STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

ANSWER SHEET 2

Assignment 1. (a) Call g the function that maps (X,Y) onto (U, V) = (X +Y, X —-Y).
g is a differentiable bijection whose inverse ¢! sends (U, V) into

(U+V U—V)

)
and has Jacobian
g /2 1/2
“\12 -1/2 )°
The transformation theorem for random variable gives the joint density fi v (u,v) as

fov(u,v) = fuy <u;—v, u;”) - |det(J)| = %fx (u;”> fy (“;U> _

11 . { 1(u+v)2} 1 ex{ 1(u—v)2}
= —-—— X —_—— —_— —_ | =
2 v P12\ 2 Var P12V
11 { 1u2} 11 { 1v2}
= — ——¢€X —_— c — —=6€eX —_— .
Vavar Pl 22 Vaves P 22
(b) Observe that (Slide 66)

X+Y XY 1
X+Y,X-Y ~N(02) = ; 5 ~N<0,2>,

and in particular fy v (u,v) = fu(u)fy(v), proving independence.
Assignment 2. (a)
Var(X) =E(X?) —E(X)?> =E(X?) henceE(X?) =1
1
IEX3_/x3 exp(—2?/2)dx =0
(%) = [ & esp(=a?2)

E(X*) = MP(0) =3

where the fact that E(X3) = 0 follows from antisimmetry around zero.
(b) Putting all the previous results toghether we have :

Cov(X,X?) =E(X - X?) - E(X)E(X?) =0

Cov(X, X?)
2\ ) _
Corr(X, X*) = ar(X)Var(X2) 0

This exercise gives another example of how uncorrelation does not imply independence.
(2) There is an exact relation between X and Y = X? given by the parabola. The sample
correlation between the sample from X and X? decreases as the sample size increases (a
consequence of the Law of Large Numbers).

Assignment 3. (a) We use the convention that (") =0if m > n. Then P(Y =m|X =n) =
(Mp™(1—p)"~™ and so (n,m =0,1,2,...)

m
n

PY=m,X=n)=PY =m|X =n)P(X =n) = e (Z)pm(l — p)”_m%,

1



STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

(b) Using (a) and the law of total probability

m(] _ p)n—myn m\m o B 1— )\k
(1-p) :pm' S A= p)A"

m!(n —m)! k!

o0 (o)
PY=m)=Y PY=mX=n)=c?Y ?
n=0 n=m k=0

We identify the elements of a Poisson(A[1 — p]) distribution in the sum :

Ze—AW _ Ze—%—m—p}w _
k=0 k=0

Thus P(Y = m) = (p\)™e~*?/m! for all m, and therefore Y ~ Poisson(p)).

In words : a conditional-upon-Poisson binomial is again Poisson with a smaller parameter.
(c) By the formulae for binomial distributions we have E[Y'|X]| = Xp and Var[Y|X]| = Xp(1—
p). Since X and Y are Poisson this gives

E(Var[Y|X]) 4+ Var[E(Y|X)] = Ap(1 — p) + A\p?> = \p = VarY.
(d) The moment generating function of X + X’ at t € R is
My (1) M (t) = exp(Ale’ — 1)) exp(ule’ — 1]) = exp([A + e’ — 1]).
This is the moment generating function of a Poisson(A + ) random variable. (Direct calcu-

lation of P(X + X’ = k) is also possible.)
(e) If X + X' =k and X = m then X’ must equal k —m. Thus

(X =mlX + ) P(X + X' = &) (& —m)! Kl

This is reminiscent of the binomial distribution, and indeed, it equals

_ <k> Am:ukim _ <k> m(l_ )k—m _ A
) O+ k)1 A S

We see that X|X + X' = k is Binom(k, A\/(A + p)). In words, a Poisson conditioned on its
sum with an independent Poisson is binomial.

(f) The black and red points are very close to each other. This means that the corresponding
binomial and Poisson distributions are very similar. The approximation becomes better as n
increases and worse as n decreases (try n = 7,8,9). When n < 7 there is an error because the
success probability of the binomial is larger than one.

