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Example (MLE for Gaussian distribution)

Let Y1, . . . ,Yn
iid∼ N(µ, σ2). The likelihood is

L(µ, σ2) =
n∏

i=1

f (Yi ;µ, σ
2) =

(
1√
2πσ2

)n

exp

{
−
∑n

i=1(Yi − µ)2

2σ2

}
.

giving loglikelihood

ℓ(µ, σ2) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(Yi − µ)2.

All partial second derivatives exist and are

∂

∂µ
ℓ(µ, σ2) =

1

σ2

n∑
i=1

(Yi − µ)

∂

∂σ2
ℓ(µ, σ2) = − n

2σ2
+

1

2σ4

n∑
i=1

(Yi − µ)2.
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Example (MLE for Gaussian distribution, continued)

Solving ∇(µ,σ2)ℓ(µ, σ
2) = 0 for (µ, σ2) gives a system of equations in two

unknowns, with unique root(
Ȳ , n−1

n∑
i=1

(Yi − Ȳ )2

)
.

Call this (µ̂, σ̂2), and let’s verify it’s a maximum. Note that

∂2

∂µ2
ℓ(µ, σ2) = − n

σ2
,

∂2

∂(σ2)2
ℓ(µ, σ2) =

n

2σ4
− 1

σ6

n∑
i=1

(Yi − µ)2

∂2

∂µ∂σ2
ℓ(µ, σ2) =

∂2

∂σ2∂µ
ℓ(µ, σ2) = −

∑n
i=1(Yi − µ)

σ4
=

nµ− nȲ

σ4
.

Calculating these derivatives at (µ̂, σ̂2), we get

∂2

∂µ2
ℓ(µ, σ2)

∣∣∣∣
(µ,σ2)=(µ̂,σ̂2)

= − n

σ̂2
,

∂2

∂(σ2)2
ℓ(µ, σ2)

∣∣∣∣
(µ,σ2)=(µ̂,σ̂2)

= − n

2σ̂4
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Example (MLE for Gaussian distribution, continued)

∂2

∂µ∂σ2
ℓ(µ, σ2)

∣∣∣∣
(µ,σ2)=(µ̂,σ̂2)

=
∂2

∂σ2∂µ
ℓ(µ, σ2)

∣∣∣∣
(µ,σ2)=(µ̂,σ̂2)

=
nµ̂− nµ̂

σ̂4
= 0.

Thus the matrix [
− ∇2

(µ,σ2)ℓ(µ, σ
2)
∣∣∣
(µ,σ2)=(µ̂,σ̂2)

]
is diagonal. If both of its diagonal elements are positive, then it will be positive
definite. This is indeed the case since σ̂2 > 0 nd so the unique MLE of (µ, σ2) is
given by

(µ̂, σ̂2) =

(
Ȳ ,

1

n

n∑
i=1

(Yi − Ȳ )2

)
.

Note that from our Gaussian sampling results we get that σ2 is biased.
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Example (MLE for Poisson Distribution)

Let Y1, ...,Yn
iid∼ Poisson(λ). Then

L(λ) =
n∏

i=1

{
λYi

Yi !
e−λ

}
=⇒ log L(λ) = −nλ+ log λ

n∑
i=1

Yi −
n∑

i=1

log(Yi !)

Setting ∇λ log L(λ) = −n + λ−1
∑

Yi = 0 we obtain λ̂ = Ȳ since
∇2
λ log L(λ) = −λ−2

∑
Yi < 0.

Example (MLE for Uniform Distribution – a non-differentiable case)

Let Y1, ...,Yn
iid∼ U [0, θ]. The likelihood is

L(θ) = θ−n
n∏

i=1

1{0 ≤ Yi ≤ θ} = θ−n1{θ ≥ Y(n)}.

Hence if θ < Y(n) the likelihood is zero. In the domain [Y(n),∞), the likelihood is

a decreasing function of θ. Hence θ̂ = Y(n) .
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Example (Equivariance of the MLE)

Let Y1, . . . ,Yn
iid∼ N (µ, 1), and suppose we’re interested in estimating P[Y1 ≤ y ],

for a given y ∈ R. Note that

P[Y1 ≤ y ] = P[Y1 − µ ≤ y − µ] = Φ(y − µ),

where Φ is the standard normal CDF. The mapping µ 7→ Φ(y − µ) is bijective,
since Φ is strictly monotone. So by equivariance, the MLE of P[Y1 ≤ y ] is
Φ(y − µ̂), where µ̂ is the MLE of µ (which by our previous example is µ̂ = Ȳ ).
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Example (Equivariance and usual vs natural parameterisation)

Let Y1, . . . ,Yn
iid∼ f , with

f (y) = exp {ϕT (y)− γ(ϕ) + S(y)} , y ∈ Y

where ϕ ∈ Φ ⊆ R is the natural parameter. Suppose we can write ϕ = η(θ),
where θ ∈ Θ is the usual parameter and η : Θ → Φ is a differentiable bijection (so
that γ(ϕ) = γ(η(θ)) = d(θ), for d = γ ◦ η). In this notation, the
density/frequency takes the form

exp {ϕT (y)− γ(ϕ) + S(y)} = exp {η(θ)T (y)− d(θ) + S(y)} .

