

Statistics for Data Science: Week 7

Myrto Limnios and Rajita Chandak

Institute of Mathematics – EPFL

rajita.chandak@epfl.ch, myrto.limnios@epfl.ch

Nonparametric Estimation

A different idea:

can we estimate **the distribution F itself** from data $Y_1, \dots, Y_n \stackrel{iid}{\sim} F$ without assuming **any particular functional form**?

- Termed **nonparametric estimation** as there is no specific parameter θ .
- Otherwise said, $\{F(x) : x \in \mathbb{R}\}$ is itself an **infinite-dimensional parameter**.
- OK, but **how?**

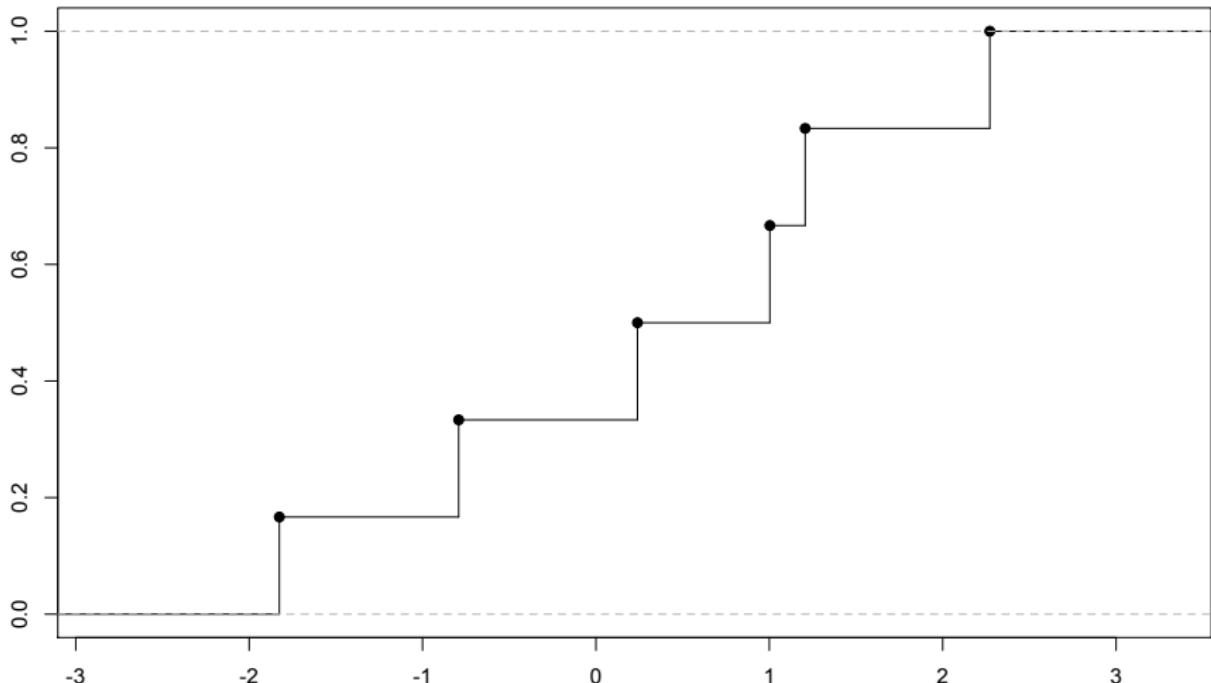
Definition (Empirical Distribution Function)

For a real i.i.d sample $Y_1, \dots, Y_n \stackrel{iid}{\sim} F$, the empirical distribution function is a random cumulative distribution function defined as

$$\hat{F}_n(y) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{Y_i \leq y\}.$$

