
Statistics for Data Science Rajita Chandak and Myrto Limnios

Answer sheet 2

Assignment 1. (a) Call g the function that maps (X,Y ) onto (U, V ) = (X + Y,X − Y ).
g is a differentiable bijection whose inverse g−1 sends (U, V ) into(

U + V

2
,
U − V

2

)
and has Jacobian

J =

(
1/2 1/2
1/2 −1/2

)
.

The transformation theorem for random variable gives the joint density fU,V (u, v) as

fU,V (u, v) = fx,y
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(b) Observe that (Slide 66)

X + Y,X − Y ∼ N (0, 2) =⇒ X + Y

2
,
X − Y

2
∼ N

(
0,

1

2

)
,

and in particular fU,V (u, v) = fU (u)fV (v), proving independence.

Assignment 2. (a)

V ar(X) = E(X2)− E(X)2 = E(X2) henceE(X2) = 1

E(X3) =

∫
R
x3

1√
2π

exp(−x2/2)dx = 0

E(X4) = M
(4)
X (0) = 3

where the fact that E(X3) = 0 follows from antisimmetry around zero.
(b) Putting all the previous results toghether we have :

Cov(X,X2) = E(X ·X2)− E(X)E(X2) = 0

Corr(X,X2) =
Cov(X,X2)

Var(X)Var(X2)
= 0

This exercise gives another example of how uncorrelation does not imply independence.
(2) There is an exact relation between X and Y = X2 given by the parabola. The sample
correlation between the sample from X and X2 decreases as the sample size increases (a
consequence of the Law of Large Numbers).

Assignment 3. (a) We use the convention that
(
n
m

)
= 0 if m > n. Then P(Y = m|X = n) =(

n
m

)
pm(1− p)n−m and so (n,m = 0, 1, 2, . . . )

P(Y = m,X = n) = P(Y = m|X = n)P(X = n) = e−λ

(
n

m

)
pm(1− p)n−mλn

n!
.
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(b) Using (a) and the law of total probability

P(Y = m) =
∞∑
n=0

P(Y = m,X = n) = e−λ
∞∑

n=m

pm(1− p)n−mλn

m!(n−m)!
=

pmλm

m!

∞∑
k=0

e−λ [(1− p)λ]k

k!
.

We identify the elements of a Poisson(λ[1− p]) distribution in the sum :

∞∑
k=0

e−λ [(1− p)λ]k

k!
=

∞∑
k=0

e−λpe−λ[1−p] [(1− p)λ]k

k!
= e−λp.

Thus P(Y = m) = (pλ)me−λp/m! for all m, and therefore Y ∼ Poisson(pλ).
In words : a conditional-upon-Poisson binomial is again Poisson with a smaller parameter.
(c) By the formulae for binomial distributions we have E[Y |X] = Xp and Var[Y |X] = Xp(1−
p). Since X and Y are Poisson this gives

E(Var[Y |X]) + Var[E(Y |X)] = λp(1− p) + λp2 = λp = VarY.

(d) The moment generating function of X +X ′ at t ∈ R is

MX(t)MX′(t) = exp(λ[et − 1]) exp(µ[et − 1]) = exp([λ+ µ][et − 1]).

This is the moment generating function of a Poisson(λ + µ) random variable. (Direct calcu-
lation of P(X +X ′ = k) is also possible.)
(e) If X +X ′ = k and X = m then X ′ must equal k −m. Thus

P(X = m|X +X ′ = k) =
P(X = m,X ′ = k −m)

P(X +X ′ = k)
=

e−λλm

m!

e−µµk−m

(k −m)!

/
e−[λ+µ](λ+ µ)k

k!

=

(
k

m

)
λmµk−m

(λ+ µ)k
.

This is reminiscent of the binomial distribution, and indeed, it equals

=

(
k

m

)
λmµk−m

(λ+ µ)m(λ+ µ)k−m
=

(
k

m

)
qm(1− q)k−m, q =

λ

λ+ µ
.

We see that X|X + X ′ = k is Binom(k, λ/(λ + µ)). In words, a Poisson conditioned on its
sum with an independent Poisson is binomial.
(f) The black and red points are very close to each other. This means that the corresponding
binomial and Poisson distributions are very similar. The approximation becomes better as n
increases and worse as n decreases (try n = 7, 8, 9). When n < 7 there is an error because the
success probability of the binomial is larger than one.
(g) We have for x = λ(et − 1)

MBn(t) = (1− λ/n+ λet/n)n =

(
1 +

λ(et − 1)

n

)n

→ exp(λ[et − 1]), n → ∞.

