

Statistics for Data Science: Week 5

Myrto Limnios and Rajita Chandak

Institute of Mathematics – EPFL

rajita.chandak@epfl.ch, myrto.limnios@epfl.ch

Example (MLE for Gaussian distribution)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. The likelihood is

$$L(\mu, \sigma^2) = \prod_{i=1}^n f(Y_i; \mu, \sigma^2) = \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^n \exp \left\{ -\frac{\sum_{i=1}^n (Y_i - \mu)^2}{2\sigma^2} \right\}.$$

giving loglikelihood

$$\ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \mu)^2.$$

All partial second derivatives exist and are

$$\frac{\partial}{\partial \mu} \ell(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \mu)$$

$$\frac{\partial}{\partial \sigma^2} \ell(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (Y_i - \mu)^2.$$

Example (MLE for Gaussian distribution, continued)

Solving $\nabla_{(\mu, \sigma^2)} \ell(\mu, \sigma^2) = 0$ for (μ, σ^2) gives a system of equations in two unknowns, with unique root

$$\left(\bar{Y}, n^{-1} \sum_{i=1}^n (Y_i - \bar{Y})^2 \right).$$

Call this $(\hat{\mu}, \hat{\sigma}^2)$, and let's verify it's a maximum. Note that

$$\frac{\partial^2}{\partial \mu^2} \ell(\mu, \sigma^2) = -\frac{n}{\sigma^2}, \quad \frac{\partial^2}{\partial (\sigma^2)^2} \ell(\mu, \sigma^2) = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^n (Y_i - \mu)^2$$

$$\frac{\partial^2}{\partial \mu \partial \sigma^2} \ell(\mu, \sigma^2) = \frac{\partial^2}{\partial \sigma^2 \partial \mu} \ell(\mu, \sigma^2) = -\frac{\sum_{i=1}^n (Y_i - \mu)}{\sigma^4} = \frac{n\mu - n\bar{Y}}{\sigma^4}.$$

Calculating these derivatives at $(\hat{\mu}, \hat{\sigma}^2)$, we get

$$\frac{\partial^2}{\partial \mu^2} \ell(\mu, \sigma^2) \bigg|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} = -\frac{n}{\hat{\sigma}^2}, \quad \frac{\partial^2}{\partial (\sigma^2)^2} \ell(\mu, \sigma^2) \bigg|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} = -\frac{n}{2\hat{\sigma}^4}$$

Example (MLE for Gaussian distribution, continued)

$$\frac{\partial^2}{\partial \mu \partial \sigma^2} \ell(\mu, \sigma^2) \Big|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} = \frac{\partial^2}{\partial \sigma^2 \partial \mu} \ell(\mu, \sigma^2) \Big|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} = \frac{n\hat{\mu} - n\hat{\mu}}{\hat{\sigma}^4} = 0.$$

Thus the matrix

$$\left[-\nabla_{(\mu, \sigma^2)}^2 \ell(\mu, \sigma^2) \Big|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} \right]$$

is diagonal. If both of its diagonal elements are positive, then it will be positive definite. This is indeed the case since $\hat{\sigma}^2 > 0$ and so the unique MLE of (μ, σ^2) is given by

$$(\hat{\mu}, \hat{\sigma}^2) = \left(\bar{Y}, \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2 \right).$$

□

Note that from our Gaussian sampling results we get that σ^2 is biased.

Example (MLE for Poisson Distribution)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \text{Poisson}(\lambda)$. Then

$$L(\lambda) = \prod_{i=1}^n \left\{ \frac{\lambda^{Y_i}}{Y_i!} e^{-\lambda} \right\} \implies \log L(\lambda) = -n\lambda + \log \lambda \sum_{i=1}^n Y_i - \sum_{i=1}^n \log(Y_i!)$$

Setting $\nabla_{\lambda} \log L(\lambda) = -n + \lambda^{-1} \sum Y_i = 0$ we obtain $\hat{\lambda} = \bar{Y}$ since $\nabla_{\lambda}^2 \log L(\lambda) = -\lambda^{-2} \sum Y_i < 0$.

Example (MLE for Uniform Distribution – a non-differentiable case)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \mathcal{U}[0, \theta]$. The likelihood is

$$L(\theta) = \theta^{-n} \prod_{i=1}^n \mathbf{1}\{0 \leq Y_i \leq \theta\} = \theta^{-n} \mathbf{1}\{\theta \geq Y_{(n)}\}.$$

Hence if $\theta < Y_{(n)}$ the likelihood is zero. In the domain $[Y_{(n)}, \infty)$, the likelihood is a decreasing function of θ . Hence $\hat{\theta} = Y_{(n)}$.

Example (Equivariance of the MLE)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1)$, and suppose we're interested in estimating $\mathbb{P}[Y_1 \leq y]$, for a given $y \in \mathbb{R}$. Note that

$$\mathbb{P}[Y_1 \leq y] = \mathbb{P}[Y_1 - \mu \leq y - \mu] = \Phi(y - \mu),$$

where Φ is the standard normal CDF. The mapping $\mu \mapsto \Phi(y - \mu)$ is bijective, since Φ is strictly monotone. So by equivariance, the MLE of $\mathbb{P}[Y_1 \leq y]$ is $\Phi(y - \hat{\mu})$, where $\hat{\mu}$ is the MLE of μ (which by our previous example is $\hat{\mu} = \bar{Y}$).

Example (Equivariance and usual vs natural parameterisation)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} f$, with

$$f(y) = \exp \{ \phi T(y) - \gamma(\phi) + S(y) \}, \quad y \in \mathcal{Y}$$

where $\phi \in \Phi \subseteq \mathbb{R}$ is the natural parameter. Suppose we can write $\phi = \eta(\theta)$, where $\theta \in \Theta$ is the usual parameter and $\eta : \Theta \rightarrow \Phi$ is a differentiable bijection (so that $\gamma(\phi) = \gamma(\eta(\theta)) = d(\theta)$, for $d = \gamma \circ \eta$). In this notation, the density/frequency takes the form

$$\exp \{ \phi T(y) - \gamma(\phi) + S(y) \} = \exp \{ \eta(\theta) T(y) - d(\theta) + S(y) \}.$$

Equivariance now implies that if $\hat{\theta}$ is the MLE of θ , then $\eta(\hat{\theta})$ is the MLE of $\phi = \eta(\theta)$. The converse is also true: if $\hat{\phi}$ is the MLE of ϕ , then $\eta^{-1}(\hat{\phi})$ is the MLE of $\theta = \eta^{-1}(\phi)$. □

Examples show that likelihood generally gives sensible estimators – still:

- Beyond intuition, is there a **canonical** mathematical reason for it?
- What **rigorous guarantees** can we offer?
 - ↪ Can we get consistency?
 - ↪ Can we approach reasonable MSE performance?

To answer these questions, we go back to **entropy** and **Kullback-Leibler divergence**.

Consider the random function

$$\Psi_n(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^n [\log f(Y_i; \mathbf{u}) - \log f(Y_i; \boldsymbol{\theta})]$$

which is maximized at $\hat{\boldsymbol{\theta}}_n$. By the law of large numbers, for each $\mathbf{u} \in \Theta$,

$$\Psi_n(\mathbf{u}) \xrightarrow{P} \Psi(\mathbf{u}) = \mathbb{E}_{\boldsymbol{\theta}} \left[\log \left(\frac{f(Y_i; \mathbf{u})}{f(Y_i; \boldsymbol{\theta})} \right) \right] = -KL(f(Y_i; \mathbf{u}) \| f(Y_i; \boldsymbol{\theta}))$$

- The latter is minimised at $\boldsymbol{\theta}$ and so $\Psi(\mathbf{u})$ is maximized at $\boldsymbol{\theta}$.
- Moreover, unless $f(x; \mathbf{u}) = f(x; \boldsymbol{\theta})$ for all $x \in \text{supp } f$, we have $\Psi(\mathbf{u}) < 0$
- It follows that Ψ is uniquely maximised at $\boldsymbol{\theta}$

MLE can be regarded as a minimiser of an approximate (empirically constructed) KL-divergence from the truth!

