

Statistics for Data Science: Week 8

Myrto Limnios and Rajita Chandak

Institute of Mathematics – EPFL

rajita.chandak@epfl.ch, myrto.limnios@epfl.ch

Regression

In the beginning we distinguished between:

1 Marginal Inference. Here $(Y_1, \dots, Y_n)^\top$ has i.i.d. entries each from the same distribution $F(y; \theta)$ with the same parameter θ .

- In other words, all observations were obtained under identical experimental conditions, and thus depend in the same way on the same unknown θ .

2 Regression. Here $(Y_1, \dots, Y_n)^\top$ has independent entries, each with distribution $F(y; \theta_i)$ of the same family but with different parameters.

- Each observation was generated under slightly different experimental conditions. They depend in a similar way on different θ_i .
- These θ_i correspond to different experimental conditions, say x_i .
- Each x_i is called a covariate/feature, and is an input that the experimenter can vary. They are known. The index i reminds us that it corresponds to the i th observation Y_i .
- Usually θ_i is postulated to have a special relationship to x_i , for example $\theta_i = \exp\{\alpha + \beta x_i\}$, for (α, β) unknown parameters.
- The point here is to understand the effect of varying the covariate/feature on the distribution of the observable.

What is a Regression Model?

Statistical model for:

Y (random output) whose law is influenced by $\leftarrow x$ (non-random input)

Aim: understand the effect of x on the distribution of random variable Y

General formulation¹:

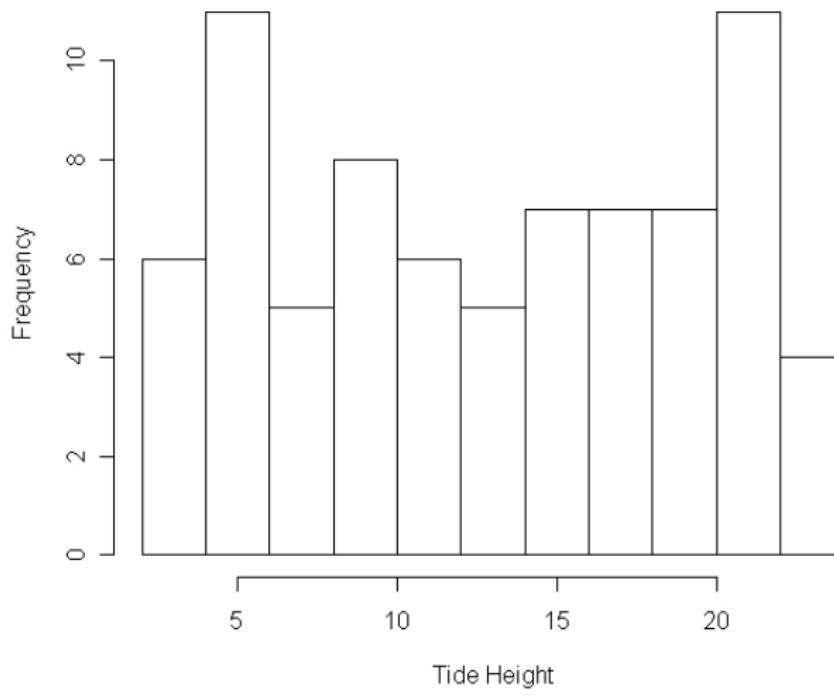
$$Y_i \stackrel{\text{independent}}{\sim} \text{Distribution} \left\{ \underbrace{g(x_i)}_{= \theta_i} \right\}, \quad i = 1, \dots, n.$$

Statistical Problem: Estimate (learn) $g(\cdot)$ from data $\{(x_i, Y_i)\}_{i=1}^n$. Use for:

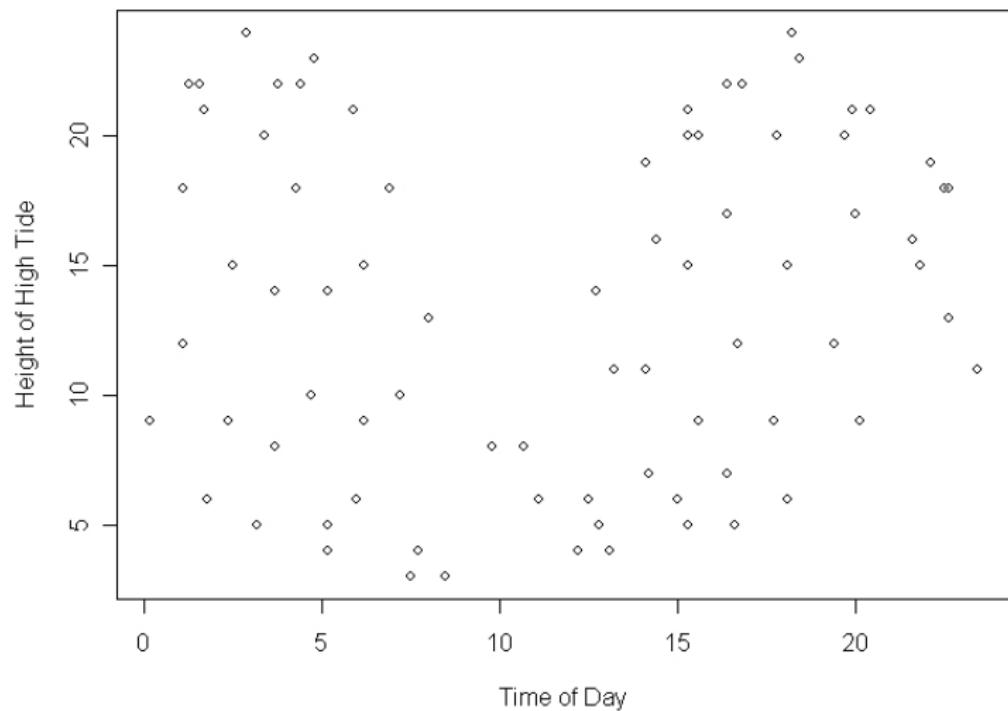
- Inference
- Prediction
- Data compression (parsimonious representations)

¹Sometimes we write $Y_i | x_i \stackrel{\text{independent}}{\sim} \text{Distribution} \{g(x_i) = \theta_i\}$ to highlight that the distribution of Y depends on x , but without meaning that (X, Y) are jointly random; such an assumption is unnecessary (e.g., in a designed experiment we choose values for x).

Example: How to model the height of Honolulu tides throughout the day - Histogram



Example: Height of Honolulu tides as function of the time of day



A **bewildering variety** of models can be captured by the general specification

$$Y_i \stackrel{\text{independent}}{\sim} \text{Distribution} \underbrace{\{g(x_i)\}}_{=\theta_i}, \quad i = 1, \dots, n.$$

x_i can be:

- continuous, discrete, categorical, vector ...
- arrive randomly, or be chosen by experimenter, or both
- however x arises, we treat it as constant in the analysis

Distribution can be:

- Gaussian, Laplace, Bernoulli, Poisson, gamma, general exponential family, ...

Function $g(\cdot)$ can be:

- $g(x) = \beta_0 + \beta_1 x$, $g(x) = \sum_{k=-K}^K \beta_k e^{-ikx}$, cubic spline, neural net...

Table: A coarse classification of regression models we will consider

Distribution / Function g	$g(\mathbf{x}_i^\top) = \mathbf{x}_i^\top \boldsymbol{\beta}$	g nonparametric
Gaussian	Linear Regression	Smoothing
Exponential Family	GLM	GAM

GLM: Generalized Linear Model and GAM: Generalized Additive Model

We start with a very standard model: Linear Regression with $Y|x$ being Gaussian.

- $Y, x \in \mathbb{R}$, $g(x) = \beta_0 + \beta_1 x$

$$Y | x \sim \mathcal{N}(\beta_0 + \beta_1 x, \sigma^2)$$

$$\Updownarrow$$

$$Y = \beta_0 + \beta_1 x + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

The second version is useful for mathematical work, but is puzzling statistically, since we don't observe ϵ .