(g) We have for z = A\(e! — 1)

PX=m,X' =k—m) e *\™ e‘“uk_m/e_[)‘+“]()\ + p)k

Mg, (t) = (1 — A/n+ Xet/n)" = <1 + A(etn_l)y —exp(Aef —=1]), n— .

The right-hand side is the moment generating function of a Poisson distribution function.
This means that the sequence of distributions Binom(n,A/n) converge to the Poisson(\)
distribution as n — oo in a sense that will be made precise later on in the course.
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Assignment 4. (a) Let X ~ Geom(p) and remember that

n—li 1—qn
a = .

< 1—a

0

k—1
PX>k) =1-P(X<k)=1-PX<k-1)=1-Y (1-p)p=
=0
k—1 _ _ k
=1pZ(1p)i=1p1(1pp)=
=0
=(1-p)F

P(X > X >
P(X > k4m|X > k)= DX ZhEmX 2k)

P(X > k)
P(X >k+m) (1-—p)ktm
= = =1-p"=PX > .
(c) Rewrite the lack of memory property as
PY >n+m)=PY >m)P(Y > n). (1)

Let us prove by induction that
P(Y >n)=PY >1)".
Substituting n = 0 into (1) we have P(Y > 0) = 1, hence
PY>n+1)=PY >1)PY >n)=P(Y >1)-PY >1)" =P(Y >1)""..
Now,
P(Y =k)=PY > k) —P(Y >k+1) =P >1)F —P(Y > 1)"! =
—B(Y > DF(1—B(Y > 1)) = (1—p)p
where p=1—P(Y > 1). In particular Y ~ Geom/(p).

Assignment 5. (a) We need to find fx, (z1) = [*° fx(z1,22)dz2. In order to compute the
integral, first we adjust the expression in the exponential so as to get a square form in x5 as
follows.

2 2
(m m) +<xz /~L2> _2p(x1 m) (frz M2)
o1 02 01 02
T1 — W1 2 T — 2 2 T1— T — U2 T1— M 2
= - () () e () (250 o (5
o1 09 o1 g9 01
2 2
T — U1 T2 — {2 Ty — H1
e () () (52)
o1 09 o1

_ (1_p2)($1—ﬂ1>2 {2 — Ay (21)}?

+ 2 ) say,
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where o
2
Ar(x1) = p2 + P;l(fl‘l — p11)-

Plugging-in the above expression in the integral, we get

1 1 (21— m\> 1
Pty m) = 27T0102W“p{‘2< 7 >}p{‘z<l—p> o2~ P

B L 1 (n—m 2 1 oy d 72— A1(z1)]
~ V2mo p{ 2< a1 >}m02\/1p2 "I 2030-7) }.(2)

Thus,

fxi(21) = - erp L (351 - M1>2 /OO ! exp o)l Aoy dxa.
! V2o 2 o1 —oo V2mo94/1 — p? 205(1 — p?)
We can now identify the integrand above (as a function of x5 for a fixed value of x;) as the

density of a Normal distribution with mean A;(x;) and variance ¢2(1 — p?). Thus, the value
of the above integral is one. Hence,

1 12—\
= —= , eR.
S (@) V2o, eacp{ 2 ( o1 ) } o

(b) The calculations/integration in (a) can be done with respect to x; in the same way (by
symmetry), and this results in the distribution of X5 being

1 1 (29— p2\>
= —= , eR.
Pale) = 55, ””p{ (™ )} "

(c¢) The marginal density of X; is Normal with mean p; and variance 012 fori=1,2.