Does $\{\Psi_n(\mathbf{u}) \xrightarrow{P} \Psi(\mathbf{u}) \forall \mathbf{u} \text{ with } \Psi \text{ maximized uniquely at } \boldsymbol{\theta}\}$ imply $\{\hat{\boldsymbol{\theta}}_n \xrightarrow{P} \boldsymbol{\theta}\}$?

- Unfortunately, the answer is in general **no**, without additional information.
- If $\boldsymbol{\theta} \in \mathbb{R}$, can prove consistency if f is regular enough & MLE exists uniquely.
- If $\boldsymbol{\theta} \in \mathbb{R}^P$, we need more information on the form of the likelihood function
 - For instance concavity and existence will usually give us consistency. We will show consistency in **exponential families** using this approach.
 - More general situations require stronger forms of convergence of $\Psi_n(\mathbf{u}) \rightarrow \Psi(\mathbf{u})$ plus additional regularity conditions.

When we **can** deduce consistency, though, we get some very nice properties for the (asymptotic) sampling distribution of the MLE...

Example (Consistency of MLE in $\theta \in \mathbb{R}$)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} f(y; \theta)$ where f is C^1 with respect to θ . Assume that $\forall n$, there exists a unique MLE $\hat{\theta}_n$. We will show that $\hat{\theta}_n \xrightarrow{P} \theta$.

Define

$$\Xi_n(u) = \frac{1}{n} \sum_{i=1}^n \left[\frac{\partial}{\partial u} \log \left(\frac{f(Y_i; u)}{f(Y_i; \theta)} \right) \right] \quad \text{and} \quad \Xi(u) = \mathbb{E} \left[\frac{\partial}{\partial u} \log \left(\frac{f(Y_i; u)}{f(Y_i; \theta)} \right) \right],$$

so that

- $\Xi_n(\hat{\theta}_n) = 0$ uniquely, by uniqueness of the MLE.
- $\Xi(\theta) = 0$ uniquely, assuming regularity allowing interchange of \mathbb{E} and $\frac{\partial}{\partial u}$.

Since f is C^1 , we have the inequality

$$\mathbb{P}[\Xi_n(\theta - \varepsilon) < 0 \ \& \ \Xi_n(\theta + \varepsilon) > 0] \leq \mathbb{P}[\theta - \varepsilon < \hat{\theta}_n < \theta + \varepsilon]$$

because the event on the left hand side implies that on the right hand side.

Finally, the law of large numbers implies that $\Xi_n(u) \xrightarrow{P} \Xi(u)$ for any u , so that the left hand side converges to 1, yielding consistency.

Example (Consistency of MLE in \mathbb{R}^k for exponential families)

Consider $Y_1, \dots, Y_n \stackrel{iid}{\sim} f(y; \phi)$ from a k -parameter exponential family

$$f(y) = \exp \left\{ \sum_{j=1}^k \phi_j T_j(y) - \gamma(\phi_1, \dots, \phi_k) + S(y) \right\}, \phi = (\phi_1, \dots, \phi_k)^\top \in \Phi \text{ open.}$$

The likelihood and loglikelihood (up to constants w.r.t. ϕ) are given by

$$L(\phi) = \exp \{ \phi^\top \tau - n\gamma(\phi) \} \quad \& \quad \ell(\phi) = \phi^\top \tau - n\gamma(\phi)$$

where

$$\tau = (\tau_1, \dots, \tau_k)^\top, \quad \tau_j(y_1, \dots, y_n) = \sum_{i=1}^n T_j(y_i).$$

If it exists, the MLE $\hat{\phi}_n$ must thus satisfy

$$\nabla_\phi \ell(\hat{\phi}_n) = 0 \implies \nabla_\phi \gamma(\hat{\phi}_n) = n^{-1} \tau.$$

Furthermore, existence of the MLE guarantees uniqueness by strict concavity:

$$-\nabla_\phi^2 \ell(\phi) = n \nabla_\phi^2 \gamma(\phi) = \text{cov}\{\tau\} \succ 0,$$

Example (Consistency of MLE in \mathbb{R}^k for exponential families, ctd)

Now notice that by the law of large numbers

$$\frac{1}{n} \sum_{i=1}^n T_j(Y_i) \xrightarrow{p} \mathbb{E}[T_j] = \frac{\partial}{\partial \phi_j} \gamma(\phi), \quad j = 1, \dots, k.$$

It follows that

$$\nabla_{\phi} \gamma(\hat{\phi}_n) = n^{-1} \boldsymbol{\tau} \xrightarrow{p} \nabla_{\phi} \gamma(\phi).$$

Now if $\nabla_{\phi} \gamma : \mathbb{R}^k \rightarrow \mathbb{R}^k$ were continuously invertible, with inverse map h , then the continuous mapping theorem would give us:

$$\nabla_{\phi} \gamma(\hat{\phi}_n) \xrightarrow{p} \nabla_{\phi} \gamma(\phi) \implies h(\nabla_{\phi} \gamma(\hat{\phi}_n)) \xrightarrow{p} h(\nabla_{\phi} \gamma(\phi)) \implies \hat{\phi}_n \xrightarrow{p} \phi.$$

In fact, the inverse function theorem tells us that the infinitely differentiable function $\nabla_{\phi} \gamma : \mathbb{R}^k \rightarrow \mathbb{R}^k$ must admit a continuously differentiable inverse map h locally.

In summary: provided it exists, the MLE of the natural parameter in a k -parameter natural exponential family with open parameter space Φ is consistent.

Assuming we can get consistency, we can focus on **understanding the sampling distribution of the MLE**.

For simplicity, assume X_1, \dots, X_n are iid with density/frequency $f(x; \theta)$, $\theta \in \mathbb{R}$.

Introduce the notation:

- $\ell(x_i; \theta) = \log f(x_i; \theta)$
- $\ell'(x_i; \theta)$, $\ell''(x_i; \theta)$ and $\ell'''(x_i; \theta)$ are partial derivatives w.r.t θ .

Regularity Conditions (*)

(A1) Θ is an open subset of \mathbb{R} .

(A2) The support of f , $\text{supp}(f)$, is independent of θ .

(A3) f is thrice continuously differentiable w.r.t. θ for all $x \in \text{supp}(f)$.

(A4) $\mathbb{E}_\theta[\ell'(X_i; \theta)] = 0 \ \forall \theta$ and $\text{var}_\theta[\ell'(X_i; \theta)] = \mathcal{I}_1(\theta) \in (0, \infty) \ \forall \theta$.

(A5) $-\mathbb{E}_\theta[\ell''(X_i; \theta)] = \mathcal{J}_1(\theta) \in (0, \infty) \ \forall \theta$.

(A6) $\exists M(x) > 0$ and $\delta > 0$ such that $\mathbb{E}_{\theta_0}[M(X_i)] < \infty$ and

$$|\theta - \theta_0| < \delta \implies |\ell'''(x; \theta)| \leq M(x)$$

Let's demistify these conditions...