- Also, covariate could be vector ($Y, \beta_0 \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^p$, $\boldsymbol{\beta} \in \mathbb{R}^p$):

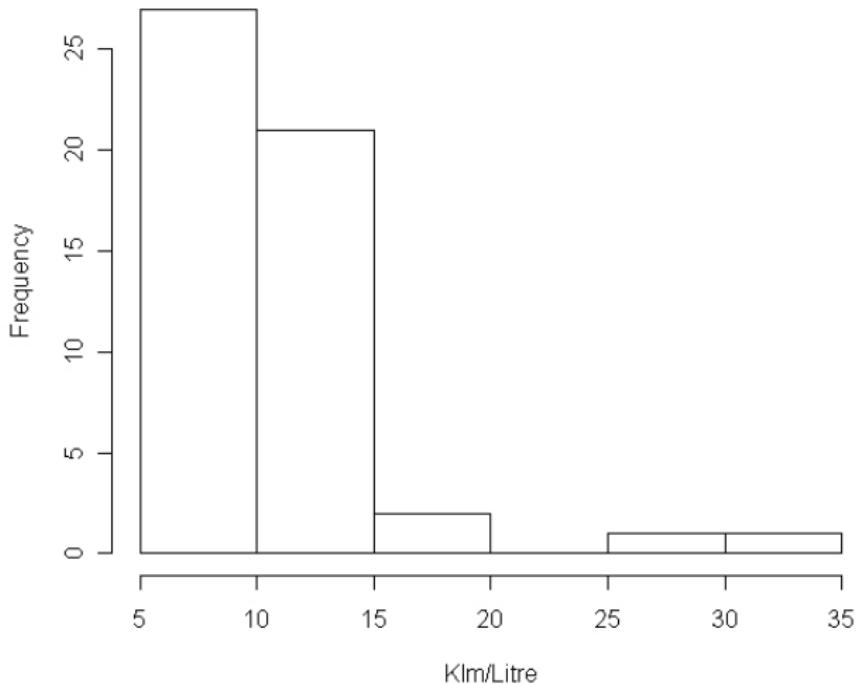
$$Y | \mathbf{x} \sim \mathcal{N}(\beta_0 + \boldsymbol{\beta}^\top \mathbf{x}, \sigma^2)$$

$$\Updownarrow$$

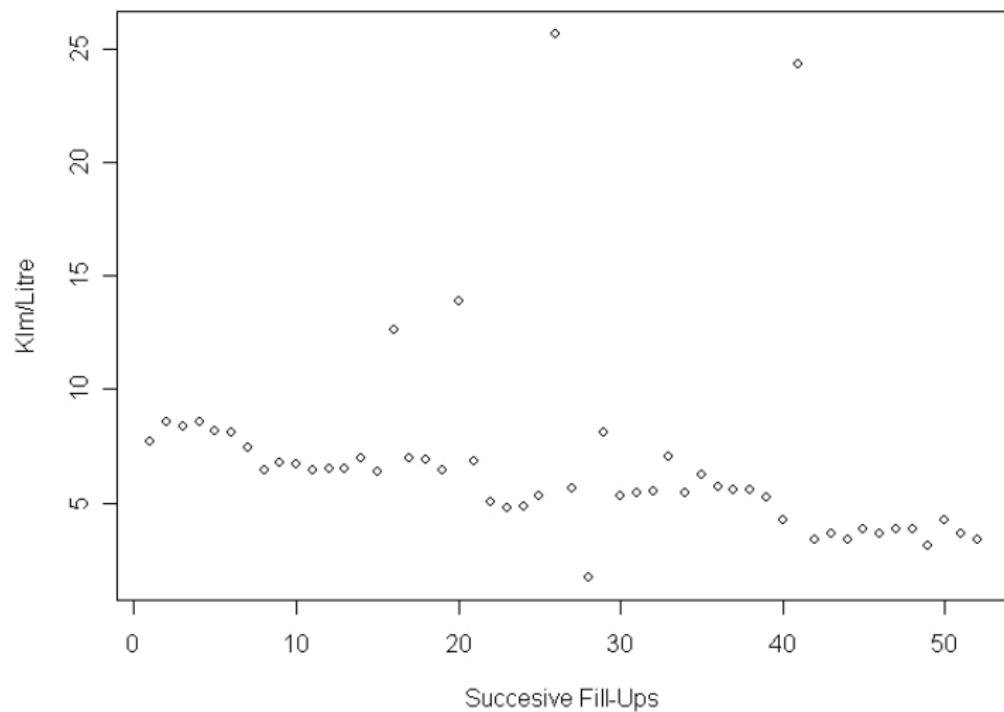
$$Y = \beta_0 + \boldsymbol{\beta}^\top \mathbf{x} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Example: How to model my van's consumption of gas

Example: Histogram of consumption of gas (km/L)



Example: Gas consumption as function of successive fill-ups



Start from **Gaussian linear regression** then gradually generalise ...