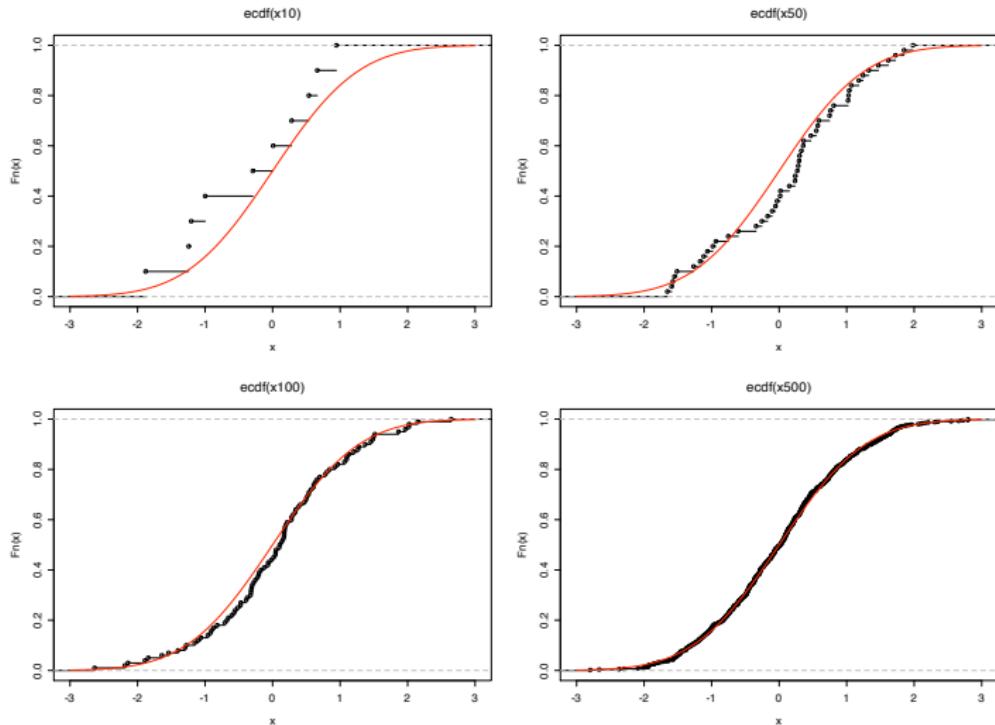
- CDF of the mass function placing mass $1/n$ on location of each Y_i .
- Notice that $W_i(y) := \mathbf{1}\{Y_i \leq y\} \stackrel{iid}{\sim} \text{Bernoulli}(F(y))$.
- Thus law of large numbers $\implies \hat{F}_n(y) \xrightarrow{a.s.} F(y)$ pointwise $\forall y \in \mathbb{R}$
- Notice how we got consistency without **any** assumption on form of F !

Empirical distribution of $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(0, 1)$, $n = 6$



- Jump locations at Y_1, \dots, Y_n .
- Jump sizes of $1/n$ ($1/6$ in this case)

Empirical distribution of $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(0, 1)$ for $n = 10, 50, 100, 500$.



Looks like we're doing better than pointwise a.s. convergence...

Theorem (Glivenko-Cantelli)

Let Y_1, \dots, Y_n be iid random variables with distribution function F . Then, $\hat{F}_n(y) = n^{-1} \sum_{i=1}^n \mathbf{1}\{Y_i \leq y\}$ converges uniformly to F with probability 1, i.e.

$$\sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| \xrightarrow{a.s.} 0$$

Proof (*).

Assume first that $F(y) = y \mathbf{1}\{y \in [0, 1]\}$. Fix a regular finite partition $0 = x_1 \leq x_2 \leq \dots \leq x_m = 1$ of $[0, 1]$ (so $x_{k+1} - x_k = (m-1)^{-1}$). By monotonicity of F , \hat{F}_n

$$\sup_x |\hat{F}_n(x) - F(x)| < \max_k |\hat{F}_n(x_k) - F(x_{k+1})| + \max_k |\hat{F}_n(x_k) - F(x_{k-1})|$$

Adding and subtracting $F(x_k)$ within each term we can bound above by

$$2 \max_k |\hat{F}_n(x_k) - F(x_k)| + \underbrace{\max_k |F(x_k) - F(x_{k+1})| + \max_k |F(x_k) - F(x_{k-1})|}_{=\max_k |x_k - x_{k+1}| + \max_k |x_k - x_{k-1}| = \frac{2}{m-1}}$$

by an application of the triangle inequality to each term.

OK, so let's investigate our bound

$$2 \max_k |\hat{F}_n(x_k) - F(x_k)| + \underbrace{\max_k |F(x_k) - F(x_{k+1})| + \max_k |F(x_k) - F(x_{k-1})|}_{=\max_k |x_k - x_{k+1}| + \max_k |x_k - x_{k-1}| = \frac{2}{m-1}}$$

Letting $n \uparrow \infty$, the SLLN implies that the **first term** vanishes almost surely. Since m is arbitrary we have proven that, given any $\epsilon > 0$,

$$\lim_{n \rightarrow \infty} \left[\sup_x |\hat{F}_n(x) - F(x)| \right] < \epsilon \quad a.s.$$

which gives the result when the cdf F is uniform.

For a general cdf F , we let $U_1, U_2, \dots \stackrel{iid}{\sim} \mathcal{U}[0, 1]$ and define

$$W_i := F^{-1}(U_i) = \inf\{x : F(x) \geq U_i\}.$$

Observe that

$$W_i \leq x \iff U_i \leq F(x)$$

so that $W_i \stackrel{d}{=} Y_i$. We may thus assume that $W_i = Y_i$ a.s.