- If Θ is open, then for θ the true parameter, it always makes sense for an estimator $\hat{\theta}$ to have a symmetric distribution around θ (e.g. Gaussian).
- Under condition (A2) we have $\frac{d}{d\theta} \int_{\text{supp } f} f(x; \theta) dx = 0$ for all $\theta \in \Theta$ so that, if we can interchange integration and differentiation,

$$0 = \int \frac{d}{d\theta} f(x; \theta) dx = \int \ell'(x; \theta) f(x; \theta) dx = \mathbb{E}_\theta[\ell'(X_i; \theta)]$$

so that in the presence of (A2), (A4) is essentially a condition that enables differentiation under the integral and asks that the r.v. ℓ' have a finite second moment for all θ .

- Similarly, (A5) requires that ℓ'' have a first moment for all θ .
- Conditions (A2) and (A6) are smoothness conditions that will allow us to ‘linearize’ the problem, while the other conditions will allow us to ‘control’ the random linearization.
- Furthermore, if we can differentiate twice under the integral sign

$$0 = \int \frac{d}{d\theta} [\ell'(x; \theta) f(x; \theta)] dx = \int \ell''(x; \theta) f(x; \theta) dx + \int (\ell'(x; \theta))^2 f(x; \theta) dx$$

so that $\mathcal{I}(\theta) = \mathcal{J}(\theta)$.

Theorem (Asymptotic Distribution of the MLE)

Let X_1, \dots, X_n be iid random variables with density (frequency) $f(x; \theta)$ and satisfying the stated regularity conditions. If the MLE $\hat{\theta}_n$ exists uniquely and is consistent, we have

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{\mathcal{I}_1(\theta)}{\mathcal{J}_1^2(\theta)}\right).$$

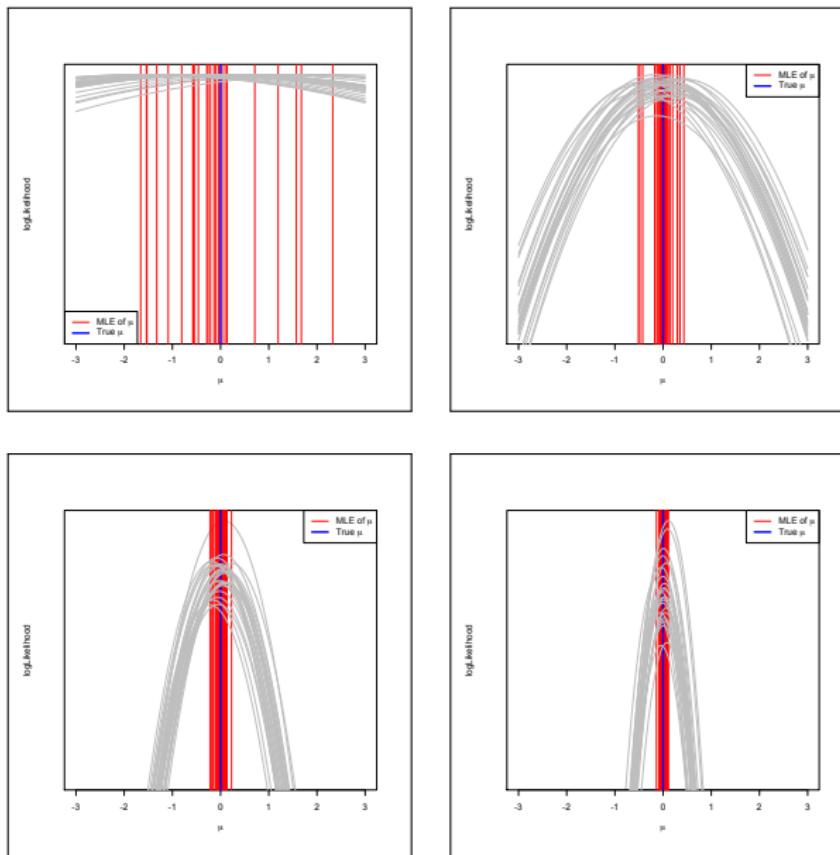
When $\mathcal{I}_1(\theta) = \mathcal{J}_1(\theta)$, we have of course $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{1}{\mathcal{I}_1(\theta)}\right)$.

- Note that this can be interpreted as

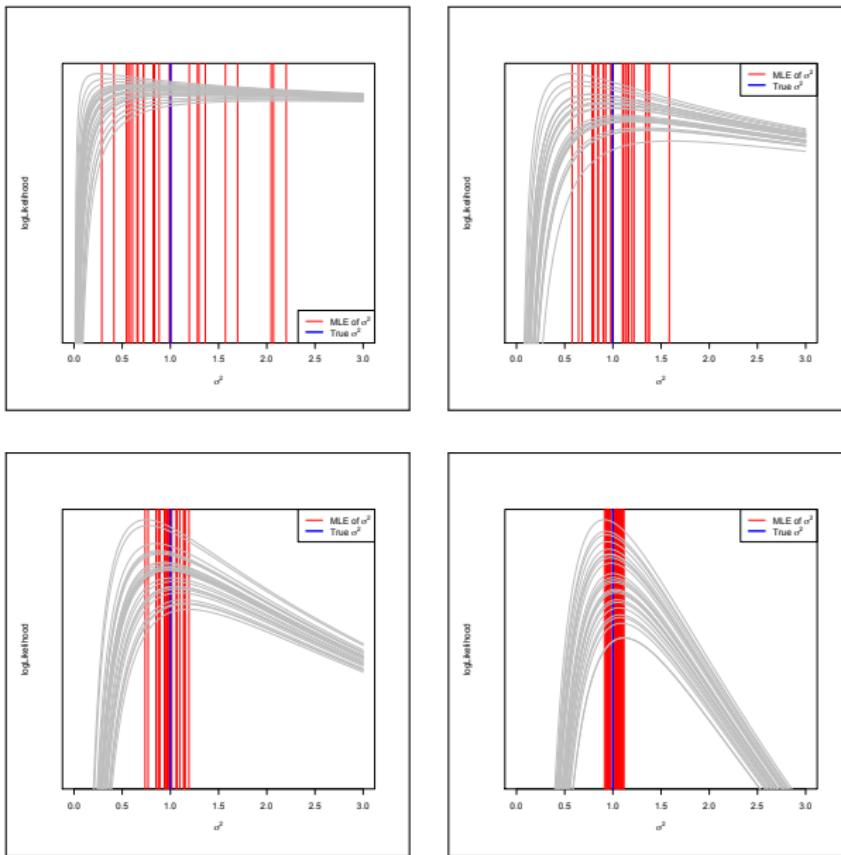
$$\hat{\theta}_n \xrightarrow{d} \mathcal{N}\left(\theta, \frac{1}{n\mathcal{I}_1(\theta)}\right) \equiv \mathcal{N}\left(\theta, \frac{1}{\mathcal{I}_n(\theta)}\right).$$

- In other words: the MLE is approximately normally distributed, approximately unbiased, and approximately achieving the Cramér-Rao lower bound!

Why $\mathcal{I}_n(\theta)$? (... curvature)



Why $\mathcal{I}_n(\theta)$? (... curvature)



Proof.