The right-hand side is the moment generating function of a Poisson distribution function.
This means that the sequence of distributions Binom(n, λ/n) converge to the Poisson(λ)
distribution as n → ∞ in a sense that will be made precise later on in the course.
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Assignment 4. (a) Let X ∼ Geom(p) and remember that

n−1∑
i=0

ai =

(
1− an

1− a

)
.

P(X ≥ k) = 1− P(X < k) = 1− P(X ≤ k − 1) = 1−
k−1∑
i=0

(1− p)ip =

= 1− p

k−1∑
i=0

(1− p)i = 1− p
1− (1− p)k

p
=

= (1− p)k.

(b)

P(X ≥ k +m|X ≥ k) =
P(X ≥ k +m,X ≥ k)

P(X ≥ k)
=

=
P(X ≥ k +m)

P(X ≥ k)
=

(1− p)k+m

(1− p)k
= (1− p)m = P(X ≥ m).

(c) Rewrite the lack of memory property as

P(Y ≥ n+m) = P(Y ≥ m)P(Y ≥ n). (1)

Let us prove by induction that

P(Y ≥ n) = P(Y ≥ 1)n.

Substituting n = 0 into (1) we have P(Y ≥ 0) = 1, hence

P(Y ≥ n+ 1) = P(Y ≥ 1)P(Y ≥ n) = P(Y ≥ 1) · P(Y ≥ 1)n = P(Y ≥ 1)n+1.

Now,

P(Y = k) = P(Y ≥ k)− P(Y ≥ k + 1) = P(Y ≥ 1)k − P(Y ≥ 1)k+1 =

= P(Y ≥ 1)k(1− P(Y ≥ 1)) = (1− p)kp

where p = 1− P(Y ≥ 1). In particular Y ∼ Geom(p).

Assignment 5. (a) We need to find fX1(x1) =
∫∞
−∞ fX(x1, x2)dx2. In order to compute the

integral, first we adjust the expression in the exponential so as to get a square form in x2 as
follows.

(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
= (1− ρ2)

(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+ ρ2

(
x1 − µ1

σ1

)2

= (1− ρ2)

(
x1 − µ1

σ1

)2

+

{(
x2 − µ2

σ2

)
− ρ

(
x1 − µ1

σ1

)}2

= (1− ρ2)

(
x1 − µ1

σ1

)2

+
{x2 −A1(x1)}2

σ2
2

, say,
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where
A1(x1) = µ2 + ρ

σ2
σ1

(x1 − µ1).

Plugging-in the above expression in the integral, we get

fX(x1, x2) =
1

2πσ1σ2
√

1− ρ2
exp

{
−1

2

(
x1 − µ1

σ1

)2
}

exp

{
− 1

2σ2
2(1− ρ2)

[x2 −A1(x1)]
2

}

=
1√
2πσ1

exp

{
−1

2

(
x1 − µ1

σ1

)2
}

1
√
2πσ2

√
1− ρ2

exp

{
− [x2 −A1(x1)]

2

2σ2
2(1− ρ2)

}
. (2)

Thus,

fX1(x1) =
1√
2πσ1

exp

{
−1

2

(
x1 − µ1

σ1

)2
}∫ ∞

−∞

1
√
2πσ2

√
1− ρ2

exp

{
− [x2 −A1(x1)]

2

2σ2
2(1− ρ2)

}
dx2.

We can now identify the integrand above (as a function of x2 for a fixed value of x1) as the
density of a Normal distribution with mean A1(x1) and variance σ2

2(1− ρ2). Thus, the value
of the above integral is one. Hence,

fX1(x1) =
1√
2πσ1

exp

{
−1

2

(
x1 − µ1

σ1

)2
}
, x1 ∈ R.

(b) The calculations/integration in (a) can be done with respect to x1 in the same way (by
symmetry), and this results in the distribution of X2 being

fX2(x2) =
1√
2πσ2

exp

{
−1

2

(
x2 − µ2

σ2

)2
}
, x2 ∈ R.

(c) The marginal density of Xi is Normal with mean µi and variance σ2
i for i = 1, 2.

(d) Looking at the factorization of the joint density, namely, equation (2), done when calcu-
lating the marginal density in part (a), and given that the marginal density of X1 is the first
part of the equation (2), it now follows that the conditional density of X2 | X1 = x1 is given
by

fX2|X1=x1
(x2) =

fX(x1, x2)

fX1(x1)

=
1

√
2πσ2

√
1− ρ2

exp

{
− [x2 −A1(x1)]

2

2σ2
2(1− ρ2)

}
, x2 ∈ R.