Letting \hat{G}_n be the edf of (U_1, \dots, U_n) we note that

$$\hat{F}_n(y) = n^{-1} \sum_{i=1}^n \mathbf{1}\{W_i \leq y\} = n^{-1} \sum_{i=1}^n \mathbf{1}\{U_i \leq F(y)\} = \hat{G}_n(F(y)), \quad \text{a.s.}$$

in other words

$$\hat{F}_n = \hat{G}_n \circ F, \quad \text{a.s.}$$

Now let $A = F(\mathbb{R}) \subseteq [0, 1]$ so that **from the first part of the proof**

$$\sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| = \sup_{t \in A} |\hat{G}_n(t) - t| \leq \sup_{t \in [0,1]} |\hat{G}_n(t) - t| \xrightarrow{\text{a.s.}} 0$$

since obviously $A \subseteq [0, 1]$. □

Some conclusions:

- Assumptions were not restrictive
- The distribution functions are quite special (recall properties)
- Empirical distribution converges to true one at same rate anywhere on \mathbb{R}
- Suggests we should be able to define “uniform confidence bands” depending on n .

Theorem (Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality)

Let Y_1, \dots, Y_n be independent random variables, distributed according to F . Then, $\hat{F}_n(y) = n^{-1} \sum_{i=1}^n \mathbf{1}\{Y_i \leq y\}$ satisfies

$$\mathbb{P} \left\{ \sup_{y \in \mathbb{R}} \left| \hat{F}_n(y) - F(y) \right| > \epsilon \right\} \leq 2e^{-2n\epsilon^2}$$

for all $\epsilon > 0$.

Let's now construct a "uniform confidence interval" for F (known as **confidence band**)

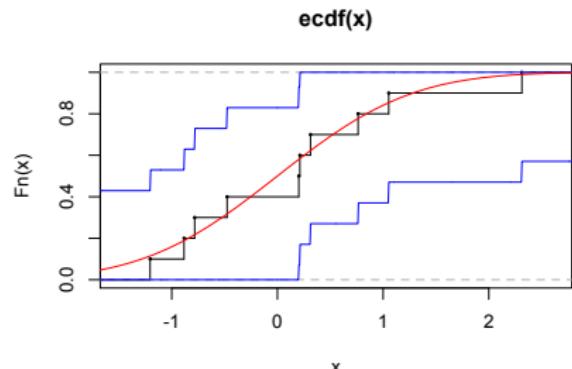
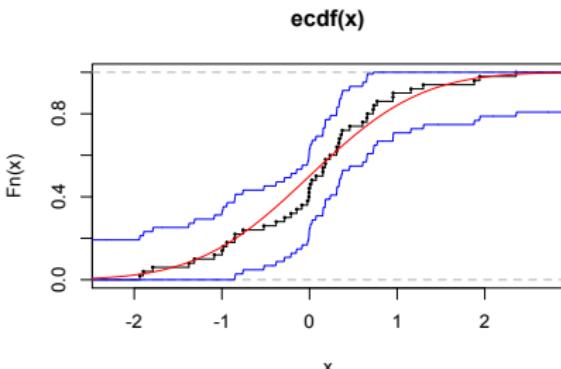
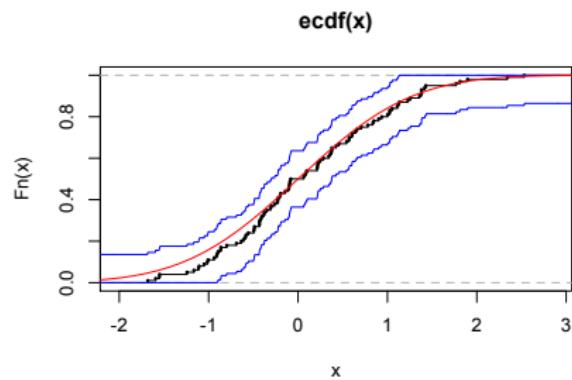
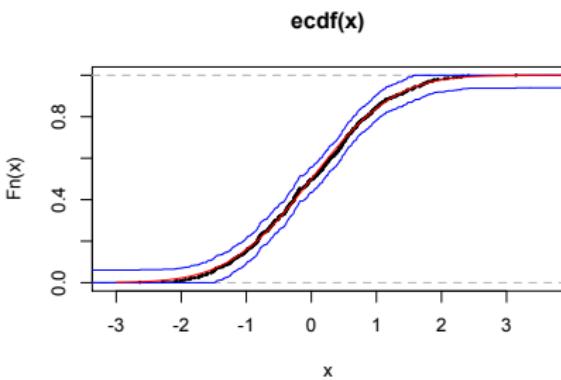
- For confidence level $\alpha \in (0, 1)$, set $\epsilon_n = \sqrt{\frac{1}{2n} \log(2/\alpha)}$
- Define $L(y) = \max\{\hat{F}_n(y) - \epsilon_n, 0\}$ and $U(y) = \min\{\hat{F}_n(y) + \epsilon_n, 1\}$
- Apply DKW inequality and conclude

$$\mathbb{P} \{ L(y) \leq F(y) \leq U(y) \ \forall y \in \mathbb{R} \} \geq 1 - \alpha.$$

- Can also use for hypothesis testing, using duality.

Empirical distribution of $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(0, 1)$ for $n = 10, 50, 100, 500$.

In blue: 95% DKW confidence bands



If we'd still like to estimate a parameter, can use the **plug-in principle**

Let $\nu = \nu(F)$ be a parameter of interest.

