(0, 1, 0) = (1, 1, 1) \neq (1, 1, 0) = (0, 1, 0)(1, 0, 0).$$

*Check that this multiplication is indeed associative. The neutral element is  $(0, 0, 0)$ ; what is the inverse of  $(x, y, z)$ ?*

We can define a subgroup  $Z < G$  by  $Z = \{(0, 0, z) : z \in \mathbf{Z}\}$ . This is a normal subgroup, because it has the much stronger property of being **central**: the elements of  $Z$  commute with every element of  $G$ .

*Verify this claim, and verify that conversely every such element belongs to  $Z$ . In words:  $Z$  is the center of  $G$ .*

Consider the map  $\pi: G \rightarrow \mathbf{Z}^2$  defined by  $\pi(x, y, z) = (x, y)$ . This is a group homomorphism, it is surjective, and its kernel is precisely  $Z$ . In conclusion, we have shown that  $G$  is an extension of  $\mathbf{Z}$  by  $\mathbf{Z}^2$ .

This gives us a nice example of a non-commutative amenable group. In contrast to semi-direct products, we cannot lift  $\mathbf{Z}^2$  into  $G$  with respect to  $\pi$ : even though there are subgroups of  $G$  isomorphic to  $\mathbf{Z}^2$  (do you see them?), such subgroups will never map onto  $\mathbf{Z}^2$  via  $\pi$ . (Do you see why not?). For instance, the elements of the form  $(x, y, 0)$  do not form a subgroup.

... if anyone likes matrices, they can also think of  $G$  in terms of  $\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$ .