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Nonparametric Estimation
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Circumventing parameters altogether?

A different idea:

. L . jid .
can we estimate the distribution F itself from data Yi,...,Y, ~ F without
assuming any particular functional form?

@ Termed nonparametric estimation as there is no specific parameter 6.

@ Otherwise said, {F(x) : x € R} is itself an infinite-dimensional parameter.

e OK, but how?
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The Empirical Distribution Function

Definition (Empirical Distribution Function)

. jidl . . .
For a real i.i.d sample Yi,...,Y, ~ F, the empirical distribution function is a
random cumulative distribution function defined as

A= > 1Y <),
i=1

o CDF of the mass function placing mass 1/n on location of each Y;.
@ Notice that W;(y) := 1{Y; <y} X Bernoulli(F(y)).
@ Thus law of large numbers = F,(y) =5 F(y) pointwise Vy € R

@ Notice how we got consistency without any assumption on form of F!
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Empirical distribution of Yi,...,Y, g N(0,1), n=6
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@ Jump locations at Yi,...,Y,.
@ Jump sizes of 1/n (1/6 in this case)
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Empirical distribution of Y7, ..

iid

., Y, M N(0,1) for n = 10, 50, 100, 500.
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Looks like we're doing better than pointwise a.s. convergence...
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Theorem (Glivenko-Cantelli)

Let Yi,.., Y, be ii random variables with distribution function F. Then,
Fo(y) = n=1 37 1{Y; < y} converges uniformly to F with probability 1, i.e.

sup|l3,,(X) — F(x)| 250
xER

Proof (x).

Assume first that F(y) = y1{y € [0,1]}. Fix a regular finite partition
0=x1<x%<...<xp=1 of [0,1] (so xxk+1 — xk = (m—1)71). By
monotonicity of F, F,

sup |Fo(x) — F(x)| < max |Fa(xc) = F(xicen)| + max |Fo(x) — F(xi1)|

Adding and subtracting F(xx) within each term we can bound above by

2 max |Fn(xi) — F(xi)| + mka><|F(xk) — F(xk+1)| + mfx|F(xk) — F(xk—1)]|

2

=max | Xk —Xki1|+maxg [xk—Xxk—1|=—=5

by an application of the triangle inequality to each term.
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OK, so let's investigate our bound

2 mkax|l:_n(xk) — F(x)| + ml?x|F(xk) — F(xk+1)| + mEX|F(Xk) — F(xk—1)|

=max | Xk —Xk+1|+maxe [Xxk—xk—1 ‘:ﬁ

Letting n T oo, the SLLN implies that the first term vanishes almost surely. Since

m is arbitrary we have proven that, given any € > 0,

n— oo

lim |sup|Fo(x) — F(x)|| <€ a.s.

which gives the result when the cdf F is uniform.
For a general cdf F, we let Uy, Uy, ... iigl/{[O, 1] and define
W; .= F~Y(U;) = inf{x : F(x) > U;}.

Observe that
W, <x < U, < F(x)

d
so that W; = Y;. We may thus assume that W; = Y; a.s.
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Letting G, be the edf of (Ui, ..., U,) we note that

A A

Fa( —n_lzl{W <y}—nlzl{U < F(y)} = Gu(F(y)), as.

/\

in other words = G,0F, as.
Now let A= F(R) C [0, 1] so that from the first part of the proof

sup|Fa(x) — F(x)| —sup|G (£) = t] < sup |G(t) — ] 50
x€R t€(0,1]

since obviously A C [0, 1]. O

Some conclusions:
@ Assumptions were not restrictive
@ The distribution functions are quite special (recall properties)
@ Empirical distribution converges to true one at same rate anywhere on R

@ Suggests we should be able to define “uniform confidence bands” depending
on n.
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Theorem (Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality)
Let Yi,.., Y, be independent random variables, distributed according to F. Then,

ﬁn(}/) =n"13"  1{Y; < y} satisfies

P {sup
yeR

S

Fa(y) — F(y)’ > e} < 2¢72r¢

for all € > 0.

Let's now construct a “uniform confidence interval” for F (known as confidence
band)

e For confidence level o € (0,1), set €, = 4/ 5= log(2/a)

o Define L(y) = max{Fn(y) — €,,0} and U(y) = min{F,(y) + €n, 1}
o Apply DKW inequality and conclude
P{L(y) < F(y) < U(y) Vy eR} 21 —a.