Obviously: important features of Gaussian linear model are

- Gaussian distribution
- Linearity

These two **combine well** and give **geometric insights** to solve the estimation problem. Thus we need to revise some **probabilistic linear algebra**...

- Subspaces and projection matrices
- Multivariate Gaussian Distribution
- Optimal dimension reduction
- Random quadratic forms

Linear Algebra Intermezzo

Linear Subspaces, Orthogonal Projections, Gaussian Vectors

If \mathbf{Q} is an $n \times p$ real matrix, we define the **column space (or range)** of \mathbf{Q} to be the set spanned by its columns:

$$\mathcal{M}(\mathbf{Q}) = \{\mathbf{y} \in \mathbb{R}^n : \exists \boldsymbol{\beta} \in \mathbb{R}^p, \mathbf{y} = \mathbf{Q}\boldsymbol{\beta}\}.$$

- Recall that $\mathcal{M}(\mathbf{Q})$ is a subspace of \mathbb{R}^n .
- The columns of \mathbf{Q} provide a coordinate system for the subspace $\mathcal{M}(\mathbf{Q})$
- If \mathbf{Q} is of full column rank (p), then the coordinates $\boldsymbol{\beta}$ corresponding to a $\mathbf{y} \in \mathcal{M}(\mathbf{Q})$ are unique.
- Allows interpretation of system of linear equations

$$\mathbf{Q}\boldsymbol{\beta} = \mathbf{y}.$$

[existence of solution \leftrightarrow is \mathbf{y} an element of $\mathcal{M}(\mathbf{Q})$?]
[uniqueness of solution \leftrightarrow is there a unique coordinate vector $\boldsymbol{\beta}$?]

Two further important subspaces associated with a real $n \times p$ matrix \mathbf{Q} :

- the **null space (or kernel)**, $\ker(\mathbf{Q})$, of \mathbf{Q} is the subspace defined as

$$\ker(\mathbf{Q}) = \{\mathbf{x} \in \mathbb{R}^p : \mathbf{Q}\mathbf{x} = 0\};$$

- the **orthogonal complement** of $\mathcal{M}(\mathbf{Q})$, $\mathcal{M}^\perp(\mathbf{Q})$, is the subspace defined as

$$\begin{aligned}\mathcal{M}^\perp(\mathbf{Q}) &= \{\mathbf{y} \in \mathbb{R}^n : \mathbf{y}^\top \mathbf{Q}\mathbf{x} = 0, \forall \mathbf{x} \in \mathbb{R}^p\} \\ &= \{\mathbf{y} \in \mathbb{R}^n : \mathbf{y}^\top \mathbf{v} = 0, \forall \mathbf{v} \in \mathcal{M}(\mathbf{Q})\}.\end{aligned}$$

The orthogonal complement may be defined for arbitrary subspaces by using the second equality.

Theorem (Spectral Theorem)

A $p \times p$ matrix \mathbf{Q} is symmetric if and only if there exists a $p \times p$ orthogonal matrix^a \mathbf{U} and a diagonal matrix Λ such that

$$\mathbf{Q} = \mathbf{U}\Lambda\mathbf{U}^\top.$$

In particular:

- ① the columns of $\mathbf{U} = (\mathbf{u}_1 \ \cdots \ \mathbf{u}_p)$ are eigenvectors of \mathbf{Q} , i.e. there exist λ_j such that

$$\mathbf{Q}\mathbf{u}_j = \lambda_j \mathbf{u}_j, \quad j = 1, \dots, p;$$

- ② the entries of $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_p)$ are the corresponding eigenvalues of \mathbf{Q} , which are real; and
- ③ the rank of \mathbf{Q} is the number of non-zero eigenvalues.

^aA matrix is orthogonal if $\mathbf{U}\mathbf{U}^\top = \mathbf{U}^\top\mathbf{U} = I_p$

Note: if the eigenvalues are distinct, the eigenvectors are unique (up to changes in signs).

