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Regression
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Absence or Presence of Covariates

In the beginning we distinguished between:

© Marginal Inference. Here (Y, ..., Y,)" has i.i.d. entries each from the same
distribution F( Z?. with the same parametert(ﬂ

e In other words, all observations were obtained under identical experimental

conditions, and thus depend in the same way on the same unknown (@)
g

© Regression. Here (Y4,..., Y,) has independent entries, each with
distribution F(y;6;) of the same family but with different parameters.

e Each observation was generated under slightly different experimental
conditions. They depend in a similar way on different 6;.

° These@correspond to different experimental conditions, say@

e Each x; is called a covariate/feature, and is an input that the experimenter can
vary. They are known. The index i reminds us that it corresponds to the ith
observation Y.

o Usually 0; is postulated to have a special relationship to x;, for example
0; = exp{a + Bx;}, for (c, 3) uknown parameters.

e The point here is to understand the effect of varying the covariate/feature on

the distribution of the observable. (¥)
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What is a Regression Model?

Statistical model for:

whose law is influenced by

Y (random output)

—

Aim: understand the effect of x on the distribution of random variable! Y ]

-

x (non-random input)

()

General formulation®:

?

Y; Dlstrlbutlon{g } i=1,..n
R \V_/
—0;

|ndependent

™ ~

Statistical Problem: Estimate (learn) g(-) from data {(x&,'d7 Yi)}7_,. Use for:
_ @ Inference

. @ Prediction

. @ Data compression (parsimonious representations)

|ndependent

ISometimes we writc—jY,-|x, Dlstrlbutlon{g x;) = 0; }Lo highlight that the
distribution of Y dependson x, but without meaning that (X, Y)) are jointly random; such an
assumption is unnecessary (e.g., in a designed experiment we choose values for x).
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Example: How to model the height of Honolulu tides throughout the day -
Histogram
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Example: Height of Honolulu tides as function of the time of day
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A bewildering variety of models can be captured by the general specificaiton

ind dent . . . [
We" Distribution{ g (X))}, i=1..,n

))
_X; can be: L(.’ofvp s ,SW‘“ Ve ‘23
@ continuous, discrete, categorical, vector ... X= i%‘ Rt J
@ arrive randomly, or be chosen by experimenter, or both Q“%‘iwf“-
@ however x arises, we treat it as constant in the analysis levdh "W’"'M’ |
B devecmnifLe - e ?‘m&ﬁ;n |

Distribution can be:
@ Gaussian, Laplace, Bernoulli, Poisson, gamma, general exponential family, ...
N——— —

Function g(+) can be:

g(x) = Bo + fix, g(x) = ZkK:_K ﬂk@, cubic spline, neural net...

S~— L————’\I -
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Table: A coarse classification of regression models we will consider

\
’ Distribution / Function g H 1e(x.") = x,T@ \ g nonparametric”
Gaussian Linear Regression| Smoothing |
Exponential Family GLM GAM )

GLM: Generalized Linear Model and GAM: Generalized Additive Model

We start with a very standard model: Linear Regression with Y|x being Gaussian.
tdndard mod
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Fundamental Case: Normal Linear Regression

LoV
(] Y7X€R, g(x):ﬁo—i— 1X ;’\ » 70 .
J— __( )_.@) oc ™ M.,J“

—_— ~
Y‘XN./\/’(ﬁo—f—ﬂlX,O'z)
(; —
!Y:60+B1x+@ e ~N(0,02) |7

The second version is useful for mathematical work, but is puzzling statistically,
since we don't observe e.

o

v
@ Also, covariate could be vector (Y, € R, x € R@, B e R@):
Y Ix~ NG+ 8Tx0%)  f=[p)
(; X< (1,%)

[Y=hotBxte coNOL) y L a(iwe)
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Example: How to model my van's consumption of gas
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Example: Histogram of consumption of gas (km/L)
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Example: Gas consumption as function of successive fill-ups

Kim/Litre
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The tools of the trade ...

Start from Gaussian linear regression then gradually generalise . ..

Obviously: important features of Gaussian linear model are
@ Gaussian distribution

@ Linearity

These two combine well and give geometric insights to solve the estimation
problem. Thus we need to revise some probabilistic linear algebra. ..
@ Subpsaces and projection matrices

@ Multivariate Gaussian Distribution
@ Optimal dimension reduction

@ Random quadratic forms
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Linear Algebra Intermezzo

Linear Subspaces, Orthogonal Projections, Gaussian Vectors
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Subspaces and Spectra Q- ("‘ °) a3, =% \’J{,(Q)- l(") (:)} -

2o —/:‘( ) (&,_) Q] —? (‘3“3’"3’) B

11\9\
If Q is an n x p real matrix, we define the column space (or range) of Q to Be the

set spanned by its columns:

M(Q)={y eR": IpER?, y = Qp}.