We can use $\nu(\hat{F}_n)$ as an estimator of $\nu(F)$, i.e. *plug \hat{F}_n in $\nu(\cdot)$* .

- “Flipped” point of view: viewing parameter ν as a function of F .
- Only sort of parameter we can consider, since no parametric model assumed!

Example (Mean, variance, median)

- For mean $\mu(F) = \int_{-\infty}^{+\infty} y dF(y)$ get

$$\hat{\theta} := \theta(\hat{F}_n) = \int_{-\infty}^{+\infty} y d\hat{F}_n(y) = \frac{1}{n} \sum_{i=1}^n Y_i = \bar{Y}$$

- For variance $\sigma^2(F) = \int_{-\infty}^{+\infty} (y - \mu(F))^2 dF(y)$ get

$$\sigma^2(\hat{F}_n) = \int_{-\infty}^{+\infty} \left(y - \int_{-\infty}^{+\infty} u d\hat{F}_n(u) \right)^2 d\hat{F}_n(y) = \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

- For median $m(F) = F^{-1}(1/2)$ and n odd get

$$\hat{m} = m(\hat{F}_n) = Y_{\left(\frac{n+1}{2}\right)}$$

Observations:

- No matter what the true distribution is, the same parameter is always estimated by the same statistic when using plug-in estimation.
- **Consequence:** plug-in estimator may be inefficient in some cases, e.g.
 - if F is Gaussian, then plug-in estimator of mean is same as MLE...
 - but if F is Laplace, MLE of mean is median, not mean...
- Stylised fact: if parametric model can be assumed, MLE preferable.
- Provided mapping $F \mapsto \nu(F)$ is “well behaved”, corresponding plug-in estimator will be consistent
 - E.g. $F \mapsto \int_{-\infty}^{+\infty} h(x)dF(x)$ for h such that $\mathbb{E}[h(Y)] < \infty$.
- **Why care about parameters anyway** if we can estimate CDF?
 - Parameters usually interpretable, CDFs are harder to appreciate visually.
- **Densities** are more easily interpreted – also defined as functional of CDF!
- The density f (when it exists) at $x_0 \in \mathbb{R}$ is $\nu(F) := \frac{d}{dx} F(x) \Big|_{x=x_0}$
- **Caution:** mapping $F \mapsto \nu(F)$ not a ‘well behaved’ mapping in general...

Let's focus on estimating the density $f(x)$ of a continuous distribution F ,

$$F(t) = \int_{-\infty}^t f(x)dx,$$

using the plug-in principle. Write $\nu_x(F) = \frac{d}{dt}F(t)|_{t=x} = f(x)$.

- Need to take $\hat{F}_n \mapsto \nu_x(\hat{F}_n)$ – not a 'well-behaved' mapping:
 - If $x \notin \{Y_1, \dots, Y_n\}$ estimator $\nu_x(\hat{F}_n)$ is zero.
 - If $x \in \{Y_1, \dots, Y_n\}$ estimator is undefined!
- Problem is that estimator requires differentiation of a function \hat{F}_n with jumps
- We will need a 'smoother' estimate of F to plug in instead of \hat{F}_n , e.g.

$$\tilde{F}_n(x) := \int_{-\infty}^{\infty} \Phi\left(\frac{x-y}{h}\right) d\hat{F}_n(y) = \frac{1}{n} \sum_{i=1}^n \Phi\left(\frac{x-Y_i}{h}\right)$$

for Φ a standard normal CDF and $h > 0$ a **smoothing parameter**.

- Transforms flat steps with hard corners to inclined steps with smooth corners (buffs the edges)

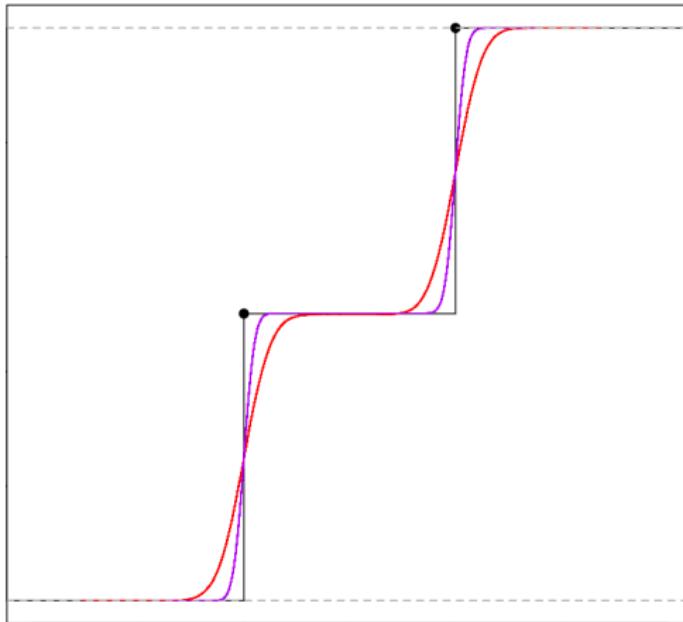


Figure: Empirical distribution function (black) for a size $n = 2$ sample, and 'smoothed' approximations by convolution with $\Phi\left(\frac{u}{h}\right)$ for $h = 0.3$ (red) and $h = 0.2$ (purple).