Theorem (Singular Value Decomposition)

Any $n \times p$ real matrix can be factorised as

$$\underset{n \times p}{\mathbf{Q}} = \underset{n \times n}{\mathbf{U}} \underset{n \times p}{\Sigma} \underset{p \times p}{\mathbf{V}^\top},$$

where \mathbf{U} and \mathbf{V}^\top are orthogonal with columns called **left singular vectors** and **right singular vectors**, respectively, and Σ is diagonal with real entries called **singular values**.

- ① The left singular vectors are eigenvectors of $\mathbf{Q}\mathbf{Q}^\top$.²
- ② The right singular vectors are eigenvectors of $\mathbf{Q}^\top\mathbf{Q}$.
- ③ The squares of the singular values are eigenvalues of both $\mathbf{Q}\mathbf{Q}^\top$ and $\mathbf{Q}^\top\mathbf{Q}$.
- ④ The left singular vectors corresponding to non-zero singular values form an orthonormal basis for $\mathcal{M}(\mathbf{Q})$.
- ⑤ The left singular vectors corresponding to zero singular values form an orthonormal basis for $\mathcal{M}^\perp(\mathbf{Q})$.

²hint: compute $\mathbf{Q}\mathbf{Q}^\top \mathbf{U}_i = \lambda_i^2 \mathbf{U}_i$ for all $i \leq p$. And similarly with $\mathbf{Q}\mathbf{Q}^\top \mathbf{V}_i = \lambda_i^2 \mathbf{V}_i$

A matrix \mathbf{Q} is called **idempotent** if $\mathbf{Q}^2 = \mathbf{Q}$.

An **orthogonal projection** (henceforth **projection**) onto a subspace \mathcal{V} is a symmetric idempotent matrix \mathbf{H} such that $\mathcal{M}(\mathbf{H}) = \mathcal{V}$, i.e. the column space is generated by the subspace \mathcal{V} .

Proposition

The only possible eigenvalues of a projection matrix are 0 and 1.

Proposition

Let \mathcal{V} be a subspace and \mathbf{H} be a projection onto \mathcal{V} . Then $\mathbf{I} - \mathbf{H}$ is the projection matrix onto \mathcal{V}^\perp .

Proof (*).

We first prove that $\mathbf{I} - \mathbf{H}$ is a projection matrix (idempotent and symmetric).

$$(\mathbf{I} - \mathbf{H})^\top = \mathbf{I} - \mathbf{H}^\top = \mathbf{I} - \mathbf{H} \text{ since } \mathbf{H} \text{ is symmetric and,}$$

$$(\mathbf{I} - \mathbf{H})^2 = \mathbf{I}^2 - 2\mathbf{H} + \mathbf{H}^2 = \mathbf{I} - \mathbf{H}.$$

It remains to identify the column space of $\mathbf{I} - \mathbf{H}$. Let $\mathbf{H} = \mathbf{U}\Lambda\mathbf{U}^\top$ be the spectral decomposition of \mathbf{H} .

$$\text{Then } \mathbf{I} - \mathbf{H} = \mathbf{U}\mathbf{U}^\top - \mathbf{U}\Lambda\mathbf{U}^\top = \mathbf{U}(\mathbf{I} - \Lambda)\mathbf{U}^\top.$$

Hence the column space of $\mathbf{I} - \mathbf{H}$ is spanned by the eigenvectors of \mathbf{H} corresponding to zero eigenvalues of \mathbf{H} , which coincides with $\mathcal{M}^\perp(\mathbf{H}) = \mathcal{V}^\perp$. \square

Proposition

Let \mathcal{V} be a subspace and \mathbf{H} be a projection onto \mathcal{V} . Then $\mathbf{H}\mathbf{y} = \mathbf{y}$ for all $\mathbf{y} \in \mathcal{V}$.

Proposition

If \mathbf{P} and \mathbf{Q} are projection matrices onto a subspace \mathcal{V} , then $\mathbf{P} = \mathbf{Q}$.

Proposition

If $\mathbf{x}_1, \dots, \mathbf{x}_p$ are linearly independent^a and are such that $\text{span}(\mathbf{x}_1, \dots, \mathbf{x}_p) = \mathcal{V}$, then the projection onto \mathcal{V} can be represented as

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top$$

where \mathbf{X} is a matrix with columns $\mathbf{x}_1, \dots, \mathbf{x}_p$.

