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Regression
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Absence or Presence of Covariates

In the beginning we distinguished between:

1 Marginal Inference. Here (Y1, ...,Yn)
⊤ has i.i.d. entries each from the same

distribution F (y ; θ) with the same parameter θ.

In other words, all observations were obtained under identical experimental
conditions, and thus depend in the same way on the same unknown θ.

2 Regression. Here (Y1, ...,Yn)
⊤ has independent entries, each with

distribution F (y ; θi ) of the same family but with different parameters.

Each observation was generated under slightly different experimental
conditions. They depend in a similar way on different θi .

These θi correspond to different experimental conditions, say xi .

Each xi is called a covariate/feature, and is an input that the experimenter can
vary. They are known. The index i reminds us that it corresponds to the ith
observation Yi .

Usually θi is postulated to have a special relationship to xi , for example
θi = exp{α+ βxi}, for (α, β) uknown parameters.

The point here is to understand the effect of varying the covariate/feature on
the distribution of the observable.
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What is a Regression Model?

Statistical model for:

Y (random output)
whose law is influenced by←− x (non-random input)

Aim: understand the effect of x on the distribution of random variable Y

General formulation1:

Yi
independent∼ Distribution

{
g(xi )︸ ︷︷ ︸
=θi

}
, i = 1, ..., n.

Statistical Problem: Estimate (learn) g(·) from data {(xi ,Yi )}ni=1. Use for:

Inference

Prediction

Data compression (parsimonious representations)

1Sometimes we write Yi |xi
independent∼ Distribution

{
g(xi ) = θi

}
to highlight that the

distribution of Y depends on x , but without meaning that (X ,Y ) are jointly random; such an
assumption is unnecessary (e.g., in a designed experiment we choose values for x).
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Example: How to model the height of Honolulu tides throughout the day -
Histogram
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Example: Height of Honolulu tides as function of the time of day
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A bewildering variety of models can be captured by the general specificaiton

Yi
independent∼ Distribution

{
g(xi )︸ ︷︷ ︸
=θi

}
, i = 1, ..., n.

xi can be:

continuous, discrete, categorical, vector . . .

arrive randomly, or be chosen by experimenter, or both

however x arises, we treat it as constant in the analysis

Distribution can be:

Gaussian, Laplace, Bernoulli, Poisson, gamma, general exponential family, . . .

Function g(·) can be:

g(x) = β0 + β1x , g(x) =
∑K

k=−K βke
−ikx , cubic spline, neural net...
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Table: A coarse classification of regression models we will consider

Distribution / Function g g(x⊤
i ) = x⊤

i β g nonparametric

Gaussian Linear Regression Smoothing
Exponential Family GLM GAM

GLM: Generalized Linear Model and GAM: Generalized Additive Model

We start with a very standard model: Linear Regression with Y |x being Gaussian.
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Fundamental Case: Normal Linear Regression

Y , x ∈ R, g(x) = β0 + β1x

Y | x ∼ N (β0 + β1x , σ
2)

⇕

Y = β0 + β1x + ϵ, ϵ ∼ N (0, σ2)

The second version is useful for mathematical work, but is puzzling statistically,
since we don’t observe ϵ.

Also, covariate could be vector (Y , β0 ∈ R, x ∈ Rp, β ∈ Rp):

Y | x ∼ N (β0 + β⊤x , σ2)

⇕

Y = β0 + β⊤x + ϵ, ϵ ∼ N (0, σ2)
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Example: How to model my van’s consumption of gas
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Example: Histogram of consumption of gas (km/L)

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 11 / 32



Example: Gas consumption as function of successive fill-ups

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 12 / 32



The tools of the trade . . .

Start from Gaussian linear regression then gradually generalise . . .

Obviously: important features of Gaussian linear model are

Gaussian distribution

Linearity

These two combine well and give geometric insights to solve the estimation
problem. Thus we need to revise some probabilistic linear algebra. . .