@ Recall that M(Q) is a subspace of R".
@ The columns of @ provide a coordinate system for the subspace M(Q)

e If Q is of full column rank (p), then the coordinates 3 corresponding to a
y € M(Q) are unique.
@ Allows interpretation of system of linear equations

‘ 05:}’~|

[existence of solution <> is y an element of M(Q)7?]

[uniqueness of solution <« is there a unique coordinate vector 37]
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Two further important subspaces associated with a real n x p matrix Q:

o the null space (or kernel), ker(Q), of Q is the subspace defined as

ker(Q) = {x € R”: @x = 0};

@ the orthogonal complement of M(Q)(MJ'(Q)I is the subspace defined as

MHQ) = {yeR":y TQx:o vx € RP}
= {yeR":y v—O Vv € M(Q)}.

~— < vy =°

The orthogonal complement may be defined for arbitrary subspaces by using the
second equality.
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Theorem (Spectral Theorem)

A p x p matrix Q is symmetric if and only if there exists a p x p orthogonal
. . ——————————————————————
matrix’ U and a diagonal matrix A such that
—_

[emumv] 0[] A

° QA
In particular: P
Q the columns of U = (uy - -- up) are eigenvectors of @, i.e. there exist \;
such that

Qui=Nw,  j=1,....p

@ the entries of A = diag(\1,...,\p) are the corresponding eigenvalues of Q,
which are real; and

© the rank of Q is the number of non-zero eigenvalues.

3A matrix is orthogonal if UUT = U U = I,

Note: if the eigenvalues are distinct, the eigenvw (up to changes in
signs).
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Theorem (Singular Value Decomposition) 4
Any n x p real matrix can be factorised as ( ﬂ.\ -

m@m . HD(‘“) (%E)f

where U and VT are orthogonal with columns called left singular vectors and
right singular vectors, respectively, and ¥ is diagonal with real entries called
|smgular values.]

J
~
The left singular vectors are eigenvectors of QQ .2

. : ~V .
The right singular vectors are eigenvectors of Q" Q.

The squares of the singular values are eigenvalues of both QQT and QT Q.

. NJ . .
The left singular vectors corresponding to non-zero singular values form an
orthonormal basis for M(Q).
thonormal basis tor M

The left singular vectors corresponding to zero singular values form an
orthonormal basis for M*(Q

© ©0600O0

2 hint: compute QQ—r U; = \2U; for all i < p. And similarly with Q" V; = /\l?\/,-
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Orthogonal Projections

A matrix Q is called idempotent if Q*> = Q.

An orthogonal projection (henceforth projection) onto a subspace V is a
symmetric idempotent matrix H such that M(H) =V, i.e. the column space of H
————— ‘____—’

coincides with the subspace V.

Proposition

The only possible eigenvalues of a projection matrix are 0 and 1. J
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Projections on the Orthogonal Complement

Proposition

Let V be a subspace and H be a projection onto V. Then I — H is the projection

matrix onto|V+|

Proof (x).

We first prove that I — H is a projection matrix (idempotent and symmetric).

(I —H)" =1—H" =1— H since H is symmetric and,
(I -H?=1>-2H+ H>=1—-H.

It remains to identify the column space of I — H. Let H = UAUT be the
spectral decomposition of H.

Then I —H=UUT —UAUT = U(I -AUT.

Hence the column space of I — H is spanned by the eigenvectors of H

corresponding to zero eigenvalues of H, which coincides with M~ (H) = V.
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Let V be a subspace and H_be a projection onto V. Then Hy =y for ally € V.

If P and Q are projection matrices onto a subspace V, then P = Q. I

If x1,...,%, are linearly independent® and are such that span(xi,...,x,) =V,
then the projection onto V can be represented as

|H=X(X"X)7X7,

where X is a matrix with columns xy,...,Xp.

A i<paixi=0iff. 3 =0, forall i <p
—
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Proposition
Let V be a subspace of R" and H be a projection onto ). Then

o
[x — Hx|| < || x —v||, Yv € V.

Proof (x).

Let H= UAUT be the spectral decomposition of H, U = (u; --- u,) and
A = diag(A1,..., A\p). Letting p = dim(V), then
A AT SRl N

by assumption of H

QO \=---= /\p =1 and /\p+1 =...=)X,=0, (by definition of a projection matrix
519)

Q uy,...,u, is an orthonormal basis of R”,

© uy,...,u, is an an orthonormal basis of V.