Similarly, the conditional density of X1 | X2 = x2 is given by

fX1|X2=x2
(x1) =

fX(x1, x2)

fX2(x2)

=
1

√
2πσ1

√
1− ρ2

exp

{
− [x1 −A2(x2)]

2

2σ2
1(1− ρ2)

}
, x1 ∈ R,

where
A2(x2) = µ1 + ρ

σ1
σ2

(x2 − µ2).
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(e) Yes.
(f) E[X1 | X2] = A2(X2) and E[X2 | X1] = A1(X1).
(g) Note that

E{E[X1 | X2]} = E
{
µ1 + ρ

σ1
σ2

(X2 − µ2)

}
= µ1 + ρ

σ1
σ2

E(X2 − µ2) = µ1 = E(X1),

since E(X2 − µ2) = 0. This is because the previous expectation is taken with respect to the
unconditional distribution of X2, and the mean of this unconditional distribution is µ2.
(h) We know that Cov(X1, X2) = E(X1X2)− E(X1)E(X2). Now,

E(X1X2) = E[E(X1X2 | X2)]

= E[X2 E(X1 | X2)]

= E[X2A2(X2)] = E
[
X2

{
µ1 + ρ

σ1
σ2

(X2 − µ2)

}]
= µ1 E(X2) + ρ

σ1
σ2

E[X2(X2 − µ2)]

= µ1µ2 + ρ
σ1
σ2

{
E
[
X2

2

]
− µ2 E(X2)

}
= µ1µ2 + ρ

σ1
σ2

{
Var(X2) + [E(X2)]

2 − µ2
2

}
= µ1µ2 + ρ

σ1
σ2

σ2
2 = µ1µ2 + ρσ1σ2.

Thus, Cov(X1, X2) = ρσ1σ2.
(i) The mean vector of X is µ = (µ1, µ2)

T , and the covariance matrix of X is

Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
(j) Var[X1 | X2] = σ2

1(1− ρ2) and Var[X2 | X1] = σ2
2(1− ρ2).

(k) Clearly, E[Var[X2 | X1]] = σ2
2(1− ρ2). Also,

Var(E[X2 | X1]) = Var

(
µ2 + ρ

σ2
σ1

(X1 − µ1)

)
= ρ2

σ2
2

σ2
1

Var(X1 − µ1)

= ρ2
σ2
2

σ2
1

σ2
1 = ρ2σ2

2.

Thus, E[Var[X2 | X1]] + Var(E[X2 | X1]) = σ2
2(1− ρ2) + ρ2σ2

2 = σ2
2 = Var(X2).

Assignment 6. (a) The value of mean est = 1.987.
(b) The value of mean out = 1.999907. When M is set to 100, the value of mean out changes
very slightly, and the new value is 2. Since the code is computing an approximation of the
expected value of a Poisson(2) distribution (since one cannot in practice compute an infinite
sum), the increase in the value of M implies that the approximation is better. In fact, the
values of j∗dpois(j,2) are negligible for j ≥ 100 so that the sum upto the first 100 terms
gives the true expected value.
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(c) The value of mean out1 = 1.999998. It is very close to mean out and mean est.
(d) Since P[Y > k] =

∑∞
j=k+1 P[Y = j], we have

∞∑
k=0

P[Y > k] =
∞∑
k=0

∞∑
j=k+1

P[Y = j]

=
∞∑
j=1

j−1∑
k=0

P[Y = j]

=
∞∑
j=1

jP[Y = j] =
∞∑
j=0

jP[Y = j] = E[Y ].

(f) Yes. The value of mean out = 1.504216. The expected value of a random variable having
a Gamma(3,2) distribution = 3/2 = 1.5.
(g) For smaller values of the sample size n = 5j , the difference between the true expected
value (namely, 1.5) and the value of mean outs[j] is greater compared to that for larger values
of the sample size. In fact, for n = 510, the two values are almost the same. This indicates
that the sample mean is a good estimator of the true expected value and becomes closer to
it as the sample size grows.

1 2 3 4 5 6 7 8 9 10

1.
42

1.
44

1.
46

1.
48

1.
50

1.
52

log5(n)

E
st

. m
ea

n

(i) The value of mean new = 1.5 and the absolute error in computation is < 4.8× 10−5. This
value is exactly equal to the true expected value modulo the absolute error. Since the code
computes the integral of the survival function (namely, 1 - c.d.f.) over (0,∞), this indicates
that the expected value of the Gamma(3,2) distribution can also be computed in this way.
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