Subpsaces and projection matrices

Multivariate Gaussian Distribution

Optimal dimension reduction

Random quadratic forms
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Linear Algebra Intermezzo
Linear Subspaces, Orthogonal Projections, Gaussian Vectors
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Subspaces and Spectra

If Q is an n× p real matrix, we define the column space (or range) of Q to be the
set spanned by its columns:

M(Q) = {y ∈ Rn : ∃β ∈ Rp, y = Qβ}.

Recall thatM(Q) is a subspace of Rn.

The columns of Q provide a coordinate system for the subspaceM(Q)

If Q is of full column rank (p), then the coordinates β corresponding to a
y ∈M(Q) are unique.

Allows interpretation of system of linear equations

Qβ = y .

[existence of solution ↔ is y an element of M(Q)?]
[uniqueness of solution ↔ is there a unique coordinate vector β?]
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Two further important subspaces associated with a real n × p matrix Q:

the null space (or kernel), ker(Q), of Q is the subspace defined as

ker(Q) = {x ∈ Rp : Qx = 0};

the orthogonal complement ofM(Q),M⊥(Q), is the subspace defined as

M⊥(Q) = {y ∈ Rn : y⊤Qx = 0, ∀x ∈ Rp}
= {y ∈ Rn : y⊤v = 0, ∀v ∈M(Q)}.

The orthogonal complement may be defined for arbitrary subspaces by using the
second equality.
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Theorem (Spectral Theorem)

A p × p matrix Q is symmetric if and only if there exists a p × p orthogonal
matrixa U and a diagonal matrix Λ such that

Q = UΛU⊤.

In particular:

1 the columns of U = (u1 · · · up) are eigenvectors of Q, i.e. there exist λj

such that
Quj = λjuj , j = 1, . . . , p;

2 the entries of Λ = diag(λ1, . . . , λp) are the corresponding eigenvalues of Q,
which are real; and

3 the rank of Q is the number of non-zero eigenvalues.

aA matrix is orthogonal if UU⊤ = U⊤U = Ip

Note: if the eigenvalues are distinct, the eigenvectors are unique (up to changes in
signs).
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Theorem (Singular Value Decomposition)

Any n × p real matrix can be factorised as

Q
n×p

= U
n×n

Σ
n×p

V
p×p

⊤,

where U and V⊤ are orthogonal with columns called left singular vectors and
right singular vectors, respectively, and Σ is diagonal with real entries called
singular values.

1 The left singular vectors are eigenvectors of QQ⊤.2

2 The right singular vectors are eigenvectors of Q⊤Q.

3 The squares of the singular values are eigenvalues of both QQ⊤ and Q⊤Q.

4 The left singular vectors corresponding to non-zero singular values form an
orthonormal basis forM(Q).

5 The left singular vectors corresponding to zero singular values form an
orthonormal basis forM⊥(Q).

2hint: compute QQ⊤Ui = λ2
i Ui for all i ≤ p. And similarly with QQ⊤Vi = λ2

i Vi
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Orthogonal Projections

A matrix Q is called idempotent if Q2 = Q.

An orthogonal projection (henceforth projection) onto a subspace V is a
symmetric idempotent matrix H such thatM(H) = V , i.e. the column space is generated

by the subspace V.

Proposition

The only possible eigenvalues of a projection matrix are 0 and 1.
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Projections on the Orthogonal Complement

Proposition

Let V be a subspace and H be a projection onto V. Then I −H is the projection
matrix onto V⊥.

Proof (∗).
We first prove that I −H is a projection matrix (idempotent and symmetric).

(I −H)⊤ = I −H⊤ = I −H since H is symmetric and,
(I −H)2 = I 2 − 2H + H2 = I −H .

It remains to identify the column space of I −H . Let H = UΛU⊤ be the
spectral decomposition of H .

Then I −H = UU⊤ −UΛU⊤ = U(I −Λ)U⊤.