^a $\sum_{i \leq p} a_i \mathbf{x}_i = 0$ iff. $a_i = 0$, for all $i \leq p$

Proposition

Let \mathcal{V} be a subspace of \mathbb{R}^n and \mathbf{H} be a projection onto \mathcal{V} . Then

$$\|\mathbf{x} - \mathbf{Hx}\| \leq \|\mathbf{x} - \mathbf{v}\|, \quad \forall \mathbf{v} \in \mathcal{V}.$$

Proof (*).

Let $\mathbf{H} = \mathbf{U}\Lambda\mathbf{U}^\top$ be the spectral decomposition of \mathbf{H} , $\mathbf{U} = (\mathbf{u}_1 \ \cdots \ \mathbf{u}_n)$ and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$. Letting $p = \dim(\mathcal{V})$, then

by assumption of \mathbf{H}

- ① $\lambda_1 = \cdots = \lambda_p = 1$ and $\lambda_{p+1} = \cdots = \lambda_n = 0$, (by definition of a projection matrix s19)
- ② $\mathbf{u}_1, \dots, \mathbf{u}_n$ is an orthonormal basis of \mathbb{R}^n ,
- ③ $\mathbf{u}_1, \dots, \mathbf{u}_p$ is an orthonormal basis of \mathcal{V} .

Let's us it in the following computations

$$\begin{aligned}
\|\mathbf{x} - \mathbf{Hx}\|^2 &= \sum_{i=1}^n (\mathbf{x}^\top \mathbf{u}_i - (\mathbf{Hx})^\top \mathbf{u}_i)^2 && [\text{orthonormal basis}] \\
&= \sum_{i=1}^n (\mathbf{x}^\top \mathbf{u}_i - \mathbf{x}^\top \mathbf{Hu}_i)^2 && [H \text{ is symmetric}] \\
&= \sum_{i=1}^n (\mathbf{x}^\top \mathbf{u}_i - \lambda_i \mathbf{x}^\top \mathbf{u}_i)^2 && [\mathbf{u}'s \text{ are eigenvectors of } H] \\
&= 0 + \sum_{i=p+1}^n (\mathbf{x}^\top \mathbf{u}_i)^2 && [\text{eigenvalues 0 or 1}] \\
&\leq \sum_{i=1}^p (\mathbf{x}^\top \mathbf{u}_i - \mathbf{v}^\top \mathbf{u}_i)^2 + \sum_{i=p+1}^n (\mathbf{x}^\top \mathbf{u}_i)^2 && \forall \mathbf{v} \in \mathcal{V} \\
&= \|\mathbf{x} - \mathbf{v}\|^2.
\end{aligned}$$

□

Proposition

Let $\mathcal{V}_1 \subseteq \mathcal{V} \subseteq \mathbb{R}^n$ be two nested linear subspaces. If \mathbf{H}_1 is the projection onto \mathcal{V}_1 and \mathbf{H} is the projection onto \mathcal{V} , then

$$\mathbf{H}\mathbf{H}_1 = \mathbf{H}_1 = \mathbf{H}_1\mathbf{H}.$$

Proof (*).

First we show that $\mathbf{H}\mathbf{H}_1 = \mathbf{H}_1$, and then that $\mathbf{H}_1\mathbf{H} = \mathbf{H}\mathbf{H}_1$. For all $\mathbf{y} \in \mathbb{R}^n$ we have $\mathbf{H}_1\mathbf{y} \in \mathcal{V}_1$. But then $\mathbf{H}_1\mathbf{y} \in \mathcal{V}$, since $\mathcal{V}_1 \subseteq \mathcal{V}$.

Therefore $\mathbf{H}\mathbf{H}_1\mathbf{y} = \mathbf{H}_1\mathbf{y}$. We have shown that $(\mathbf{H}\mathbf{H}_1 - \mathbf{H}_1)\mathbf{y} = 0$ for all $\mathbf{y} \in \mathbb{R}^n$, so that $\mathbf{H}\mathbf{H}_1 - \mathbf{H}_1 = 0$, as its kernel is all \mathbb{R}^n . Hence $\mathbf{H}\mathbf{H}_1 = \mathbf{H}_1$.