At the level of density, this yields the 'smoothed plug-in estimator'

$$\hat{f}(x) = \frac{d}{dx} \tilde{F}_n(x) = \frac{d}{dx} \frac{1}{n} \sum_{i=1}^n \Phi\left(\frac{x - Y_i}{h}\right) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} \varphi\left(\frac{x - Y_i}{h}\right)$$

for $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ the standard normal density.

- Nothing special about choice of φ – can choose any smooth unimodal probability density K that is symmetric about zero and has variance 1.
→ Call such a K a **kernel**.
- Much more important is the **choice of $h > 0$** called a *bandwidth* or *smoothing parameter*.

Definition (Kernel Density Estimator)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} f$, where f is a probability density function. A *Kernel Density Estimator* (KDE) \hat{f} of f is a random density function defined as

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - Y_i}{h}\right)$$

for $K : \mathbb{R} \rightarrow \mathbb{R}$ a *kernel* and $h > 0$ a *bandwidth* or *smoothing parameter*.

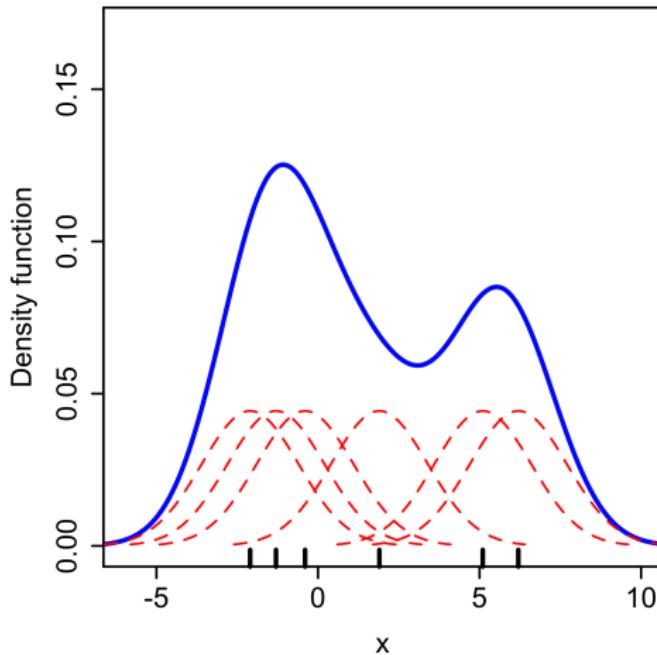


Figure: Schematic Illustration of a kernel density estimator

Only problem: how should we choose arbitrary tuning parameter $h > 0$?

↪ Can have decisive effect on quality of estimator.

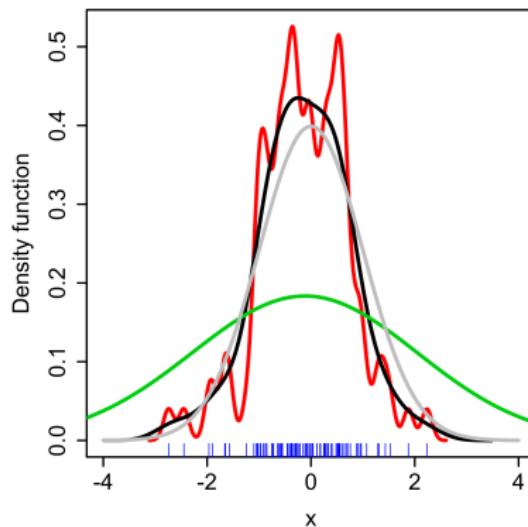


Figure: Effect of bandwidth choice on KDE of standard normal density, $n = 100$. True density in gray. KDE with: $h = 0.05$ in red, $h = 0.337$ in black, $h = 2$ in green.

To select h , need to understand its effect on KDE.

In short, it regulates the **bias-variance tradeoff**:

- **Large h :** gives 'flattened' estimator (higher bias) but quite stable to small perturbations of the sample values (low variance).
- **Small h :** gives 'wiggly' estimator (lower bias) but overly sensitive to small perturbations of the sample values (high variance).

What bias and variance? Those corresponding to **integrated mean squared error**:

$$\text{IMSE}(\hat{f}, f) = \int_{\mathbb{R}} \mathbb{E}(\hat{f}(x) - f(x))^2 dx.$$

$$\text{IMSE}(\hat{f}, f) = \underbrace{\int_{\mathbb{R}} \left(\mathbb{E}[\hat{f}(x)] - f(x) \right)^2 dx}_{\text{integrated squared bias}} + \underbrace{\int_{\mathbb{R}} \mathbb{E}\left\{ \hat{f}(x) - \mathbb{E}[\hat{f}(x)] \right\}^2 dx}_{\text{integrated variance}}$$

To get a useful expression for this we **resort to asymptotics**.