Hence the column space of I −H is spanned by the eigenvectors of H
corresponding to zero eigenvalues of H , which coincides withM⊥(H) = V⊥.
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Proposition

Let V be a subspace and H be a projection onto V. Then Hy = y for all y ∈ V.

Proposition

If P and Q are projection matrices onto a subspace V, then P = Q.

Proposition

If x1, . . . , xp are linearly independenta and are such that span(x1, . . . , xp) = V,
then the projection onto V can be represented as

H = X (X⊤X )−1X⊤

where X is a matrix with columns x1, . . . , xp.
a
∑

i≤p aixi = 0 iff. ai = 0, for all i ≤ p
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Proposition

Let V be a subspace of Rn and H be a projection onto V. Then

∥x −Hx∥ ≤ ∥x − v∥, ∀v ∈ V.

Proof (∗).
Let H = UΛU⊤ be the spectral decomposition of H , U = (u1 · · · un) and
Λ = diag(λ1, . . . , λn). Letting p = dim(V), then

by assumption of H
1 λ1 = · · · = λp = 1 and λp+1 = · · · = λn = 0, (by definition of a projection matrix

s19)

2 u1, . . . ,un is an orthonormal basis of Rn,

3 u1, . . . ,up is an an orthonormal basis of V.

Let’s us it in the following computations
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∥x −Hx∥2 =
n∑

i=1

(x⊤ui − (Hx)⊤ui )
2 [orthonormal basis]

=
n∑

i=1

(x⊤ui − x⊤Hui )
2 [H is symmetric]

=
n∑

i=1

(x⊤ui − λix⊤ui )
2 [u’s are eigenvectors of H]

= 0 +
n∑

i=p+1

(x⊤ui )
2 [eigenvalues 0 or 1]

≤
p∑

i=1

(x⊤ui − v⊤ui )
2 +

n∑
i=p+1

(x⊤ui )
2 ∀v ∈ V

= ∥x − v∥2.
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Proposition

Let V1 ⊆ V ⊆ Rn be two nested linear subspaces. If H1 is the projection onto V1
and H is the projection onto V, then

HH1 = H1 = H1H .

Proof (∗).
First we show that HH1 = H1, and then that H1H = HH1. For all y ∈ Rn we
have H1y ∈ V1. But then H1y ∈ V, since V1 ⊆ V.
Therefore HH1y = H1y . We have shown that (HH1 −H1)y = 0 for all y ∈ Rn,
so that HH1 −H1 = 0, as its kernel is all Rn. Hence HH1 = H1.

To prove that H1H = HH1, note that symmetry of projection matrices and the
first part of the proof give

H1H = H⊤
1 H⊤ = (HH1)

⊤ = (H1)
⊤ = H1 = HH1.
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Non-Negative Matrices - Definitions

Definition (Quadratic Form Definition)

A p × p real symmetric matrix Ω is called non-negative definite (written Ω ⪰ 0)
if and only if x⊤Ωx ≥ 0 for all x ∈ Rp. If x⊤Ωx > 0 for all x ∈ Rp \ {0}, then
we call Ω positive definite (written Ω ≻ 0).

Definition (Spectral Definition)

A p × p real symmetric matrix Ω is called non-negative definite (written Ω ⪰ 0)
if and only the eigenvalues of Ω are non-negative. If the eigenvalues of Ω are
strictly positive, then Ω is called positive definite (written Ω ≻ 0).
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Positive-Definite Matrices

Lemma (Little exercise)

The two definitions are equivalent.

Proposition (Non-Negative and Covariance Matrices)

Let Ω be a real symmetric matrix.

Then Ω is non-negative definite iff. Ω is the covariance matrix of some random
vector Y .
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Principal Component Analysis - Iterative Method

We want to find the subspace that explains the most a random vector Y in Rd

with covariance matrix Ω.

Step j = 1: Find direction v1 ∈ Sd−1 such that the projection of Y onto v1
has maximal variance.