Under conditions (A1)-(A3), if $\hat{\theta}_n$ maximizes the likelihood, we have

$$\sum_{i=1}^n \ell'(X_i; \hat{\theta}_n) = 0.$$

Expanding this equation in a Taylor series, we get

$$\begin{aligned} 0 = \sum_{i=1}^n \ell'(X_i; \hat{\theta}_n) &= \sum_{i=1}^n \ell'(X_i; \theta) + \\ &\quad + (\hat{\theta}_n - \theta) \sum_{i=1}^n \ell''(X_i; \theta) \\ &\quad + \frac{1}{2} (\hat{\theta}_n - \theta)^2 \sum_{i=1}^n \ell'''(X_i; \theta_n^*) \end{aligned}$$

with θ_n^* lying between θ and $\hat{\theta}_n$.

Dividing across by \sqrt{n} yields

$$\begin{aligned} 0 &= \frac{1}{\sqrt{n}} \sum_{i=1}^n \ell'(X_i; \theta) + \sqrt{n}(\hat{\theta}_n - \theta) \frac{1}{n} \sum_{i=1}^n \ell''(X_i; \theta) \\ &\quad + \frac{1}{2} \sqrt{n}(\hat{\theta}_n - \theta)^2 \frac{1}{n} \sum_{i=1}^n \ell'''(X_i; \theta_n^*) \end{aligned}$$

which suggests that $\sqrt{n}(\hat{\theta}_n - \theta)$ equals

$$\frac{-n^{-1/2} \sum_{i=1}^n \ell'(X_i; \theta)}{n^{-1} \sum_{i=1}^n \ell''(X_i; \theta) + (\hat{\theta}_n - \theta)(2n)^{-1} \sum_{i=1}^n \ell'''(X_i; \theta_n^*)}.$$

Now, from the central limit theorem and condition (A4), it follows that

$$\frac{1}{\sqrt{n}} \sum_{i=1}^n \ell'(X_i; \theta) \xrightarrow{d} \mathcal{N}(0, \mathcal{I}_1(\theta)).$$

Next, the weak law of large numbers along with condition (A5) implies

$$\frac{1}{n} \sum_{i=1}^n \ell''(X_i; \theta) \xrightarrow{P} -\mathcal{J}(\theta).$$

By Slutsky's lemma, the theorem will follow if we show that $R_n \xrightarrow{P} 0$. This is established in the next lemma, which we appeal to, completing the proof. \square

Lemma

In the same context as in the previous theorem,

$$R_n = (\hat{\theta}_n - \theta) \frac{1}{2n} \sum_{i=1}^n \ell'''(X_i; \theta_n^*) \xrightarrow{P} 0$$

for any random variable θ_n^ on the segment joining $\hat{\theta}_n$ and θ .*

Proof. (*)

We have that for any $\epsilon > 0$

$$\begin{aligned} \mathbb{P}[|R_n| > \epsilon] &= \underbrace{\mathbb{P}[|R_n| > \epsilon, |\hat{\theta}_n - \theta| > \delta]}_{\leq \mathbb{P}[|\hat{\theta}_n - \theta| > \delta] \xrightarrow{P} 0} + \mathbb{P}[|R_n| > \epsilon, |\hat{\theta}_n - \theta| \leq \delta] \end{aligned}$$

If $|\hat{\theta}_n - \theta| < \delta$, (A6) implies $|R_n| \leq \frac{\delta}{2n} \sum_{i=1}^n M(X_i) = \bar{M}_n$.
so we may write

$$\mathbb{P}[|R_n| > \epsilon, |\hat{\theta}_n - \theta| \leq \delta] \leq \mathbb{P}[|R_n| > \epsilon, |R_n| \leq (1/2)\delta\bar{M}_n]$$

and for $\xi > 0$, the last term can be bounded by

$$\begin{aligned} & \mathbb{P}[|R_n| > \epsilon, |R_n| \leq (1/2)\delta\bar{M}_n, \bar{M}_n \leq M + \xi] + \\ & + \mathbb{P}[|R_n| > \epsilon, |R_n| \leq (1/2)\delta\bar{M}_n, \bar{M}_n > M + \xi] \end{aligned}$$

which in turn is bounded by

$$\begin{aligned} & \leq \mathbb{P}[|R_n| > \epsilon, |R_n| \leq (1/2)\delta(M + \xi)] + \mathbb{P}[\bar{M}_n > M + \xi] \\ & \leq \mathbb{P}[|R_n| > \epsilon, |R_n| \leq (1/2)\delta(M + \xi)] + \mathbb{P}[|\bar{M}_n - M| > \xi] \end{aligned}$$

But the law of large numbers implies that

$$\bar{M}_n = \frac{1}{n} \sum_{i=1}^n M(X_i) \xrightarrow{P} \mathbb{E}[M(X_1)] < \infty,$$

It follows that

$$\mathbb{P}[|\bar{M}_n - M| > \xi] \rightarrow 0.$$

Since we can always choose δ to be as small as we wish, we can make the term

$$\mathbb{P}[|R_n| > \epsilon, |R_n| \leq (1/2)\delta(M + \xi)]$$

equal to zero. In summary, we have established that $R_n \xrightarrow{P} 0$

Does this mean that likelihood estimators are essentially optimal?

- The result holds **asymptotically in n** , so care must be taken in interpreting it.
- For finite sample size n , the theorem says very little.
- Though bias **must vanish asymptotically for consistency** to go through...
- ... a little bit of **bias can help reduce variance** in finite samples.
- The delicate finite-sample **tradeoff of bias and variance** is decisive.
- Manifested both in parametric and (quite lucidly) nonparametric estimation.

Here's a spectacularly simple (and surprising) counterexample by Charles Stein.

Stein's setup

- ① Let Y_1, \dots, Y_n be independent random variables.
- ② Assume that $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$.
 - Notice that each Y_i has a different mean but same variance.
- ③ Suppose that σ^2 is known, say $\sigma^2 = 1$ (wlog)
- ④ Unknown parameter to estimate: $\mu = (\mu_1, \dots, \mu_n)^\top \in \mathbb{R}^n$
- ⑤ Consider mean squared error to judge quality.

→ Looks like the usual setup, but notice the subtlety: the dimension of the parameter $\dim(\mu) = n$ grows along with the dimension of the sample size.

Is this artificial? No: many modern problems have # parameters comparable to # observations.

→ Will later see other examples with parameter dimension fixed relative to sample size (ridge regression).

By independence, the loglikelihood in Stein's setup is

$$\ell(\boldsymbol{\mu}) = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^n (Y_i - \mu_i)^2$$

and by differentiation and convexity, we have

$$\hat{\boldsymbol{\mu}} = (Y_1, \dots, Y_n)^\top$$

is the unique MLE of μ .

- Intuition: we essentially have n Gaussian mean separate problems, each of sample size 1.
- Hence separately estimate each of these means by corresponding sample mean (which is Y_i since there is only 1 observation in each sample)

The MSE of this estimator can be easily calculated to be equal to n :

$$\text{MSE}(\hat{\boldsymbol{\mu}}, \boldsymbol{\mu}) = \mathbb{E} \|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\|^2 = \sum_{i=1}^n (Y_i - \mu_i)^2 = n.$$

Stein realised that one can always improve this MSE by cleverly introducing bias...

