

ANSWER SHEET 2

Assignment 1. (a) Call g the function that maps (X, Y) onto $(U, V) = (X + Y, X - Y)$. g is a differentiable bijection whose inverse g^{-1} sends (U, V) into

$$\left(\frac{U + V}{2}, \frac{U - V}{2} \right)$$

and has Jacobian

$$J = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}.$$

The transformation theorem for random variable gives the joint density $f_{U,V}(u, v)$ as

$$\begin{aligned} f_{U,V}(u, v) &= f_{x,y} \left(\frac{u+v}{2}, \frac{u-v}{2} \right) \cdot |det(J)| = \frac{1}{2} f_X \left(\frac{u+v}{2} \right) f_Y \left(\frac{u-v}{2} \right) = \\ &= \frac{1}{2} \frac{1}{\sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \left(\frac{u+v}{2} \right)^2 \right\} \frac{1}{\sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \left(\frac{u-v}{2} \right)^2 \right\} = \\ &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \frac{u^2}{2} \right\} \cdot \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \frac{v^2}{2} \right\}. \end{aligned}$$

(b) Observe that (Slide 66)

$$X + Y, X - Y \sim \mathcal{N}(0, 2) \implies \frac{X + Y}{2}, \frac{X - Y}{2} \sim \mathcal{N} \left(0, \frac{1}{2} \right),$$

and in particular $f_{U,V}(u, v) = f_U(u)f_V(v)$, proving independence.

Assignment 2. (a)

$$\begin{aligned} \text{Var}(X) &= \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \mathbb{E}(X^2) \text{ hence } \mathbb{E}(X^2) = 1 \\ \mathbb{E}(X^3) &= \int_{\mathbb{R}} x^3 \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) dx = 0 \\ \mathbb{E}(X^4) &= M_X^{(4)}(0) = 3 \end{aligned}$$

where the fact that $\mathbb{E}(X^3) = 0$ follows from antisymmetry around zero.

(b) Putting all the previous results together we have :

$$\begin{aligned} \text{Cov}(X, X^2) &= \mathbb{E}(X \cdot X^2) - \mathbb{E}(X)\mathbb{E}(X^2) = 0 \\ \text{Corr}(X, X^2) &= \frac{\text{Cov}(X, X^2)}{\text{Var}(X)\text{Var}(X^2)} = 0 \end{aligned}$$

This exercise gives another example of how uncorrelation does not imply independence.

(2) There is an exact relation between X and $Y = X^2$ given by the parabola. The sample correlation between the sample from X and X^2 decreases as the sample size increases (a consequence of the Law of Large Numbers).

Assignment 3. (a) We use the convention that $\binom{n}{m} = 0$ if $m > n$. Then $\mathbb{P}(Y = m | X = n) = \binom{n}{m} p^m (1-p)^{n-m}$ and so ($n, m = 0, 1, 2, \dots$)

$$\mathbb{P}(Y = m, X = n) = \mathbb{P}(Y = m | X = n) \mathbb{P}(X = n) = e^{-\lambda} \binom{n}{m} p^m (1-p)^{n-m} \frac{\lambda^n}{n!}.$$

(b) Using (a) and the law of total probability

$$\mathbb{P}(Y = m) = \sum_{n=0}^{\infty} \mathbb{P}(Y = m, X = n) = e^{-\lambda} \sum_{n=m}^{\infty} \frac{p^m (1-p)^{n-m} \lambda^n}{m! (n-m)!} = \frac{p^m \lambda^m}{m!} \sum_{k=0}^{\infty} e^{-\lambda} \frac{[(1-p)\lambda]^k}{k!}.$$

We identify the elements of a $\text{Poisson}(\lambda[1-p])$ distribution in the sum :

$$\sum_{k=0}^{\infty} e^{-\lambda} \frac{[(1-p)\lambda]^k}{k!} = \sum_{k=0}^{\infty} e^{-\lambda p} e^{-\lambda[1-p]} \frac{[(1-p)\lambda]^k}{k!} = e^{-\lambda p}.$$

Thus $\mathbb{P}(Y = m) = (p\lambda)^m e^{-\lambda p} / m!$ for all m , and therefore $Y \sim \text{Poisson}(p\lambda)$.