Steps j = 2, 3, . . . , d: Find direction vj ⊥ {v1, ..., vj−1} such that projection
of Y onto vj has maximal variance.
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Principal Component Analysis - Solution

First, by Proposition s26, Ω is symmetric, non-negative definite of size d × d .

Step j = 1: Maximise var(v⊤
1 Y ) = v⊤

1 Ωv1 over ∥v1∥ = 1

v⊤
1 Ωv1 = v⊤

1 UΛU⊤v1 = ∥Λ1/2U⊤v1∥2 =
d∑

i=1

λi (u⊤
i v1)2 [change of basis]

Now
∑d

i=1(u
⊤
i v1)2 = ∥v1∥2 = 1 so we have a convex combination of {λj}dj=1,

d∑
i=1

piλi ,
∑
i

pi = 1, pi ≥ 0, i = 1, . . . , d .

But λ1 ≥ λi ≥ 0 so clearly this sum is maximised when p1 = 1 and pj = 0
∀j ̸= 1, i.e. v1 = ±u1.

Steps j = 2, 3, . . . , d: Iteratively, vj = ±uj , i.e. principal components are
eigenvectors of Ω.
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Theorem (Optimal (Linear) Dimension Reduction Theorem)

Let Y be a mean-zero random variable in Rd with d × d covariance Ω. Let H be
the projection matrix onto the span of the first k eigenvectors of Ω. Then

E∥Y −HY ∥2 ≤ E∥Y −QY ∥2

for any d × d projection matrix Q or rank at most k.

Intuitively: if you want to approximate a mean-zero random variable taking values
Rd by a random variable that ranges over a subspace of dimension at most k ≤ d ,
the optimal choice is the projection of the random variable onto the space
spanned by its first k principal components (eigenvectors of the covariance).
“Optimal” is with respect to the mean squared error.
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For the proof, use lemma below (follows immediately from spectral decomposition)

Lemma

Q is a rank k projection matrix iff. there exist orthonormal vectors {vj}kj=1 such

that Q =
∑k

j=1 viv⊤
i .
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Proof of Optimal Linear Dimension Reduction (∗).
Write Q =

∑k
j=1 viv⊤

i for some orthonormal {vj}kj=1. Then

E∥Y −QY ∥2 =

= E
[
Y⊤(I −Q)⊤(I −Q)Y

]
= E

[
tr{(I −Q)YY⊤(I −Q)⊤}

]
= tr{(I −Q)E

[
YY⊤] (I −Q)⊤} = tr{(I −Q)⊤(I −Q)Ω}

= tr{(I −Q)Ω} = tr{Ω} − tr{QΩ} =
d∑

i=1

λi − tr


k∑

j=1

viv⊤
i Ω


=

d∑
i=1

λi −
k∑

j=1

tr
{
viv⊤

i Ω
}
=

d∑
i=1

λi −
k∑

j=1

viΩv⊤
i

=
d∑

i=1

λi −
k∑

j=1

var[v⊤
i Y ]

If we can minimise this expression over all {vj}kj=1 with v⊤
i vj = 1{i = j}, then

we’re done. By PCA, this is done by choosing the top k eigenvectors of Ω.

Recall that for any matrices A,B,C , we have tr(ABC) = tr(BCA) = tr(CAB) under conditions (cf A3W8).
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Corollary (Deterministic Version)

Let {x1, ..., xp} ⊂ Rd be such that x1 + . . .+ xp = 0, and let X be the matrix
with columns {xi}pi=1. The best approximating k-hyperplane to the points
{x1, ..., xp} is given by the span of the first k eigenvectors of the matrix XX⊤, i.e.
if H is the projection onto this span, it holds that

p∑
i=1

∥xi −Hxi∥2 ≤
p∑

i=1

∥xi −Qxi∥2

for any d × d projection operator Q or rank at most k.

Proof.

Define the discrete random vector Y by P[Y = xi ] = 1/p, and use optimal linear
dimension reduction as stated earlier.
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