Theorem (James-Stein)

Let $\mathbf{Y} = (Y_1, \dots, Y_n)^\top$ be such that $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, I_{n \times n})$, $\boldsymbol{\mu} \in \mathbb{R}^n$ (Stein's setup). Let $\tilde{\boldsymbol{\mu}}_a$ be an estimator defined as

$$\tilde{\boldsymbol{\mu}}_a = \left(1 - \frac{a}{\|\mathbf{Y}\|^2}\right) \mathbf{Y} = \left(1 - \frac{a}{\|\hat{\boldsymbol{\mu}}\|^2}\right) \hat{\boldsymbol{\mu}},$$

i.e. a *shrunken* version of the MLE $\hat{\boldsymbol{\mu}}$. Then, if $n \geq 3$,

- ① for all $a \in (0, 2n - 4)$,

$$\text{MSE}(\tilde{\boldsymbol{\mu}}_a, \boldsymbol{\mu}) \leq \text{MSE}(\hat{\boldsymbol{\mu}}, \boldsymbol{\mu})$$

- ② for $a = n - 2$,

$$\text{MSE}(\tilde{\boldsymbol{\mu}}_{n-2}, 0) < \text{MSE}(\hat{\boldsymbol{\mu}}, 0)$$

- ③ For all $\boldsymbol{\mu} \in \mathbb{R}^n$ and all $a \in (0, 2n - 4)$,

$$\text{MSE}(\tilde{\boldsymbol{\mu}}_{n-2}, \boldsymbol{\mu}) \leq \text{MSE}(\tilde{\boldsymbol{\mu}}_a, \boldsymbol{\mu}).$$

Comments:

- The result is surprising, not just because the MLE is outperformed.
- The JS estimator takes the MLE and shrinks it towards zero.
- The amount of shrinkage depends on $\|\mathbf{Y}\|$
- That is, we take into account the estimate of μ_i in order to estimate μ_j ($i \neq j$), even though these are completely unrelated (no “smoothness” assumptions on μ).
- The performance of the MLE as compared to the JS estimator becomes worse and worse as n grows.
- The proof is surprisingly elementary (once one knows what to look for!)

We'll need a simple lemma first.

Lemma (*).

Let $Y \sim \mathcal{N}(\theta, \sigma^2)$ and $h : \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. If

① $\mathbb{E}|h(Y)| < \infty$,

② $\lim_{y \rightarrow \pm\infty} \left\{ h(y) \exp \left[-\frac{1}{2\sigma^2} (y - \theta)^2 \right] \right\} = 0$,

then

$$\mathbb{E}[h(Y)(Y - \theta)] = \sigma^2 \mathbb{E}[h'(Y)].$$

Proof (*).

By definition, $\mathbb{E}[h(Y)(Y - \theta)] = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} h(y)(y - \theta) e^{-\frac{1}{2\sigma^2}(y-\theta)^2} dy$.

Integration by parts transforms the right hand side into

$$\underbrace{-\frac{\sigma^2}{\sigma\sqrt{2\pi}} \left(h(y) e^{-\frac{1}{2\sigma^2}(y-\theta)^2} \right) \Big|_{-\infty}^{+\infty}}_{=0} + \underbrace{\frac{\sigma^2}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} h'(y) e^{-\frac{1}{2\sigma^2}(y-\theta)^2} dy}_{=\sigma^2 \mathbb{E}[h'(Y)]}$$

Proof of the James-Stein Theorem. (*)

$$\begin{aligned}
 \text{MSE}(\tilde{\boldsymbol{\mu}}_a, \boldsymbol{\mu}) &= \mathbb{E} \left\| \left(1 - \frac{a}{\|\boldsymbol{Y}\|^2}\right) \boldsymbol{Y} - \boldsymbol{\mu} \right\|^2 = \mathbb{E} \left\| \boldsymbol{Y} - \boldsymbol{\mu} - \frac{a\boldsymbol{Y}}{\|\boldsymbol{Y}\|^2} \right\|^2 \\
 &= \mathbb{E} \|\boldsymbol{Y} - \boldsymbol{\mu}\|^2 - 2\mathbb{E} \left(\frac{a\boldsymbol{Y}^\top(\boldsymbol{Y} - \boldsymbol{\mu})}{\|\boldsymbol{Y}\|^2} \right) + \mathbb{E} \left[\frac{a^2 \|\boldsymbol{Y}\|^2}{\|\boldsymbol{Y}\|^4} \right] \\
 &= n - 2a \sum_{i=1}^n \mathbb{E} \left[\frac{Y_i(Y_i - \mu_i)}{\sum_{j=1}^n Y_j^2} \right] + a^2 \mathbb{E} \left[\frac{1}{\|\boldsymbol{Y}\|^2} \right]
 \end{aligned}$$

Now define n differentiable functions $h_i : \mathbb{R}^n \rightarrow \mathbb{R}$ by

$$\boldsymbol{u} = (u_1, \dots, u_n) \xrightarrow{h_i} \frac{u_i}{u_i^2 + \sum_{j \neq i}^n u_j^2}$$

and observe that, for all $i \in \{1, \dots, n\}$ and all $\{u_j\}_{j \neq i} \in \mathbb{R}^{n-1}$,

$$\lim_{u_i \rightarrow \pm\infty} \left\{ h_i(\boldsymbol{u}) \exp \left[-\frac{1}{2\sigma^2} (u_i - \mu_i)^2 \right] \right\} = 0,$$

where we note that h_i becomes an $\mathbb{R} \rightarrow \mathbb{R}$ function once $\{u_j\}_{j \neq i} \in \mathbb{R}^{n-1}$ is fixed.

We now use the tower property and apply our lemma to re-write $\mathbb{E} \left[\frac{Y_i(Y_i - \mu_i)}{\sum_{j=1}^n Y_j^2} \right]$ as

$$\begin{aligned} \mathbb{E} \left\{ \mathbb{E} \left[\frac{Y_i}{Y_i^2 + \sum_{j \neq i} Y_j^2} (Y_i - \mu_i) \middle| \{Y_j\}_{j \neq i} \right] \right\} &= \mathbb{E} \left\{ \mathbb{E} [h_i(\mathbf{Y})(Y_i - \mu_i) \mid \{Y_j\}_{j \neq i}] \right\} = \\ &= \mathbb{E} \left\{ \mathbb{E} \left[\frac{\partial}{\partial u_i} h_i(\mathbf{u}) \Big|_{\mathbf{u}=\mathbf{Y}} \mid \{Y_j\}_{j \neq i} \right] \right\} = \mathbb{E} \left[\frac{\partial}{\partial u_i} h_i(\mathbf{u}) \Big|_{\mathbf{u}=\mathbf{Y}} \right] = \mathbb{E} \left[\frac{\|\mathbf{Y}\|^2 - 2Y_i^2}{\|\mathbf{Y}\|^4} \right] \end{aligned}$$

It follows that the MSE can be written as

$$\begin{aligned} \text{MSE}(\tilde{\mu}_a, \mu) &= n - 2a \mathbb{E} \left[\frac{n\|\mathbf{Y}\|^2 - 2\|\mathbf{Y}\|^2}{\|\mathbf{Y}\|^4} \right] + a^2 \mathbb{E} \left[\frac{1}{\|\mathbf{Y}\|^2} \right] \\ &= n + [a^2 - 2a(n-2)] \underbrace{\mathbb{E} \left[\frac{1}{\|\mathbf{Y}\|^2} \right]}_{>0}. \end{aligned}$$

Now, the polynomial $p(a) = a^2 - 2a(n-2)$ is strictly negative in the range $(0, 2n-4)$. Therefore, we have proven part (1). Furthermore, on the same range, $p(a)$ has a unique minimum at $a = n-2$, which proves part (3). For part (2), note that if $\mu = 0$, $\|\mathbf{Y}\|^2 \sim \chi_n^2$, so $\mathbb{E}[1/\|\mathbf{Y}\|^2] = 1/(n-2)$ (recall that $n \geq 3$). Consequently, $\text{MSE}(\delta_{n-2}, 0) = 2$.

□

Much of our discussion can be extended to cases where the MSE is replaced by some other **convex measure of performance**.