Let's us it in the following computations
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n

[x — Hx|* = Z(xTu,- — (Hx)"u;)? [orthonormal basis]
e - '

i=1
Mrzl’\
- T . .
= Z(x uj — x f"/l'l._l’,) [H is symmetric]
SN WC

n 4
= Z(xTu,- — Aix u,-gé [u's are eigenvectors of H|

i=1 S m‘lo‘\‘)

— 0+ Z (x " u;)? [eigenvalues 0 or 1]
i=p+1

< Z(x u—v'u) —|—qu,2 Vv eV

i=p+1
R 3

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 23 /44



Proposition |
Let V; CV C R" be two nested linear subspaces. If Hy is the projection onto V;
and H is the projection onto V, then

HH; = H, = HiH.

Proof (x).

First we show that HH; = H;, and then that HiH = HH;. For all y € R" we
have Hiy € V3. But then Hyy € V, since V; C V.

Therefore HH;y = H;y. We have shown that (HH; — Hy)y = 0 for all y € R",
so that HH; — H; = 0, as its kernel is all R". Hence HH; = H;.

To prove that HyH = HH;, note that symmetry of projection matrices and the
first part of the proof give

HiH=HH" = (HH,)" = (H,)" = H, = HH;.
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Non-Negative Matrices - Definitions

Definition (Quadratic Form Definition)

A p X p real symmetric matrix €2 is called non-negative definite (written
if and only if(x "Qx > Offor all x € RP._If x" Qx > 0 for all x € R\ {0}, ther

we call © positive definite (written @)

Definition (Spectral Definition)

A p x p real symmetric matrix €2 is called non-negative definite (written £ = 0)
if and only the eigenvalues of €2 are non-negative. If the eigenvalues of € are

= o e . T Y ) .
strictly positive, then € is called positive definite (written € > 0).

U%—lb‘ 2\
N S
@ Q
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The two definitions are equivalent.

Let Q2 be a real symmetric matrix.

Then 2 is non-negative definite iff. €2 is the covariance matrix of some random
vector Y .




Principal Component Analysis - Iterative Method b
K_’f-":‘rri’\y 2

(UM ~ PEEy—4 !

We want to find the subspace that explains the most a random vector Y in R¢
N
\)-'):.?‘L\‘-

with covariance matrix(ﬂ. ’
v

@ Step j = 1: Find direction v; € S9! such that the projection of Y onto v;
has maximal variance.
> asiiidl var'd

@ Steps j=2.3,....d: Find direction v; L {wi, ..., vj_1} such that projection
of Y onto v; has maximal variance.
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Principal Component Analysis - Solution

-

o First, by Proposition s26, €2 is symmetric, non-negative definite of size @

e Step j = 1: Maximise var(v{' Y) = v;' Quv; over |jvi] =1
~— —
AR IS MVI = \|A1/2l>JTv1||2 2)\ u vi)>  [change of basis]
dog (Gipoes) =L
Now 37 (u vi)? = ||w|] = 150 we have a convex combination of {\;}¢;,

d
Zp;)u, Zp,‘:L pi>0, i=1,...,d.
i=1 i

But A; > A; > 0 so clearly this sum is maximised when p; =1 and p; =0

Vj£1, e (VEET[ '

@ Stepsj =2,3,...,d: lteratively, v; = £u;, i.e. principal components are
. —
eigenvectors of Q.
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0. v AVT {\.iqkoaL?.,»,)‘ A+t )
Ay M), -

Theorem (Optimal (Linear) Dimension Reduction Theorem)

Let Y be a mean-zero random variable in RY with d x d covariance Q2. Let H be
the projection matrix onto the span of the first k eigenvectors of £2. Then

E|Y — HY|? <E|Y - QY|?
- [ v -

for any d x d projection matrix Q or rank at most k.

Intuitively: if you want to approximate a mean-zero random variable taking values
RY by a random variable that ranges over a subspace of dimension at most k < d,
the optimal choice is the projection of the random variable onto the space
spanned by its first k principal components (eigenvectors of the covariance).
“Optimal” is with respect to the mean squared error.
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For the proof, use lemma below (follows immediately from spectral decomposition)

Q is a rank k projection matrix @ there exist orthonormal vectors {vj}J’-‘:1 such

k T
that Q = . . viv:' .
] Zj—l ] )
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Proof of Optimal Linear Dimension Reduction ().