To prove that $\mathbf{H}_1\mathbf{H} = \mathbf{H}\mathbf{H}_1$, note that symmetry of projection matrices and the first part of the proof give

$$\mathbf{H}_1\mathbf{H} = \mathbf{H}_1^\top \mathbf{H}^\top = (\mathbf{H}\mathbf{H}_1)^\top = (\mathbf{H}_1)^\top = \mathbf{H}_1 = \mathbf{H}\mathbf{H}_1.$$

□

Definition (Quadratic Form Definition)

A $p \times p$ real symmetric matrix Ω is called **non-negative definite** (written $\Omega \succeq 0$) if and only if $\mathbf{x}^\top \Omega \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^p$. If $\mathbf{x}^\top \Omega \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^p \setminus \{0\}$, then we call Ω **positive definite** (written $\Omega \succ 0$).

Definition (Spectral Definition)

A $p \times p$ real symmetric matrix Ω is called **non-negative definite** (written $\Omega \succeq 0$) if and only the eigenvalues of Ω are non-negative. If the eigenvalues of Ω are strictly positive, then Ω is called **positive definite** (written $\Omega \succ 0$).

Lemma (Little exercise)

The two definitions are equivalent.

Proposition (Non-Negative and Covariance Matrices)

Let Ω be a real symmetric matrix.

Then Ω is non-negative definite iff. Ω is the covariance matrix of some random vector \mathbf{Y} .

We want to find the subspace that explains the most a random vector \mathbf{Y} in \mathbb{R}^d with covariance matrix Ω .

- *Step $j = 1$:* Find direction $\mathbf{v}_1 \in \mathbb{S}^{d-1}$ such that the projection of \mathbf{Y} onto \mathbf{v}_1 has maximal variance.
- *Steps $j = 2, 3, \dots, d$:* Find direction $\mathbf{v}_j \perp \{\mathbf{v}_1, \dots, \mathbf{v}_{j-1}\}$ such that projection of \mathbf{Y} onto \mathbf{v}_j has maximal variance.

- First, by Proposition s26, Ω is symmetric, non-negative definite of size $d \times d$.
- *Step $j = 1$:* Maximise $\text{var}(\mathbf{v}_1^\top \mathbf{Y}) = \mathbf{v}_1^\top \Omega \mathbf{v}_1$ over $\|\mathbf{v}_1\| = 1$

$$\mathbf{v}_1^\top \Omega \mathbf{v}_1 = \mathbf{v}_1^\top \mathbf{U} \Lambda \mathbf{U}^\top \mathbf{v}_1 = \|\Lambda^{1/2} \mathbf{U}^\top \mathbf{v}_1\|^2 = \sum_{i=1}^d \lambda_i (\mathbf{u}_i^\top \mathbf{v}_1)^2 \quad [\text{change of basis}]$$

Now $\sum_{i=1}^d (\mathbf{u}_i^\top \mathbf{v}_1)^2 = \|\mathbf{v}_1\|^2 = 1$ so we have a convex combination of $\{\lambda_j\}_{j=1}^d$,

$$\sum_{i=1}^d p_i \lambda_i, \quad \sum_i p_i = 1, \quad p_i \geq 0, \quad i = 1, \dots, d.$$

But $\lambda_1 \geq \lambda_i \geq 0$ so clearly this sum is maximised when $p_1 = 1$ and $p_j = 0 \forall j \neq 1$, i.e. $\mathbf{v}_1 = \pm \mathbf{u}_1$.

- *Steps $j = 2, 3, \dots, d$:* Iteratively, $\mathbf{v}_j = \pm \mathbf{u}_j$, i.e. principal components are eigenvectors of Ω .

Theorem (Optimal (Linear) Dimension Reduction Theorem)

Let \mathbf{Y} be a mean-zero random variable in \mathbb{R}^d with $d \times d$ covariance Ω . Let \mathbf{H} be the projection matrix onto the span of the first k eigenvectors of Ω . Then

$$\mathbb{E}\|\mathbf{Y} - \mathbf{H}\mathbf{Y}\|^2 \leq \mathbb{E}\|\mathbf{Y} - \mathbf{Q}\mathbf{Y}\|^2$$

for any $d \times d$ projection matrix \mathbf{Q} or rank at most k .