(d) Looking at the factorization of the joint density, namely, equation (2), done when calcu-
lating the marginal density in part (a), and given that the marginal density of X7 is the first
part of the equation (2), it now follows that the conditional density of Xy | X7 = z; is given
by

_ fx(@r,20)
Fxalxi=a (22) = fx (@)

) ; p{_[—AHJ} B

V2mog\/1 — p? 205(1 — p?)
Similarly, the conditional density of X; | X3 = x9 is given by

fX1|X2=x2(‘T1) = f);)((xé;j;)

1 1 — Ay(o)]?
erpy —————2— 7, x1 €R,
V2ro1\/1 — p? p{ 207(1 — p?) '

where -
1
Ag(w2) = 1 + 9;2(1‘2 — i2).

4



STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

(e) Yes.
(f) E[X1 | Xo] = A3(Xs) and E[ X5 | X1] = A1(X7).
(g) Note that

g g
E{E[X; | Xu]} = E {m o2 (X - m} = 1+ pZEE (X — ) = = BX),

since E(Xy — puo) = 0. This is because the previous expectation is taken with respect to the
unconditional distribution of X9, and the mean of this unconditional distribution is ps.
(h) We know that COV(Xl, XQ) = ]E(XlXQ) - E(Xl) E(XQ) Now,

E(X1X2) = E[E(X;1X2| X9)]
= E[Xo2E(X; | X2)]

g
— EXaAs()] = E| %o fim + 02 (o — ) |
o
= mE(Xy)+ P;; E[X2 (X2 — p2)]
o1
= pip2 + P(; {E[X3] — o E(X2)}
o1
= mmuato {Var(Xa) + [E(X2)]* — p3}
01 2
= pip2 + ,0;202 = M2 + poioa.

Thus, Cov(Xy, X2) = pojos.
(i) The mean vector of X is pu = (1, p2

Y — U% po102
pPO102 O‘%

)T, and the covariance matrix of X is

(j) Var[X; | Xo] = 03(1 — p?) and Var[Xy | X1] = 02(1 — p?).
(k) Clearly, E[Var[Xs | X1]] = 03(1 — p?). Also,

Var(E[X2 | X1]) = Var (,ug + p@(X1 - M1)>
o1

203
= p"—Var(Xy — 1)
07

2

_ 202 2 2 2

= P 301 = p 0y
01

Thus, E[Var[Xs | X1]] + Var(E[X; | X1]) = 03(1 — p?) + p*03 = 05 = Var(Xa).

Assignment 6. (a) The value of mean_est = 1.987.

(b) The value of mean_out = 1.999907. When M is set to 100, the value of mean_out changes
very slightly, and the new value is 2. Since the code is computing an approximation of the
expected value of a Poisson(2) distribution (since one cannot in practice compute an infinite
sum), the increase in the value of M implies that the approximation is better. In fact, the
values of jxdpois(j,2) are negligible for j > 100 so that the sum upto the first 100 terms
gives the true expected value.
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(c) The value of mean_outl = 1.999998. It is very close to mean_out and mean_est.
(d) Since P[Y" > k] = > 22, .| P[Y = j], we have

Py >k = > > PY =4
k=0 k=0 j=k+1
oo j—1

= > > Py =j

j=1 k=0

= Y PV =4 = ) jPY=j] = ElY].
j=1 j=0

(f) Yes. The value of mean_out = 1.504216. The expected value of a random variable having
a Gamma(3,2) distribution = 3/2 = 1.5.

(g) For smaller values of the sample size n = 57, the difference between the true expected
value (namely, 1.5) and the value of mean_outslj] is greater compared to that for larger values
of the sample size. In fact, for n = 5'°, the two values are almost the same. This indicates
that the sample mean is a good estimator of the true expected value and becomes closer to
it as the sample size grows.

1.52
1

1.50

1.48
Il

Est. mean

1.46
Il

logs(n)

(i) The value of mean new = 1.5 and the absolute error in computation is < 4.8 x 107°. This
value is exactly equal to the true expected value modulo the absolute error. Since the code
computes the integral of the survival function (namely, 1 - c.d.f.) over (0, 00), this indicates
that the expected value of the Gamma(3,2) distribution can also be computed in this way.