Theorem (Asymptotic Risk of KDE)

Let $f \in C^3$ be a probability density and $K \in C^2$ a kernel function satisfying

$$\int_{\mathbb{R}} \left(f''(x) \right)^2 dx < \infty \quad \int_{\mathbb{R}} \left| f'''(x) \right| dx < \infty \quad \& \quad \int_{\mathbb{R}} \left(K''(x) \right)^2 dx < \infty.$$

If \hat{f}_n is the KDE of f with iid sample size n , kernel K and bandwidth h ,

$$\text{IMSE}(\hat{f}, f) = \frac{h^4}{4} \int_{\mathbb{R}} \left(f''(x) \right)^2 dx + \frac{1}{nh} \int_{\mathbb{R}} K^2(x) dx + o\left(h^4 + \frac{1}{nh}\right).$$

as $h \rightarrow 0$.

Conclusions:

- For consistency, need $h \rightarrow 0$ but $nh \rightarrow \infty$ as $n \rightarrow \infty$.
- Optimal choice of h will unfortunately depend on (unknown) f''
- For the record, optimal h is given (after some calculations) by

$$h^* = \left\{ \frac{1}{n} \int_{\mathbb{R}} K^2(x) dx \Big/ \int_{\mathbb{R}} \left(f''(x) \right)^2 dx \right\}^{1/5}$$

- Plugging in the optimal bandwidth yields the a risk of asymptotic order $n^{-4/5}$
- Compare this to parametric model optimal rate of n^{-1}
- Asymptotic bias proportional to curvature of f .

Proof (*).

Using the fact that the observations are iid, we can write $\mathbb{E} \left[\hat{f}_n(x) \right]$ as

$$\frac{1}{h} \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[K \left(\frac{x - Y_i}{h} \right) \right] = \frac{1}{h} \int_{\mathbb{R}} K \left(\frac{x - t}{h} \right) f(t) dt = \int_{\mathbb{R}} K(y) f(x - hy) dy$$

by change of variables $y = (x - t)/h$. Now Taylor expanding f yields

$$f(x - hy) = f(x) - hyf'(x) + \frac{1}{2} h^2 y^2 f''(x) + o(h^2) \quad \text{as } h \rightarrow 0.$$

Plugging into the equation for the expectation, we get that $\mathbb{E}[\hat{f}_n(x)]$ equals

$$f(x) \underbrace{\int_{\mathbb{R}} K(y) dy}_{=1} - hf'(x) \underbrace{\int_{\mathbb{R}} y K(y) dy}_{=0} + \frac{1}{2} h^2 f''(x) \underbrace{\int_{\mathbb{R}} y^2 K(y) dy}_{=1} + o(h^2)$$

as $h \rightarrow 0$ by the kernel properties of K . In summary the pointwise bias is

$$\mathbb{E} \left[\hat{f}_n(x) \right] - f(x) = \frac{1}{2} h^2 f''(x) + o(h^2), \quad \text{as } h \rightarrow 0.$$

The pointwise variance $\text{var}[\hat{f}_n(x)]$, on the other hand, equals (by iid assumption)

$$\frac{1}{n^2 h^2} \sum_{i=1}^n \text{var} \left[K \left(\frac{x - Y_i}{h} \right) \right] = \frac{1}{nh^2} \left(\mathbb{E} \left[K^2 \left(\frac{x - Y_1}{h} \right) \right] - \mathbb{E}^2 \left[K \left(\frac{x - Y_1}{h} \right) \right] \right)$$

and by similar manipulations as earlier, and the expression for $\mathbb{E} \left[\hat{f}_n(x) \right]$, we get

$$\text{var}[\hat{f}_n(x)] = \underbrace{\frac{1}{nh} \int_{\mathbb{R}} K^2(y) f(x - hy) dy}_A - \underbrace{\frac{1}{nh^2} \mathbb{E}^2[\hat{f}_n(x)]}_B$$

Now observe that as $h \rightarrow 0$, we have

$$B = \frac{1}{nh^2} (f(x) + \frac{1}{2} h^2 f''(x) + o(h^2))^2 = \frac{1}{nh^2} [f(x) + o(h)]^2 = o\left(\frac{1}{n}\right).$$

On the other hand, Taylor expanding $f(x - hy) = f(x) + o(1)$ as $h \rightarrow 0$, we have

$$A = \frac{1}{nh} \int_{\mathbb{R}} K^2(y) [f(x) + o(1)] dy = \frac{1}{nh} f(x) \int_{\mathbb{R}} K^2(y) dy + o\left(\frac{1}{nh}\right)$$

since $\frac{1}{nh} o(1) = o\left(\frac{1}{nh}\right)$

Putting A and B together gives

$$\text{var}[\hat{f}_n(x)] = \frac{1}{nh} \int_{\mathbb{R}} K^2(y) dy + o\left(\frac{f(x)}{nh}\right) - o\left(\frac{1}{n}\right) = \frac{f(x)}{nh} \int_{\mathbb{R}} K^2(y) dy + o\left(\frac{1}{nh}\right)$$