Write mfor some orthonormal {v;}/_;. Then

EHY QYH2
HEELY, a)

— - —_—f—_
E[YT(1-Q) (1~ QY] =E[t{(1— @YY (1-Q) )]
tr{(l - QE[YYT] (1 - Q)T} =tr{(l - Q)" (I - Q)Q}

= -
= t{(l - Q)2} = tr{2} —tr{QQ} = Z/\ i Zv,v Q
d
= Z/\,- = Ztr {v,-v,-TQ} = Z/\,- — Z v,~Qv,-T
=il j=1 i=1 J;_].\/_‘J

d k
= A=Y var[v.' Y]

If we can minimise this expression over all {v;}%_; with v."v; = 1{i = j}, then
we're done. By PCA, this is done by choosing the top k eigenvectors of 2. ]

Recall that for any matrices A, B, C, we have tr(ABC) = tr(BCA) = tr{(CAB) under conditions (cf A3W8).
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Corollary (Deterministic Version)

Let {x1,...,x,} C R? be such that x; + ...+ x, =0, and let X be the matrix
with columns {x;}?_,. The best approximating k-hyperplane to the points

{x1,..., X5} 5 given by the span of the first k eigenvectors of the matrix XXT, ie.

if H is the projection onto this span, it holds that o
P p (_n___ E[Y‘r’])
Dl = Hxil* < llxi — Qi
i=1 i=1
g/'/\)

for any d x d projection operator Q or rank at most k.

Proof.
Define the discrete random vector Y by P[Y = x;] = 1/p, and use optimal linear
dimension reduction as stated earlier. ]
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Gaussian Vectors and their Properties

v \/NLA!\I}"L”L)
r
Definition (Multivariate Gaussian Distribution)

A random vector Y in @ has the multivariate normal distribution if and only if
T/ has the univariate normal distribution, ¥3 € R€.

How can we use this definition to determine basic properties?

Recall that the moment generating function (MGF) of a random vector W in@
is defined as

v
Mw(0) =[E[* V],  6cR?,
provided the expectation exists. When the MGF exists it characterises the
WL Furthermore, two random vectors are
independent if and only if their joint MGF is the product of their marginal MGF's.
LT e Ny®
M) ()= a0
T &w\\/ 4&‘*\& :
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Most important facts about Gaussian vectors:
© Moment generating function of Y ~ N (u, ):
R®

L ZE—
My (u) = exp (qu, + uTﬂu> .
2 v~~~

Q Y ~ N(ppx1,2pxp) and given By, and 0,1, then
— — .
0+ BY ~N(6+Bu,BQB").
© N(p, ) density, assuming Q nonsingular:

1 1 _
fr(y) = WGXP {2(y —p) QN y - H)} :
' 1ot L:‘a—}_“,"
© Constant density isosurfaces are ellipsoidal 20"

@ Marginals of Gaussian are Gaussian (converge NOT tkue).

TSNS OF Maals>s aussiar
Q 2 diagonal < independent coordi

QIfY NN(NPXLQ p)v
AY independent of BY = |AQBT =0.
\/\/w -
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Proposition (Property 1: Moment Generating Function)

The moment generating function of Y ~ N (p, Q) is

My (u) =exp (u"p + LuTQu)

Proof (x).

Let u € RY be arbitrary. Then u' Y is Gaussian with mean u" p and variance uT Qu. Hence it
has moment generating function:

M,y (t) =E (e“‘T Y) = exp {t(uTu) + g(uTQu)} .
Now take t = 1 and observe that
M,7y(1) =E (e"TY> = My (u).
Combining the two, we conclude that

1
My (u) = exp (uTu + EuTﬂu> , ueR?
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Proposition (Property 2: Affine Transformation)
For Y ~ N(ppx1,Qpxp) and given By, and 0,51, we have

0+ BY ~N(0+ Bu, BQBT)

Proof ().
Mgigy(u) = E [exp{uT(O + BY)}] = exp {UTQ} E [exp{(BTu)T Y}]
= exp{uTG} My (BT u)
- e { T9} TAT, L, T
= pu exp4 (B ' u) p,—i-zu BQB ' u
= exp{uT0+uT(Bu)+%uTBQBTu}
1
= exp{uT(O—l—B/.L)—s—EuTBQBTu}
And this last expression is the MGF of a N'(6 + Bu, BQBT) distribution. O

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 36/44



Proposition (Property 3: Density Function)
Let Q,x, be nonsingular. The density of N (ppx1, R2pxp) is

fr(y) = WGXP{ (y—m) QY (y —p)}

Proof (x).