One can formulate a general framework as follows:

- Replace $\|\hat{\theta} - \theta\|$ by different deviation measure $\mathcal{L}(\hat{\theta}, \theta)$ called a **loss function**.
- The expected loss is then called **the risk**,

$$R(\hat{\theta}, \theta) = \mathbb{E}[\mathcal{L}(\hat{\theta}, \theta)].$$

- The choice of loss function **can be crucial** and must be made **judiciously**.

Example (Exponential Distribution)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \text{Exponential}(\lambda)$, $n \geq 2$. The MLE of λ is

$$\hat{\lambda} = \frac{1}{\bar{Y}}$$

with \bar{Y} the empirical mean. We can easily calculate

$$\mathbb{E}[\hat{\lambda}] = \frac{n\lambda}{n-1}.$$

It follows that $\tilde{\lambda} = (n-1)\hat{\lambda}/n$ is an unbiased estimator of λ . Observe now that

$$\text{MSE}(\tilde{\lambda}) < \text{MSE}(\hat{\lambda})$$

since $\tilde{\lambda}$ is unbiased and $\text{var}(\tilde{\lambda}) < \text{var}(\hat{\lambda})$. Hence the $\hat{\lambda}$ is strictly dominated by $\tilde{\lambda}$.

Observe that the parameter space here is $(0, \infty)$:

- In such cases, quadratic loss penalises over-estimation more heavily than under-estimation
- The maximum possible under-estimation is bounded!
- What happens if we change the loss function to account for that?

Example (Exponential Distribution, continued)

Consider a different loss function

$$\mathcal{L}(a, b) = a/b - 1 - \log(a/b)$$

where, for each fixed a , $\lim_{b \rightarrow 0} \mathcal{L}(a, b) = \lim_{b \rightarrow \infty} \mathcal{L}(a, b) = \infty$.

Now, for $n > 1$,

$$\begin{aligned} R(\lambda, \tilde{\lambda}) &= \mathbb{E}_\lambda \left[\frac{n\lambda \bar{Y}}{n-1} - 1 - \log \left(\frac{n\lambda \bar{Y}}{n-1} \right) \right] \\ &= \underbrace{\mathbb{E}_\lambda [\lambda \bar{Y} - 1 - \log(\lambda \bar{Y})]}_{R(\lambda, \hat{\lambda})} + \underbrace{\frac{\mathbb{E}_\lambda (\lambda \bar{Y})}{n-1} - \log \left(\frac{n}{n-1} \right)}_{g(n)} \end{aligned}$$

where we wrote $\bar{Y} = \frac{n-1}{n} \bar{Y} + \frac{1}{n} \bar{Y}$. Note that $\mathbb{E}_\lambda [\bar{Y}] = \lambda^{-1}$, so

$$g(n) = \frac{1}{n-1} - \log \left(\frac{n}{n-1} \right).$$

We claim that $g(n) > 0$ for $n \geq 2$.

Example (Exponential Distribution, continued)

Using $\log x = \int_1^x t^{-1} dt$, this follows if

$$\begin{aligned}\frac{1}{x} &> \log(x+1) - \log x, \quad x > 1 \\ \iff \frac{1}{x} &> \int_x^{x+1} t^{-1} dt, \quad x > 1\end{aligned}$$

which holds by a rectangle area bound on the integral, as follows:

$$\frac{1}{x} = [(x+1) - x] \frac{1}{x} = \int_x^{x+1} \frac{1}{x} dt > \int_x^{x+1} \frac{1}{t} dt, \quad \text{when } x > 1$$

Consequently, $R(\tilde{\lambda}, \lambda) > R(\hat{\lambda}, \lambda)$ and $\hat{\lambda}$ dominates $\tilde{\lambda}$.

Decision Theory

We can push generality even further, and obtain an **all encompassing framework**.

Called **decision theory**, it views inference as a game between nature and the statistician.

Recall our general framework for statistical inference:

- ① Model phenomenon by **distribution** $F(y_1, \dots, y_n; \theta)$ on \mathcal{Y}^n , some $n \geq 1$.
- ② Distributional form is known but $\theta \in \Theta$ is **unknown**.
- ③ Observe realisation of $(Y_1, \dots, Y_n)^\top \in \mathcal{Y}^n$ from this distribution.
- ④ Use the realisation $\{Y_1, \dots, Y_n\}$ in order to make **assertions concerning the true value of θ** , and quantify the uncertainty associated with these assertions.

The decision theory framework formalises step (4) to include estimation, testing, and confidence intervals.

The decision theory framework has the following elements:

- A *family of distributions* \mathcal{F} , usually assumed to admit densities (frequencies). This is the *variant of the game we decide to play*.
- A *parameter space* Θ which parametrizes the family $\mathcal{F} = \{F_\theta\}_{\theta \in \Theta}$. This represents the space of possible *plays/moves available to Nature*.
- A *data space* \mathcal{Y}^n , on which the parametric family is supported. This represents the *space of possible outcomes following a play by Nature*.
- An *action space* \mathcal{A} , which represents the space of possible *actions* or *decisions* or *plays/moves available to the statistician*.
- A *set \mathcal{D} of decision rules*. Any $\delta \in \mathcal{D}$ is a (measurable) function $\delta : \mathcal{Y}^n \rightarrow \mathcal{A}$. These represent the *possible strategies available to the statistician*.
- A *loss function* $\mathcal{L} : \Theta \times \mathcal{A} \rightarrow \mathbb{R}^+$. This represents *how much the statistician has to pay nature when losing*.

Choice of \mathcal{A} determines what inference we are making. Choice of \mathcal{D} determines what class of procedures we are willing to entertain. Choice of \mathcal{L} determines how we measure our errors.

The statistician would like to pick strategy δ so as to limit his losses. But the losses are random, which is why **risk** comes into play.

Given a decision rule $\delta : \mathcal{Y}^n \rightarrow \mathcal{A}$, the risk is $R(\delta, \theta) = \mathbb{E} [\mathcal{L}(\delta(\mathbf{Y}), \theta)]$.

The key principle of decision theory is that

decision rules should be compared by comparing their risk functions

- Risk varies depending on true state of nature, though.
- So comparisons can be made in different ways:
 - ① Uniform (hard). Seek dominance everywhere in Θ .
 - ② Minimax (relaxed). Compare worst-case risks over Θ .
 - ③ Bayes (relaxed). Compare average risk over Θ

Will not go into details, but will give two definitions for educational purposes.

Rather than look at risk at every θ minimax risk concentrates on maximum risk

Definition (Minimax Decision Rule)

Let \mathcal{D} be a class of decision rules for an experiment $(\{f_\theta\}_{\theta \in \Theta}, \mathcal{L})$. If

$$\sup_{\theta \in \Theta} R(\theta, \delta) \leq \sup_{\theta \in \Theta} R(\theta, \delta'), \quad \forall \delta' \in \mathcal{D},$$

then δ is called a minimax decision rule.

Rather than look at risk at every θ Bayes risk concentrates on average risk

Definition (Bayes Risk)

Let $\pi(\theta)$ be a probability density (frequency) on Θ and let δ be a decision rule for the experiment $(\{f_\theta\}_{\theta \in \Theta}, \mathcal{L})$. The π -Bayes risk of δ is defined as

$$r(\pi, \delta) = \int_{\Theta} R(\theta, \delta) \pi(\theta) d\theta = \int_{\Theta} \int_{\mathcal{X}} \mathcal{L}(\theta, \delta(\mathbf{y})) f_\theta(\mathbf{y}) d\mathbf{y} \pi(\theta) d\theta$$

If $\delta \in \mathcal{D}$ is such that $r(\pi, \delta) \leq r(\pi, \delta')$ for all $\delta' \in \mathcal{D}$, then δ is called a *Bayes decision rule* with respect to π .