Summing pointwise squared-bias and variance, the pointwise MSE is given by

$$MSE(\hat{f}_n(x), f(x)) = \frac{1}{4} h^4 (f''(x))^2 + \frac{f(x)}{nh} \int_{\mathbb{R}} K^2(y) dy + o\left(h^4 + \frac{1}{nh}\right)$$

Finally, integrating over \mathbb{R} and re-arranging yields the sought form

$$\text{IMSE}(\hat{f}, f) = \frac{1}{nh} \int_{\mathbb{R}} K^2(x) dx + \frac{h^4}{4} \int_{\mathbb{R}} (f''(x))^2 dx + o\left(h^4 + \frac{1}{nh}\right).$$

From $n^{-4/5}$ to $n^{-2m/(2m+1)}$

Can we do better than $n^{-4/5}$ by more smoothness assumptions?

Theorem (Minimax Optimal Rates for KDE)

Let $\mathcal{F}(m, r)$ be the subset of m -differentiable densities with m th derivative in an L^2 ball of radius r ,

$$\int_{\mathbb{R}} \left(f^{(m)}(x) \right)^2 dx \leq r^2.$$

Then, given any KDE \hat{f}_n ,

$$\sup_{f \in \mathcal{F}(m, r)} \mathbb{E} \left\{ \int_{\mathbb{R}} \left(\hat{f}_n(x) - f(x) \right)^2 dx \right\} \geq Cn^{-\frac{2m}{2m+1}},$$

where the constant $C > 0$ depends only on m and c .

- The smoother the density the better the worst case rate.
- Can **never** beat n^{-1} , though.
- The price to pay for flexibility!

So how do we choose h in practice? Here's a couple of approaches:

- **Pilot estimator:** use a parametric family (e.g. normal, or mixture) to obtain a preliminary estimator \hat{f} , and plug this into the optimal bandwidth expression to select a bandwidth.
- **Least squares cross-validation:** try to construct an unbiased estimator of the IMSE after all, it is an expectation. Then choose h to minimise the estimated IMSE. Also known as **unbiased risk estimation**.

Let's consider the second approach in more detail. Notice that we can write

$$\begin{aligned} IMSE(\hat{f}_h, f) &= \int_{\mathbb{R}} \mathbb{E} \left(\hat{f}_h(x) - f(x) \right)^2 dx = \mathbb{E} \left[\int_{\mathbb{R}} \left(\hat{f}_h(x) - f(x) \right)^2 dx \right] \\ &= \underbrace{\mathbb{E} \left[\int_{\mathbb{R}} \hat{f}_h^2(x) dx \right]}_{H(\hat{f}_h)} - 2\mathbb{E} \left[\int_{\mathbb{R}} \hat{f}_h(x) f(x) dx \right] + \mathbb{E} \left[\int_{\mathbb{R}} f^2(x) dx \right]. \end{aligned}$$

where the last term does not vary with h .

How can we estimate $H(\hat{f}_h)$?

- ① Can easily estimate $\mathbb{E} \left[\int_{\mathbb{R}} \hat{f}_h^2(x) dx \right]$ by $\int_{\mathbb{R}} \hat{f}_h^2(x) dx$.
- ② Other term trickier (depends on f !). Define the *leave-one-out* estimator

$$\hat{f}_{h,-i}(x) = \frac{1}{h(n-1)} \sum_{j \neq i} K \left(\frac{x - Y_j}{h} \right)$$

i.e. the kernel estimator leaving the i th observation out. Observe that

$$\mathbb{E} \left[\hat{f}_{h,-i}(Y_i) \right] = \frac{1}{n-1} \sum_{j \neq i} \mathbb{E} \left[\frac{1}{h} K \left(\frac{Y_i - Y_j}{h} \right) \right] = \mathbb{E} \left[\frac{1}{h} K \left(\frac{Y_1 - Y_2}{h} \right) \right]$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{1}{h} K \left(\frac{u - v}{h} \right) f(u) f(v) du dv = \int_{\mathbb{R}} \mathbb{E} \left[\frac{1}{h} K \left(\frac{Y_1 - v}{h} \right) \right] f(v) dv$$

$$= \int_{\mathbb{R}} \mathbb{E} \left[\frac{1}{nh} \sum_{k=1}^n K \left(\frac{Y_k - v}{h} \right) \right] f(v) dv = \mathbb{E} \left[\underbrace{\int_{\mathbb{R}} \frac{1}{nh} \sum_{k=1}^n K \left(\frac{Y_k - v}{h} \right) f(v) dv}_{= \hat{f}_h(v)} \right]$$

Thus $\{\hat{f}_{h,-i}(Y_i)\}_{i=1}^n$ are n variables with mean $\mathbb{E} \left[\int_{\mathbb{R}} \hat{f}_h(x) f(x) dx \right]!$

Motivates definition of leave-one-out cross validation estimator

$$LSCV(h) = \int_{\mathbb{R}} \hat{f}_h^2(x) dx - \frac{2}{n} \sum_{i=1}^n \hat{f}_{h,-i}(Y_i)$$

which by construction satisfies

$$\mathbb{E}[LSCV(h)] = H(\hat{f}_h).$$

Strategy: choose h by minimising $LSCV(h)$. Does it work?