In words : *a conditional-upon-Poisson binomial is again Poisson with a smaller parameter.*

(c) By the formulae for binomial distributions we have $\mathbb{E}[Y|X] = Xp$ and $\text{Var}[Y|X] = Xp(1-p)$. Since X and Y are Poisson this gives

$$\mathbb{E}(\text{Var}[Y|X]) + \text{Var}[\mathbb{E}(Y|X)] = \lambda p(1-p) + \lambda p^2 = \lambda p = \text{Var } Y.$$

(d) The moment generating function of $X + X'$ at $t \in \mathbb{R}$ is

$$M_X(t)M_{X'}(t) = \exp(\lambda[e^t - 1]) \exp(\mu[e^t - 1]) = \exp([\lambda + \mu][e^t - 1]).$$

This is the moment generating function of a $\text{Poisson}(\lambda + \mu)$ random variable. (Direct calculation of $\mathbb{P}(X + X' = k)$ is also possible.)

(e) If $X + X' = k$ and $X = m$ then X' must equal $k - m$. Thus

$$\begin{aligned} \mathbb{P}(X = m|X + X' = k) &= \frac{\mathbb{P}(X = m, X' = k - m)}{\mathbb{P}(X + X' = k)} = \frac{e^{-\lambda} \lambda^m}{m!} \frac{e^{-\mu} \mu^{k-m}}{(k-m)!} \left/ \frac{e^{-[\lambda+\mu]} (\lambda + \mu)^k}{k!} \right. \\ &= \binom{k}{m} \frac{\lambda^m \mu^{k-m}}{(\lambda + \mu)^k}. \end{aligned}$$

This is reminiscent of the binomial distribution, and indeed, it equals

$$= \binom{k}{m} \frac{\lambda^m \mu^{k-m}}{(\lambda + \mu)^m (\lambda + \mu)^{k-m}} = \binom{k}{m} q^m (1-q)^{k-m}, \quad q = \frac{\lambda}{\lambda + \mu}.$$

We see that $X|X + X' = k$ is $\text{Binom}(k, \lambda/(\lambda + \mu))$. In words, *a Poisson conditioned on its sum with an independent Poisson is binomial*.

(f) The black and red points are very close to each other. This means that the corresponding binomial and Poisson distributions are very similar. The approximation becomes better as n increases and worse as n decreases (try $n = 7, 8, 9$). When $n < 7$ there is an error because the success probability of the binomial is larger than one.

(g) We have for $x = \lambda(e^t - 1)$

$$M_{B_n}(t) = (1 - \lambda/n + \lambda e^t / n)^n = \left(1 + \frac{\lambda(e^t - 1)}{n}\right)^n \rightarrow \exp(\lambda[e^t - 1]), \quad n \rightarrow \infty.$$

The right-hand side is the moment generating function of a Poisson distribution function. This means that the sequence of distributions $\text{Binom}(n, \lambda/n)$ converge to the $\text{Poisson}(\lambda)$ distribution as $n \rightarrow \infty$ in a sense that will be made precise later on in the course.

Assignment 4. (a) Let $X \sim \text{Geom}(p)$ and remember that

$$\sum_{i=0}^{n-1} a^i = \left(\frac{1-a^n}{1-a} \right).$$

$$\begin{aligned} \mathbb{P}(X \geq k) &= 1 - \mathbb{P}(X < k) = 1 - \mathbb{P}(X \leq k-1) = 1 - \sum_{i=0}^{k-1} (1-p)^i p = \\ &= 1 - p \sum_{i=0}^{k-1} (1-p)^i = 1 - p \frac{1 - (1-p)^k}{p} = \\ &= (1-p)^k. \end{aligned}$$