Let Z=(Z,...,2Z,)" be a vector of iid N(0,1) random variables. Then,
because of independence,

(a) the density of Z is
P

atey= Tt T o0 (34) = o (3272)

i=1 i=1

(b) The MGF of Z is

Mz(u) =E {exp <Z u,-Z,-) } = HE{exp(u,-Z,-)} = exp(u ' u/2),

which is the MGF of a p-variate N/(0, I) distribution.
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L )ihe N(0,1) density is fz(z) = W exp(—3z72z).

By the spectral theorem, © admits a square root, /2. Furthermore, since £ is
non-singular, so is /2.

Now observe that from our Property 2, we have Y L2z + w~N(p, ).

By the change of variables formula,

fr(y) = foieziu(y)
0 Ay — )

1 1 To-1
= WWGXP{_z(y—H) Q (y—H)}'

[Recall that to obtain the density of W = g(X) at w, we need to evaluate fx at

g !(w) but also multiply by the Jacobian determinant of g=1 at w.]
]
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Proposition (Property 4: Isosurfaces)

The isosurfaces of a N'(ppx1, Qpxp) are (p — 1)-dimensional ellipsoids centred at
w, with principal axes given by the eigenvectors of 2 and with anisotropies given

by the ratios of the square roots of the corresponding eigenvalues of €2 .

Proof (x).

Exercise: Use Property 3, and the spectral theorem.

Proposition (Property 5: Coordinate Distributions)
Let Y = (Y1,...,Yp) " ~N(ppx1, pxp). Then Y; ~ N(u;, Q) -

Proof (x).
Observe that Y;=(0, 0,..., 1 ,---, 0, 0)Y and use Property 2.
~—
jth position
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Proposition (Property 6: Diagonal 2 <= Independence)

Let Y = (Y1,...,Yp) " ~N(ppx1,Qpxp). Then the Y; are mutually
independent if and only if 2 is diagonal.

Proof (x).

Suppose that the Yj are independent. Property 5 yields Yj ~ N (y;, UJ?
o; > 0. Thus the density of Y is

P P A Y
=0 =T oo {30527}

) for some

—

1
_ B ) u)} .
(27)P/? |diag(02, . .., 02)[1/2 { 2 ' P

Hence Y ~ N{u,diag(c3,...,03)}, i.e. the covariance €2 is diagonal.
Conversely, assume € is diagonal, say €2 = diag(o?, ..., 05). Then we can reverse
the steps of the first part to see that the joint density fy(y) can be written as a

product of the marginal densities fy,(y;), thus proving independence.
]
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Proposition (Property 7: AY,BY indep <= AQB' =0)
IfY ~ N(upxl, Qpxp), and Apxp, Baxp be real matrices. Then,
AY independent of BY +— AQB' =0.

Proof (x). [wlog assuming g = 0 (simplifies the algebra)]

First assume AQBT = 0. Let Winia)x1 = (By) and Opmiayx1 = (“1).

Vdx1

Mw (8) Elexp{W 0} =E [exp{Y'TATu+ Y B v}]

Elexp{YT(ATu+B"v)}] =My(ATu+BTv)

exp {;(ATU +BTv) QA U+ BTV)}

=exp{ | uTAQATu+v BB v+ u'AQB v+ v BQA u
2 N—— ——
=0 =0

= MAy(u)/\/IBy(V) (joint MGF = product of marginal MGFs, thus independence)
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For the converse, assume that AY and BY are independent. Then, Vu, v,

Mw(e) = MAy(U)MBy(V), Vu, v,
1
— exp {2 (uTAQATu+v BB v +u"AQBTv + vTBQATu)}
1 1
= exp {2uTAQATu} exp {2VTBQBTV}
1 T T
= exp §><2v AQB u; =1

— v AQB u =0, Yu,v,

— AQBT =0.
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Gaussian Quadratic Forms and the x? & F Distributions

Reminder:
Definition (x? distribution)

Let Z ~ N(0, Ipxp). Then [|Z||* =37, Z7 is said to have the chi-square (x?)
distribution with p degrees of freedom; we write || Z|[* ~ x3.

[Thus, Xf, is the distribution of the sum of squares of p real independent standard
Gaussian random variates.]

Definition (F distribution)

Let V ~ x2 and W ~ 2 be independent random variables. Then (V/p)/(W/q)
is said to have the F distribution with p and g degrees of freedom; we write

(V/P)/(W/Q) ~ Fpgq-
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Q@ IfZ ~ N(Opx1, Ipxp) and H is a projection of rank r < p,
ZTHZ ~ 2
Q Y ~ N(ppx1, Qpxp) with Q nonsingular —>

(Y )" QY —p) ~ x5
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