@ Can also use for hypothesis testing, using duality.
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Empirical distribution of Yi,...,Y, s N(0,1) for n =10, 50, 100, 500.

In blue: 95% DKW confidence bands

ecdf(x) ecdf(x)

Fn(x)
Fn(x)

0.4

0.0
|
0.0

ecdf(x) ecdf(x)

0.8
0.

Fn(x)
Fn(x)

04

0.0
0.0

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 11/30



Estimating Parameters from EDFs

If we'd still like to estimate a parameter, can use the plug-in principle

Let v = v/(F) be a parameter of interest.
We can use v(F,) as an estimator of v(F), i.e. plug F, in v(-).

o “Flipped” point of view: viewing parameter v as a function of F.

@ Only sort of parameter we can consider, since no parametric model assumed!

o For mean u(F) = fj;f ydF(y) get
0:=0(F)=["ZydFa(y) =LY, Vi=Y
o For variance 0*(F) = [*2°(y — u(F))?dF(y) get
2(F) = [ (v — [ wdbo(w) dEily) = 2 X0, (V- V)’
e For median m(F) = F~1(1/2) and n odd get
m=m(F,) = Yien)
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Observations:

No matter what the true distribution is, the same parameter is always
estimated by the same statistic when using plug-in estimation.

Consequence: plug-in estimator may be inefficient in some cases, e.g.

— if F is Gaussian, then plug-in estimator of mean is same as MLE...
< but if F is Laplace, MLE of mean is median, not mean...

Stylised fact: if parametric model can be assumed, MLE preferable.

Provided mapping F — v(F) is "well behaved”, corresponding plug-in
estimator will be consistent

< E.g. F [T2 h(x)dF(x) for h such that E[h(Y)] < cc.
Why care about parameters anyway if we can estimate CDF?
— Parameters usually interpretable, CDFs are harder to appreciate visually.

Densities are more easily interpreted — also defined as functional of CDF!

The density f (when it exists) at xo € R is v(F) := d%F(X)|X:X0

Caution: mapping F — v(F) not a ‘well behaved' mapping in general...
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Density Estimation

Let's focus on estimating the density f(x) of a continuous distribution F,

using the plug-in principle. Write v, (F) = %F(t)‘t:X = f(x).

o Need to take F, — vy (F,) — not a ‘well-behaved’ mapping:

o If x ¢ {Y1,..., Y,} estimator v (F,) is zero.
o If x € {Y1,..., Ya} estimator is undefined!

@ Problem is that estimator requires differentiation of a function F,, with jumps

@ We will need a ‘smoother’ estimate of F to plug in instead of F, e.g.

)= [~ o (5 ) dhin =23 e (51)

i=1

for ® a standard normal CDF and h > 0 a smoothing parameter.

@ Transforms flat steps with hard corners to inclined steps with smooth corners
(buffs the edges)
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Figure: Empirical distribution function (black) for a size n = 2 sample, and ‘smoothed’
approximations by convolution with ® (%) for h = 0.3 (red) and h = 0.2 (purple).
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At the level of density, this yields the ‘smoothed plug-in estimator’

A d - d1l< x—Y; 1<~1 /x-Y;
f(x):dxF"(X):dan(D( ; ):nzhw( ; )
1 i=1

i=

1 ,—x?/2

for o(x) = 7= the standard normal density.

@ Nothing special about choice of ¢ — can choose any smooth unimodal
probability density K that is symmetric about zero and has variance 1.
— Call such a K a kernel.

@ Much more important is the choice of h > 0 called a bandwidth or smoothing
parameter.

Definition (Kernel Density Estimator)

Let Yi,...,Y, = f, where f is a probability density function. A Kernel Density
Estimator (KDE) f of f is a random density function defined as

f(x):,},éK(X;Yf)

for K: R — R a kernel and h > 0 a bandwidth or smoothing parameter.
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Figure: Schematic Illustration of a kernel density estimator
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Only problem: how should we choose arbitrary tuning parameter h > 07

— Can have decisive effect on quality of estimator.
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Figure: Effect of bandwidth choice on KDE of standard normal density, n = 100. True
density in gray.KDE with: h = 0.05 in red, h = 0.337 in black, h = 2 in green.
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Bias-variance tradeoff again

To select h, need to understand its effect on KDE.
In short, it regulates the bias-variance tradeoff:

@ Large h: gives ‘flattened’ estimator (higher bias) but quite stable to small
perturbations of the sample values (low variance).

e Small h: gives ‘wiggly’ estimator (lower bias) but overly sensitive to small
perturbations of the sample values (high variance).