(b)

$$\begin{aligned} \mathbb{P}(X \geq k+m | X \geq k) &= \frac{\mathbb{P}(X \geq k+m, X \geq k)}{\mathbb{P}(X \geq k)} = \\ &= \frac{\mathbb{P}(X \geq k+m)}{\mathbb{P}(X \geq k)} = \frac{(1-p)^{k+m}}{(1-p)^k} = (1-p)^m = \mathbb{P}(X \geq m). \end{aligned}$$

(c) Rewrite the lack of memory property as

$$\mathbb{P}(Y \geq n+m) = \mathbb{P}(Y \geq m)\mathbb{P}(Y \geq n). \quad (1)$$

Let us prove by induction that

$$\mathbb{P}(Y \geq n) = \mathbb{P}(Y \geq 1)^n.$$

Substituting $n = 0$ into (1) we have $\mathbb{P}(Y \geq 0) = 1$, hence

$$\mathbb{P}(Y \geq n+1) = \mathbb{P}(Y \geq 1)\mathbb{P}(Y \geq n) = \mathbb{P}(Y \geq 1) \cdot \mathbb{P}(Y \geq 1)^n = \mathbb{P}(Y \geq 1)^{n+1}.$$

Now,

$$\begin{aligned} \mathbb{P}(Y = k) &= \mathbb{P}(Y \geq k) - \mathbb{P}(Y \geq k+1) = \mathbb{P}(Y \geq 1)^k - \mathbb{P}(Y \geq 1)^{k+1} = \\ &= \mathbb{P}(Y \geq 1)^k (1 - \mathbb{P}(Y \geq 1)) = (1-p)^k p \end{aligned}$$

where $p = 1 - \mathbb{P}(Y \geq 1)$. In particular $Y \sim \text{Geom}(p)$.

Assignment 5. (a) We need to find $f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, x_2) dx_2$. In order to compute the integral, first we adjust the expression in the exponential so as to get a square form in x_2 as follows.

$$\begin{aligned} &\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) \\ &= (1 - \rho^2) \left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) + \rho^2 \left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 \\ &= (1 - \rho^2) \left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 + \left\{ \left(\frac{x_2 - \mu_2}{\sigma_2} \right) - \rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \right\}^2 \\ &= (1 - \rho^2) \left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 + \frac{\{x_2 - A_1(x_1)\}^2}{\sigma_2^2}, \quad \text{say,} \end{aligned}$$

where

$$A_1(x_1) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1).$$

Plugging-in the above expression in the integral, we get

$$\begin{aligned} f_{\mathbf{X}}(x_1, x_2) &= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2}\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2\right\} \exp\left\{-\frac{1}{2\sigma_2^2(1-\rho^2)}[x_2-A_1(x_1)]^2\right\} \\ &= \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{1}{2}\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2\right\} \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{[x_2-A_1(x_1)]^2}{2\sigma_2^2(1-\rho^2)}\right\}. \end{aligned} \quad (2)$$

Thus,

$$f_{X_1}(x_1) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{1}{2}\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2\right\} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{[x_2-A_1(x_1)]^2}{2\sigma_2^2(1-\rho^2)}\right\} dx_2.$$

We can now identify the integrand above (as a function of x_2 for a fixed value of x_1) as the density of a Normal distribution with mean $A_1(x_1)$ and variance $\sigma_2^2(1-\rho^2)$. Thus, the value of the above integral is one. Hence,

$$f_{X_1}(x_1) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{1}{2}\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2\right\}, \quad x_1 \in \mathbb{R}.$$

(b) The calculations/integration in (a) can be done with respect to x_1 in the same way (by symmetry), and this results in the distribution of X_2 being

$$f_{X_2}(x_2) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{1}{2}\left(\frac{x_2-\mu_2}{\sigma_2}\right)^2\right\}, \quad x_2 \in \mathbb{R}.$$

(c) The marginal density of X_i is Normal with mean μ_i and variance σ_i^2 for $i = 1, 2$.