The prior $\pi(\theta)$ places different emphasis for different values of θ based on our prior interest/knowledge.

Comments:

- Minimax rules are useful to establish **the fundamental inferential complexity** of a statistical experiment.
- But using them for more practical purposes requires **caution**.
- Motivated as follows: we do not know anything about θ so let us insure ourselves against the **worst thing that can happen**.
- Makes sense if you are in a **zero-sum adversarial game**: if your opponent chooses θ to maximize \mathcal{L} then one should look for minimax rules.
- If there is no reason to believe that “nature” is trying to “do her worst”, then the minimax approach is **overly conservative**: it places emphasis on the “bad θ ”.
- Bayes rules are quite attractive as they can **nearly never be uniformly dominated**.
- Intuitively, if you can **show your rule to be Bayes for a nice prior**, you know you’re doing reasonably well.

- ① Model phenomenon by distribution $F(y_1, \dots, y_n; \theta)$ on \mathcal{Y}^n , some $n \geq 1$.
- ② Distributional form is known but $\theta \in \Theta$ is unknown.
- ③ Observe realisation of $(Y_1, \dots, Y_n)^\top \in \mathcal{Y}^n$ from this distribution.
- ④ Use the realisation $\{Y_1, \dots, Y_n\}$ in order to make assertions concerning the true value of θ , and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:

- ① **Hypothesis Testing.** Given two disjoint regions Θ_0 and Θ_1 , which is more plausible to contain the true θ that generated our observation $(Y_1, \dots, Y_n)^\top$?

The context:

- ① We know that the true parameter lies in one of two subsets: Θ_0 or Θ_1 , with $\Theta_0 \cap \Theta_1 = \emptyset$.
- ② We need to use the sample $(Y_1, \dots, Y_n)^\top$ at hand to decide between the two possibilities.
- ③ This situation presents itself often in science, where two concurrent theories need to be confronted with the empirical evidence.

- ① The **null hypothesis** H_0 which states that $\theta \in \Theta_0$,

$$H_0 : \theta \in \Theta_0,$$

and

- ② The **alternative hypothesis** that postulates $\theta \in \Theta_1$,

$$H_1 : \theta \in \Theta_1.$$

Example (Searching for the Higgs)

- One of the biggest questions of the last quarter century in physics: whether the infamous *Higgs boson* existed or not.
- Using the standard model of particle physics, we can calculate how many diphotons would be produced on average in the absence of Higgs' boson. **Call this number $b > 0$.**
- Similarly, we can calculate the additional mean number of diphotons produced if the Higgs boson existed. **Call this number $s > 0$.**
- Diphoton events are well-accounted to be Poissonian with mean (say) μ .

Our null hypothesis (no Higgs) is then

$$H_0 : \mu = b,$$

and the competing alternative is

$$H_1 : \mu = b + s.$$

Our decision must be based on the sample, so we need to define:

Definition (Test Function)

A test function is a map $\delta : \mathcal{Y}^n \rightarrow \{0, 1\}$.

Obtaining 0 or 1 must be decided on whether or not the sample satisfies a certain condition:

$$\delta(Y_1, \dots, Y_n) = \begin{cases} 1, & \text{if } T(Y_1, \dots, Y_n) \in C, \\ 0, & \text{if } T(Y_1, \dots, Y_n) \notin C, \end{cases}$$

where

- T is a statistic called a *test statistic* and
- C is a subset of the range of T , called *critical region*.

In compact form

$$\delta(Y_1, \dots, Y_n) = \mathbf{1}\{T(Y_1, \dots, Y_n) \in C\}.$$

- To choose good test functions we need to quantify the performance of a test function.

Remark that, obviously, δ is just a Bernoulli random variable:

$$\delta = \begin{cases} 1, & \text{with probability } \mathbb{P}[T(Y_1, \dots, Y_n) \in C], \\ 0, & \text{with probability } \mathbb{P}[T(Y_1, \dots, Y_n) \notin C]. \end{cases}$$

- So a good test function must have a sampling distribution concentrated around the right decision.
- The difference from point estimation is that our **action space is discrete**.
- Can we get an analogue of mean squared error?

Possible errors¹ to be made?

Action / Truth	H_0	H_1
0		Type II Error
1	Type I Error	

By an abuse of terminology, we could define:

$$\text{MSE}(\delta, H_i) = \mathbb{E}_\theta[(\delta - i)^2], \quad i \in \{0, 1\}.$$

Since δ is Bernoulli, and i takes values in $\{0, 1\}$, we have

$$\begin{aligned}\text{MSE}(\delta, H_i) &= \mathbb{E}_\theta[(\delta - i)^2] = \mathbb{E}_\theta[|\delta - i|] = \begin{cases} \mathbb{E}_\theta[\delta], & \text{if } \theta \in \Theta_0, \\ 1 - \mathbb{E}_\theta[\delta], & \text{if } \theta \in \Theta_1. \end{cases} \\ &= \begin{cases} \mathbb{P}_\theta[\delta = 1], & \text{if } \theta \in \Theta_0, \\ 1 - \mathbb{P}_\theta[\delta = 1], & \text{if } \theta \in \Theta_1. \end{cases} \\ &= \begin{cases} \mathbb{P}_\theta[\delta = 1], & \text{if } \theta \in \Theta_0, \\ \mathbb{P}_\theta[\delta = 0], & \text{if } \theta \in \Theta_1. \end{cases}\end{aligned}$$

¹Potential asymmetry in practice: false positive VS false negative. Will return to this.

In **decision theory** terms, the action space is $\mathcal{A} = \{0, 1\}$ and the loss function is the so-called “0–1” loss,

$$\mathcal{L}(a, \theta) = \begin{cases} 1 & \text{if } \theta \in \Theta_0 \text{ & } a = 1 & \text{(Type I Error)} \\ 1 & \text{if } \theta \in \Theta_1 \text{ & } a = 0 & \text{(Type II Error)} \\ 0 & \text{otherwise} & \text{(No Error)} \end{cases}$$

i.e. we **lose 1 unit whenever committing a type I or type II error**.

The risk function then becomes

$$R(\delta, \theta) = \begin{cases} \mathbb{E}_\theta[\mathbf{1}\{\delta = 1\}] = \mathbb{P}_\theta[\delta = 1] & \text{if } \theta \in \Theta_0 \quad \text{(prob of type I error)} \\ \mathbb{E}_\theta[\mathbf{1}\{\delta = 0\}] = \mathbb{P}_\theta[\delta = 0] & \text{if } \theta \in \Theta_1 \quad \text{(prob of type II error)} \end{cases}$$

In short,

$$R(\delta, \theta) = \mathbb{P}_\theta[\delta = 1]\mathbf{1}\{\theta \in \Theta_0\} + \mathbb{P}_\theta[\delta = 0]\mathbf{1}\{\theta \in \Theta_1\}$$

Can we hope to **simultaneously control** both type I and II error probabilities?
Unfortunately the answer is **no**.

Here's why let $\delta(Y_1, \dots, Y_n) = \mathbf{1}\{T(Y_1, \dots, Y_n) \in C\}$ and suppose we wish to reduce the type I error probability

$$\mathbb{P}_\theta[\delta = 1], \quad \theta \in \Theta_0,$$

for all $\theta \in \Theta_0$.