What bias and variance? Those corresponding to integrated mean squared error:

IMSE(7, f) = /

R

E(f(x) - f(x))de.

IMSE(, f) = /R ([f00)] —f(x))2dx+ /]R E{#(x) ~ E[7()] }2dx

integrated squared bias integrated variance

To get a useful expression for this we resort to asymptotics.
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Theorem (Asymptotic Risk of KDE)
Let f € C3 be a probability density and K € C? a kernel function satisfying

Jz (f”(x))2dx <o [p

If )?,, is the KDE of f with iid sample size n, kernel K and bandwidth h,

f”’(x)‘dx <oo & [p (K”(x))2dx < 0.

IMSE(f, f) = & R(f”(x)) dx+ L [ K2(x)dx + o (h* + 1)

as h — 0.

Conclusions:
@ For consistency, need h — 0 but nh — oo as n — oc.
e Optimal choice of h will unfortunately depend on (unknown) "
@ For the record, optimal h is given (after some calculations) by

- {f,fR K2(x)dx/fR (f”(x))2dx}1/5

@ Plugging in the optimal bandwidth yields the a risk of asymptotic order n—*/°
@ Compare this to parametric model optimal rate of n~!
@ Asymptotic bias proportional to curvature of f.
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Proof (x).

Using the fact that the observations are iid, we can write E [fn(x)} as

() (55 e oo

by change of variables y = (x — t)/h. Now Taylor expanding f yields

1
f(x — hy) = f(x) — hyf'(x) + Ehzyzf”(x) +o(h?) ash—0.
Plugging into the equation for the expectation, we get that E[ﬁ,(x)] equals
1
f(X)/ K(y)dy — hf’(X)/ yK(y)dy + §h2f”(><)/ y?K(y)dy + o(h?)
R R R

=1 =0 =1

as h — 0 by the kernel properties of K. In summary the pointwise bias is

E [fn(X)} — fi(x)I= %hzf"(x) + o(h?), as h—0.
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The pointwise variance var[f,(x)], on the other hand, equals (by iid assumption)

oo (5] = (el (5] -2 [« (52))

and by similar manipulations as earlier, and the expression for E {ﬁ,(x)} we get

varlf (] = o | K2)F(x — hy)dy =~z B¥{f ()]
R —_————

A B

Now observe that as as h — 0, we have

B= #(f(x) + %”2""( )+ o(h?))? = hz[f( X) +olh)f = o <1>

n
On the other hand, Taylor expanding f(x — hy) = f(x) + o(1) as h — 0, we have
A= %fR K2(y)[f(x) + o(1)ldy = x) [z K2(y (v)dy +o (%)

since Lo(1) = o ()
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Putting A and B together gives
Fa > f(x f(x
varlf(x)] = 2 Jy, K()dy + 0 (12) -0 (1) = 2

Summing pointwise squared-bias and variance, the pointwise MSE is given by

K2(y)dy + o (#)

£ _ Lo f( ) 2 4 1
MSE (fa(x), f(x)) =  h*(F"(x))* + = RK( y)dy +o(h+—
Finally, integrating over R and re-arranging yields the sought form

IMSE(, £) = & [, K2()dx + & f, (77(x )dx+o(h4+ﬁ).
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From n74/5 to n72m/(2m+1)

Can we do better than n=*/> by more smoothness assumptions?

Theorem (Minimax Optimal Rates for KDE)

Let F(m, r) be the subset of m-differentiable densities with mth derivative in an

L2 ball of radius r,

/R (f(m)(x))2 dx < r?.

Then, given any KDE f,,

~ 2 2m
sup E {/ (f,,(x) - f(x)) dx} > Cn~2mil
feF(m,r) R

where the constant C > 0 depends only on m and c.

@ The smoother the density the better the worst case rate.
@ Can never beat n I, though.

@ The price to pay for flexibility!
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Bandwidth Selection

So how do we choose h in practice? Here's a couple of approches:

@ Pilot estimator: use a parametric family (e.g. normal, or mixture) to obtain a
preliminary estimator f, and plug this into the optimal bandwidth expression
to select a bandwidth.