(d) Looking at the factorization of the joint density, namely, equation (2), done when calculating the marginal density in part (a), and given that the marginal density of X_1 is the first part of the equation (2), it now follows that the conditional density of $X_2 | X_1 = x_1$ is given by

$$\begin{aligned} f_{X_2|X_1=x_1}(x_2) &= \frac{f_{\mathbf{X}}(x_1, x_2)}{f_{X_1}(x_1)} \\ &= \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{[x_2-A_1(x_1)]^2}{2\sigma_2^2(1-\rho^2)}\right\}, \quad x_2 \in \mathbb{R}. \end{aligned}$$

Similarly, the conditional density of $X_1 | X_2 = x_2$ is given by

$$\begin{aligned} f_{X_1|X_2=x_2}(x_1) &= \frac{f_{\mathbf{X}}(x_1, x_2)}{f_{X_2}(x_2)} \\ &= \frac{1}{\sqrt{2\pi}\sigma_1\sqrt{1-\rho^2}} \exp\left\{-\frac{[x_1-A_2(x_2)]^2}{2\sigma_1^2(1-\rho^2)}\right\}, \quad x_1 \in \mathbb{R}, \end{aligned}$$

where

$$A_2(x_2) = \mu_1 + \rho \frac{\sigma_1}{\sigma_2} (x_2 - \mu_2).$$

(e) Yes.
 (f) $\mathbb{E}[X_1 | X_2] = A_2(X_2)$ and $\mathbb{E}[X_2 | X_1] = A_1(X_1)$.
 (g) Note that

$$\mathbb{E}\{\mathbb{E}[X_1 | X_2]\} = \mathbb{E}\left\{\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(X_2 - \mu_2)\right\} = \mu_1 + \rho \frac{\sigma_1}{\sigma_2} \mathbb{E}(X_2 - \mu_2) = \mu_1 = \mathbb{E}(X_1),$$

since $\mathbb{E}(X_2 - \mu_2) = 0$. This is because the previous expectation is taken with respect to the unconditional distribution of X_2 , and the mean of this unconditional distribution is μ_2 .

(h) We know that $\text{Cov}(X_1, X_2) = \mathbb{E}(X_1 X_2) - \mathbb{E}(X_1) \mathbb{E}(X_2)$. Now,

$$\begin{aligned} \mathbb{E}(X_1 X_2) &= \mathbb{E}[\mathbb{E}(X_1 X_2 | X_2)] \\ &= \mathbb{E}[X_2 \mathbb{E}(X_1 | X_2)] \\ &= \mathbb{E}[X_2 A_2(X_2)] = \mathbb{E}\left[X_2 \left\{\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(X_2 - \mu_2)\right\}\right] \\ &= \mu_1 \mathbb{E}(X_2) + \rho \frac{\sigma_1}{\sigma_2} \mathbb{E}[X_2(X_2 - \mu_2)] \\ &= \mu_1 \mu_2 + \rho \frac{\sigma_1}{\sigma_2} \{\mathbb{E}[X_2^2] - \mu_2 \mathbb{E}(X_2)\} \\ &= \mu_1 \mu_2 + \rho \frac{\sigma_1}{\sigma_2} \{\text{Var}(X_2) + [\mathbb{E}(X_2)]^2 - \mu_2^2\} \\ &= \mu_1 \mu_2 + \rho \frac{\sigma_1}{\sigma_2} \sigma_2^2 = \mu_1 \mu_2 + \rho \sigma_1 \sigma_2. \end{aligned}$$

Thus, $\text{Cov}(X_1, X_2) = \rho \sigma_1 \sigma_2$.

(i) The mean vector of \mathbf{X} is $\mu = (\mu_1, \mu_2)^T$, and the covariance matrix of \mathbf{X} is

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

(j) $\text{Var}[X_1 | X_2] = \sigma_1^2(1 - \rho^2)$ and $\text{Var}[X_2 | X_1] = \sigma_2^2(1 - \rho^2)$.