Theorem (Stone's Theorem)

In the same context, and under the same assumptions, let h_{CV} denote the bandwidth selected by cross-validation. Then,

$$\frac{\int_{\mathbb{R}} \left(\hat{f}_{h_{CV}}(x) - f(x) \right)^2 dx}{\inf_{h>0} \int_{\mathbb{R}} \left(\hat{f}_h(x) - f(x) \right)^2 dx} \xrightarrow{\text{a.s.}} 1,$$

provided that the true density f is bounded.

Conceptually, can generalise KDE very easily to higher dimensions.

- Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n \stackrel{iid}{\sim} f(\mathbf{y})$ be a sample in \mathbb{R}^d with density $f : \mathbb{R}^d \rightarrow [0, +\infty)$
- Let $\mathbf{H} \succeq 0$ be a $d \times d$ symmetric positive-definite **bandwidth matrix**.
- Let K be a probability density on \mathbb{R}^d with mean 0 and covariance $\mathbf{I}_{d \times d}$.
 ↪ E.g. $K(x_1, \dots, x_n) = \prod_{j=1}^d \varphi(x_j)$ for φ the $N(0, 1)$ density.

We can define a d -dimensional KDE as

$$\hat{f}(\mathbf{x}) = \frac{1}{n|\mathbf{H}|^{1/2}} \sum_{i=1}^n K\left(\mathbf{H}^{-1/2}(\mathbf{x} - \mathbf{Y}_i)\right), \quad \mathbf{x} \in \mathbb{R}^d.$$

Once again choice of kernel is **secondary** but choice of \mathbf{H} is **paramount**.

- Considerably harder: need to choose $d(d+1)/2 \sim d^2$ bandwidth parameters.
- Intuitively: $\mathbf{H} = \mathbf{U} \text{diag}\{h_1, \dots, h_d\} \mathbf{U}^\top$ for $\mathbf{U}^\top \mathbf{U} = \mathbf{I}_{d \times d}$ and $h_j > 0$.
 ↪ Choose d smoothing directions, and a bandwidth for each such direction.
- LSCV-type solutions exist for d moderate (computationally intensive).
- Visualisation challenging for $d > 3$.

But what about the quality of estimation?

- Consider simplest special case where $\mathbf{H} = h\mathbf{I}_{d \times d}$ for $h > 0$.
- Take $K(x_1, \dots, x_d) = \prod_{j=1}^d \varphi(x_j)$.
- Yields $\hat{f}(x_1, \dots, x_d) = \frac{1}{nh^d} \sum_{i=1}^n \prod_{j=1}^d \varphi\left(\frac{x_j - Y_{ij}}{h}\right)$

Mimicking our calculations in the 1D case, we can arrive at an approximate risk

$$\text{IMSE}(\hat{f}, f) \approx \frac{h^4}{4} \sum_{j=1}^d \sum_{k=1}^d \int_{\mathbb{R}^d} \frac{\partial^2}{\partial x_j} f(\mathbf{x}) \frac{\partial^2}{\partial x_k} f(\mathbf{x}) \mathbf{x} + \frac{1}{nh^d} \int_{\mathbb{R}^d} K^2(\mathbf{x}) d\mathbf{x}$$

- Optimal bandwidth now satisfies $h \propto n^{-1/(4d)}$
- Yields rate of convergence of $n^{-\frac{4}{4+d}}$ (very bad news)

Table: Equivalent sample sizes n for comparable risk values in different dimensions d

d	1	2	3	4	5	6	7	8	9	10
n	4	19	67	223	768	2'790	10'700	43'700	187'000	842'000

Takehome messages:

- Tradeoff between **flexibility and efficiency**
- Parametric model enforces rigid form of parsimony (precise formula, few parameters).
- Nonparametric model enforces soft parsimony (smoothness, via bandwidth parameter)
- If model can be confidently assumed, parametric inference **is preferable**.
- Otherwise, nonparametric methods more **flexible and requiring few assumptions**.
- Particularly in higher dimensions parametric models **more interpretable and efficient**.
- But nonparametric curse of dimensionality **can be (partially) mitigated** by clever approximations (separable/additive models, ridge models, neural networks – more later).
- A very important class of models are **semiparametric models**. These have some parametric and some nonparametric components.
 - In important cases, can attain parametric efficiency for parametric component.