To do this, we must replace C by a subset $C_* \subset C$, obtaining

$$\delta_* = \mathbf{1}\{T(Y_1, \dots, Y_n) \in C_*\}.$$

Observe that, $\forall \theta \in \Theta_0$,

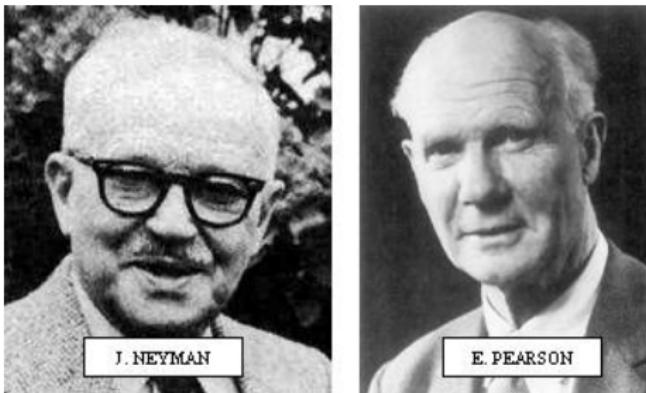
$$\mathbb{P}_\theta[\delta_* = 1] = \mathbb{P}[T(Y_1, \dots, Y_n) \in C_*] \leq \mathbb{P}[T(Y_1, \dots, Y_n) \in C] = \mathbb{P}_\theta[\delta = 1]$$

On the other hand $C_* \subset C \implies C_*^c \supset C^c$ and so $\forall \theta \in \Theta_1$

$$\mathbb{P}_\theta[\delta_* = 0] = \mathbb{P}[T(Y_1, \dots, Y_n) \notin C_*] \geq \mathbb{P}[T(Y_1, \dots, Y_n) \notin C] = \mathbb{P}_\theta[\delta = 0].$$

By reducing the type I error probability we increased the type II error probability

We need to make some concessions...



The fundamental paradigm of *Neyman and Pearson* informally dictates:

- ① In applications, one type of error (false positive or negative) is typically more severe.
- ② Say this is the type I error, and exploit the asymmetry: fix a tolerance ceiling for the probability of this error.
- ③ Given this ceiling, consider only test functions that respect it, and focus on minimising type II error (i.e. maximising power).

In mathematical terms:

The Neyman-Pearson Framework

- ① We fix an $\alpha \in (0, 1)$, usually small (called the significance level)
- ② We declare that we only consider test functions $\delta : \mathcal{X} \rightarrow \{0, 1\}$ such that

$$\delta \in \mathcal{D}(\Theta_0, \alpha) = \{\delta : \sup_{\theta \in \Theta_0} \mathbb{P}_\theta[\delta = 1] \leq \alpha\}$$

i.e. rules for which prob of type I error is bounded above by α

↪ *Jargon: we fix a significance level for our test*

- ③ Within this restricted class of rules, choose δ to minimize prob of type II error:

$$\mathbb{P}_\theta[\delta(\mathbf{X}) = 0] = 1 - \mathbb{P}_\theta[\delta(\mathbf{X}) = 1], \quad \theta \in \Theta_1$$

- ④ Equivalently, maximize the *power*

$$\beta(\theta, \delta) = \mathbb{P}_\theta[\delta(\mathbf{X}) = 1] = \mathbb{E}_\theta[\mathbf{1}\{\delta(\mathbf{X}) = 1\}] = \mathbb{E}_\theta[\delta(\mathbf{X})], \quad \theta \in \Theta_1$$

(since $\delta = 1 \iff \mathbf{1}\{\delta = 1\} = 1$ and $\delta = 0 \iff \mathbf{1}\{\delta = 1\} = 0$)

- Neyman-Pearson setup naturally exploits any asymmetric structure
- But, if natural asymmetry absent, need judicious choice of H_0

Example: Biden VS Trump 2024. Pollsters gather iid sample \mathbf{Y} from Florida with $Y_i = \mathbf{1}\{\text{vote Trump}\}$. Which pair of hypotheses to test?

$$\begin{cases} H_0 : \text{Trump wins Florida} \\ H_1 : \text{Biden wins Florida} \end{cases} \quad \text{OR} \quad \begin{cases} H_0 : \text{Biden wins Florida} \\ H_1 : \text{Trump wins Florida} \end{cases}$$

- Which pair to choose to make a prediction? (confidence intervals?)
- If Trump is conducting poll to decide whether he'll spend more money to campaign in Florida, then his possible losses due to errors are:
 - (a) Spend more \$'s to campaign in Florida even though he would win anyway: lose \$'s
 - (b) Lose Florida to Biden because he thought he would win without any extra effort.
- (b) is much worse than (a) (especially since Trump had lots of \$'s)
- Hence Trump would pick $H_0 = \{\text{Biden wins Florida}\}$ as his null

Consider the simplest situation:

$$\Theta_0 = \{\theta_0\} \quad \& \quad \Theta_1 = \{\theta_1\}$$

The Neyman-Pearson Lemma - Continuous Case

Let \mathbf{Y} have joint density/frequency $f \in \{f_0, f_1\}$ and suppose we wish to test

$$H_0 : f = f_0 \quad \text{vs} \quad H_1 : f = f_1.$$

If $\Lambda(\mathbf{Y}) = f_1(\mathbf{Y})/f_0(\mathbf{Y})$ is a continuous random variable, then there exists a $k > 0$ such that

$$\mathbb{P}_0[\Lambda(\mathbf{Y}) \geq k] = \alpha$$

and the test whose test function is given by

$$\delta(\mathbf{Y}) = \mathbf{1}\{\Lambda(\mathbf{Y}) \geq k\},$$

is a *most powerful (MP)* test of H_0 versus H_1 at significance level α .

Proof.

Use obvious notation \mathbb{E}_0 , \mathbb{E}_1 , \mathbb{P}_0 , \mathbb{P}_1 corresponding to H_0 or H_1 . Let $G_0(t) = \mathbb{P}_0[\Lambda \leq t]$. By assumption, G_0 is a differentiable distribution function, and so is onto $[0, 1]$. Consequently, the set $\mathcal{K}_{1-\alpha} = \{t : G_0(t) = 1 - \alpha\}$ is non-empty for any $\alpha \in (0, 1)$. Setting $k = \inf\{t \in \mathcal{K}_{1-\alpha}\}$ we will have $\mathbb{P}_0[\Lambda \geq k] = \alpha$ and k is simply the $1 - \alpha$ quantile of the distribution G_0 . Consequently,

$$\mathbb{P}_0[\delta = 1] = \alpha \quad (\text{since } \mathbb{P}_0[\delta = 1] = \mathbb{P}_0[\Lambda \geq k])$$

and therefore $\delta \in \mathcal{D}(\{\theta_0\}, \alpha)$ (i.e. δ indeed respects the level α).

To show that δ is also most powerful, it suffices to prove that if ψ is any function with $\psi(\mathbf{y}) \in \{0, 1\}$, then

$$\mathbb{E}_0[\psi(\mathbf{Y})] \leq \underbrace{\mathbb{E}_0[\delta(\mathbf{Y})]}_{=\alpha \text{(by first part of proof)}} \implies \underbrace{\mathbb{E}_1[\psi(\mathbf{Y})]}_{\beta_1(\psi)} \leq \underbrace{\mathbb{E}_1[\delta(\mathbf{Y})]}_{\beta_1(\delta)}.$$

(recall that $\beta_1(\delta) = 1 - \mathbb{P}_1[\delta = 0] = \mathbb{P}_1[\delta = 1] = \mathbb{E}_1[\delta]$).