(k) Clearly, $\mathbb{E}[\text{Var}[X_2 | X_1]] = \sigma_2^2(1 - \rho^2)$. Also,

$$\begin{aligned} \text{Var}(\mathbb{E}[X_2 | X_1]) &= \text{Var}\left(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(X_1 - \mu_1)\right) \\ &= \rho^2 \frac{\sigma_2^2}{\sigma_1^2} \text{Var}(X_1 - \mu_1) \\ &= \rho^2 \frac{\sigma_2^2}{\sigma_1^2} \sigma_1^2 = \rho^2 \sigma_2^2. \end{aligned}$$

Thus, $\mathbb{E}[\text{Var}[X_2 | X_1]] + \text{Var}(\mathbb{E}[X_2 | X_1]) = \sigma_2^2(1 - \rho^2) + \rho^2 \sigma_2^2 = \sigma_2^2 = \text{Var}(X_2)$.

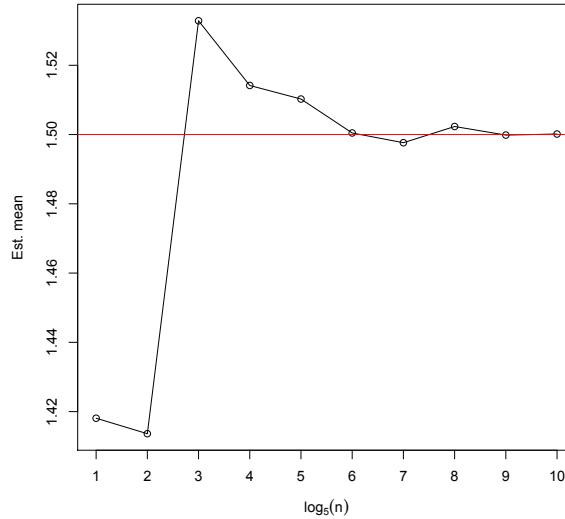
Assignment 6. (a) The value of `mean_est` = 1.987.

(b) The value of `mean_out` = 1.999907. When M is set to 100, the value of `mean_out` changes very slightly, and the new value is 2. Since the code is computing an approximation of the expected value of a Poisson(2) distribution (since one cannot in practice compute an infinite sum), the increase in the value of M implies that the approximation is better. In fact, the values of `j*dpois(j, 2)` are negligible for $j \geq 100$ so that the sum upto the first 100 terms gives the true expected value.

(c) The value of $\text{mean_out1} = 1.999998$. It is very close to mean_out and mean_est .
 (d) Since $\mathbb{P}[Y > k] = \sum_{j=k+1}^{\infty} \mathbb{P}[Y = j]$, we have

$$\begin{aligned} \sum_{k=0}^{\infty} \mathbb{P}[Y > k] &= \sum_{k=0}^{\infty} \sum_{j=k+1}^{\infty} \mathbb{P}[Y = j] \\ &= \sum_{j=1}^{\infty} \sum_{k=0}^{j-1} \mathbb{P}[Y = j] \\ &= \sum_{j=1}^{\infty} j \mathbb{P}[Y = j] = \sum_{j=0}^{\infty} j \mathbb{P}[Y = j] = \mathbb{E}[Y]. \end{aligned}$$

(f) Yes. The value of $\text{mean_out} = 1.504216$. The expected value of a random variable having a $\text{Gamma}(3,2)$ distribution $= 3/2 = 1.5$.
 (g) For smaller values of the sample size $n = 5^j$, the difference between the true expected value (namely, 1.5) and the value of $\text{mean_outs}[j]$ is greater compared to that for larger values of the sample size. In fact, for $n = 5^{10}$, the two values are almost the same. This indicates that the sample mean is a good estimator of the true expected value and becomes closer to it as the sample size grows.



(i) The value of $\text{mean_new} = 1.5$ and the absolute error in computation is $< 4.8 \times 10^{-5}$. This value is exactly equal to the true expected value modulo the absolute error. Since the code computes the integral of the survival function (namely, 1 - c.d.f.) over $(0, \infty)$, this indicates that the expected value of the $\text{Gamma}(3,2)$ distribution can also be computed in this way.