@ Least squares cross-validation: try to construct an unbiased estimator of the
IMSE after all, it is an expectation. Then choose h to minimise the estimated
IMSE. Also known as unbiased risk estimation.

Let's consider the second approach in more detail. Notice that we can write

/RE(Fh(X) - f(x))2dx _E UR (Aulx) — f(x))2dx}

= E[/R ﬁ,z(x)dx} —2E [/R fh(x)f(x)dx} +EUR f2(x)dx}

H(fn)

IMSE (£, f)

where the last term does not vary with h.
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How can we estimate H(f,)?
© Can easily estimate E {fR 72(x dx} by [, F2(x

@ Other term trickier (depends on f!). Define the leave-one-out estimator

0 S (5)

J#l
i.e. the kernel estimator leaving the ith observation out. Observe that

slfon] =55 e e ()] =2 i (52
_/R/]R;I;K<u V) f(u)f(v)dudv—/]R]EHK(Ylh_VH f(v)dv

:AE{%%K(Y"hvﬂf(v)dv:E /R:hkzn;K(Yth> f(v)dv]

=fn(v)
Thus {#._i(Y;)}?_, are n variables with mean E [f]R fh(x)f(x)dx}!
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Motivates definition of leave-one-out cross validation estimator
. 2 .
LSCV(h) = / £2(x)dx — - > -i(Y)
R i=1

which by construction satisfies
E[LSCV(h)] = H(#).
Strategy: choose h by minimising LSCV/(h). Does it work?

Theorem (Stone's Theorem)

In the same context, and under the same assumptions, let hcy denote the
bandwidth selected by cross-validation. Then,

[ (e = £0) "o
R — 51,
iy | (A0~ #09) o

provided that the true density f is bounded.
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Higher dimensions?

Conceptually, can generalise KDE very easily to higher dimensions.

o Let Yy,..., Y, i f(y) be a sample in R9 with density f : RY — [0, +0)

@ Let H > 0 be a d x d symmetric positive-definite bandwidth matrix.
@ Let K be a probability density on R with mean 0 and covariance Ixg.

— E.g. K(X1,...,. %) = 1—[;1:1 (x;j) for ¢ the N(0, 1) density.
We can define a d—dimensional KDE as

? —1/2(x : d
F(x) = n\H\l/zzK( -Y)), xeRr’
Once again choice of kernel is secondary but choice of H is paramount.
e Considerably harder: need to choose d(d + 1)/2 ~ d? bandwidth parameters.

o Intuitively: H = Udiag{hy,...,hg}UT for UTU = I 4 and h; > 0.

— Choose d smoothing directions, and a bandwidth for each such direction.
@ LSCV-type solutions exist for d moderate (computationally intensive).
@ Visualisation challenging for d > 3.
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The Curse of Dimensionality

But what about the quality of estimation?

o Consider simplest special case where H = hl 4 for h > 0.
o Take K(xq, ...

e Yields 7(xq, ...

7Xd)

) Xd) =

d
= Hj:l ©(x)-
e i

i— Y
P (ESAEAAL)

Mimicking our calculations in the 1D case, we can arrive at an approximate risk

@ Optimal bandwidth now satisfies h o< n

p 2
SE(f, f)
IMSE( ZZW@XJ

—1/(4d)

e Yields rate of convergence of n~ i@ (very bad news)

(x)x+ Il1d/ K?(x)dx

Table: Equivalent sample sizes n for comparable risk values in different dimensions d

d

1

2

3

4

5

6

7

8

9

10

n

19

67

223

768

2'790

10'700

43’700

187'000

842'000
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Parametric vs Nonparametric

Takehome messages:

Tradeoff between flexibility and efficiency

Parametric model enforces rigid form of parsimony (precise formula, few
parameters).

Nonparametric model enforces soft parsimony (smoothness, via bandwidth
parameter)

If model can be confidently assumed, parametric inference is preferable.
Otherwise, nonparametric methods more flexible and requiring few
assumptions.

Particularly in higher dimensions parametric models more interpretable and
efficient.

But nonparametric curse of dimensionality can be (partially) mitigated by
clever approximations (separable/additive models, ridge models, neural
networks — more later).

A very important class of models are semiparametric models. These have
some parametric and some nonparametric components.
e In important cases, can attain parametric efficiency for parametric component.
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