Intuitively: if you want to approximate a mean-zero random variable taking values in \mathbb{R}^d by a random variable that ranges over a subspace of dimension at most $k \leq d$, the optimal choice is the projection of the random variable onto the space spanned by its first k principal components (eigenvectors of the covariance). “Optimal” is with respect to the mean squared error.

For the proof, use lemma below (follows immediately from spectral decomposition)

Lemma

\mathbf{Q} is a rank k projection matrix iff. there exist orthonormal vectors $\{\mathbf{v}_j\}_{j=1}^k$ such that $\mathbf{Q} = \sum_{j=1}^k \mathbf{v}_j \mathbf{v}_j^\top$.

Proof of Optimal Linear Dimension Reduction (*).

Write $\mathbf{Q} = \sum_{j=1}^k \mathbf{v}_j \mathbf{v}_j^\top$ for some orthonormal $\{\mathbf{v}_j\}_{j=1}^k$. Then

$$\mathbb{E} \|\mathbf{Y} - \mathbf{Q}\mathbf{Y}\|^2 =$$

$$\begin{aligned} &= \mathbb{E} [\mathbf{Y}^\top (\mathbf{I} - \mathbf{Q})^\top (\mathbf{I} - \mathbf{Q}) \mathbf{Y}] = \mathbb{E} [\text{tr}\{(\mathbf{I} - \mathbf{Q}) \mathbf{Y} \mathbf{Y}^\top (\mathbf{I} - \mathbf{Q})^\top\}] \\ &= \text{tr}\{(\mathbf{I} - \mathbf{Q}) \mathbb{E} [\mathbf{Y} \mathbf{Y}^\top] (\mathbf{I} - \mathbf{Q})^\top\} = \text{tr}\{(\mathbf{I} - \mathbf{Q})^\top (\mathbf{I} - \mathbf{Q}) \Omega\} \\ &= \text{tr}\{(\mathbf{I} - \mathbf{Q}) \Omega\} = \text{tr}\{\Omega\} - \text{tr}\{\mathbf{Q} \Omega\} = \sum_{i=1}^d \lambda_i - \text{tr} \left\{ \sum_{j=1}^k \mathbf{v}_j \mathbf{v}_j^\top \Omega \right\} \\ &= \sum_{i=1}^d \lambda_i - \sum_{j=1}^k \text{tr} \{ \mathbf{v}_j \mathbf{v}_j^\top \Omega \} = \sum_{i=1}^d \lambda_i - \sum_{j=1}^k \mathbf{v}_j \Omega \mathbf{v}_j^\top \\ &= \sum_{i=1}^d \lambda_i - \sum_{j=1}^k \text{var}[\mathbf{v}_j^\top \mathbf{Y}] \end{aligned}$$

If we can minimise this expression over all $\{\mathbf{v}_j\}_{j=1}^k$ with $\mathbf{v}_i^\top \mathbf{v}_j = \mathbf{1}\{i=j\}$, then we're done. By PCA, this is done by choosing the top k eigenvectors of Ω . □

Recall that for any matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$, we have $\text{tr}(\mathbf{ABC}) = \text{tr}(\mathbf{BCA}) = \text{tr}(\mathbf{CAB})$ under conditions (cf A3W8).

Corollary (Deterministic Version)

Let $\{\mathbf{x}_1, \dots, \mathbf{x}_p\} \subset \mathbb{R}^d$ be such that $\mathbf{x}_1 + \dots + \mathbf{x}_p = 0$, and let \mathbf{X} be the matrix with columns $\{\mathbf{x}_i\}_{i=1}^p$. The best approximating k -hyperplane to the points $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ is given by the span of the first k eigenvectors of the matrix $\mathbf{X}\mathbf{X}^\top$, i.e. if \mathbf{H} is the projection onto this span, it holds that

$$\sum_{i=1}^p \|\mathbf{x}_i - \mathbf{H}\mathbf{x}_i\|^2 \leq \sum_{i=1}^p \|\mathbf{x}_i - \mathbf{Q}\mathbf{x}_i\|^2$$

for any $d \times d$ projection operator \mathbf{Q} or rank at most k .

Proof.

Define the discrete random vector \mathbf{Y} by $\mathbb{P}[\mathbf{Y} = \mathbf{x}_i] = 1/p$, and use optimal linear dimension reduction as stated earlier. □