Equivariance now implies that if θ̂ is the MLE of θ, then η(θ̂) is the MLE of
ϕ = η(θ). The converse is also true: if ϕ̂ is the MLE of ϕ, then η−1(ϕ̂) is the
MLE of θ = η−1(ϕ).
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Examples show that likelihood generally gives sensible estimators – still:

Beyond intuition, is there a canonical mathematical reason for it?

What rigorous guarantees can we offer?

↪→ Can we get consistency?

↪→ Can we approach reasonable MSE performance?

To answer these questions, we go back to entropy and Kullback-Leibler divergence.
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Consistency of the MLE

Consider the random function

Ψn(u) =
1

n

n∑
i=1

[log f (Yi ;u)− log f (Yi ;θ)]

which is maximized at θ̂n. By the law of large numbers, for each u ∈ Θ,

Ψn(u)
p→ Ψ(u) = Eθ

[
log

(
f (Yi ;u)
f (Yi ;θ)

)]
= −KL

(
f (Yi ;u)

∥∥f (Yi ;θ)
)

The latter is minimised at θ and so Ψ(u) is maximized at θ.

Moreover, unless f (x ;u) = f (x ;θ) for all x ∈ supp f , we have Ψ(u) < 0

It follows that Ψ is uniquely maximised at θ

MLE can be regarded as a minimiser of an approximate (empirically constructed)
KL-divergence from the truth!
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Consistency of the MLE

Does
{
Ψn(u)

p→ Ψ(u) ∀ u with Ψ maximized uniquely at θ
}
imply

{
θ̂n

p→ θ
}
?

Unfortunately, the answer is in general no, without additional information.

If θ ∈ R, can prove consistency if f is regular enough & MLE exists uniquely.

If θ ∈ Rp, we need more information on the form of the likelihood function

↪→ For instance concavity and existence will usually give us consistency. We will
show consistency in exponential families using this approach.

↪→ More general situations require stronger forms of convergence of
Ψn(u) → Ψ(u) plus additional regularity conditions.

When we can deduce consistency, though, we get some very nice properties for
the (asymptotic) sampling distribution of the MLE...
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Example (Consistency of MLE in θ ∈ R)

Let Y1, ...,Yn
iid∼ f (y ; θ) where f is C 1 with respect to θ. Assume that ∀ n, there

exists a unique MLE θ̂n. We will show that θ̂n
p→ θ.

Define

Ξn(u) =
1

n

n∑
i=1

[
∂

∂u
log

(
f (Yi ; u)

f (Yi ; θ)

)]
and Ξ(u) = E

[
∂

∂u
log

(
f (Yi ; u)

f (Yi ; θ)

)]
,

so that

Ξn(θ̂n) = 0 uniquely, by uniqueness of the MLE.

Ξ(θ) = 0 uniquely, assuming regularity allowing interchange of E and ∂
∂u .

Since f is C 1, we have the inequality

P[Ξn(θ − ε) < 0 & Ξn(θ + ε) > 0] ≤ P[θ − ε < θ̂n < θ + ε]

because the event on the left hand side implies that on the right hand side.

Finally, the law of large numbers implies that Ξn(u)
p→ Ξ(u) for any u, so that the

left hand side converges to 1, yielding consistency.
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Example (Consistency of MLE in Rk for exponential families)

Consider Y1, ...,Yn
iid∼ f (y ;ϕ) from a k-parameter exponential family

f (y) = exp


k∑

j=1

ϕjTj(y)− γ(ϕ1, ..., ϕk) + S(y)

 ,ϕ = (ϕ1, ..., ϕk)
⊤ ∈ Φ open.

The likelihood and loglikelihood (up to constants w.r.t. ϕ) are given by

L(ϕ) = exp
{
ϕ⊤τ − nγ(ϕ)

}
& ℓ(ϕ) = ϕ⊤τ − nγ(ϕ)

where

τ = (τ1, ..., τk)
⊤, τj(y1, . . . , yn) =

∑n
i=1 Tj(yi ).

If it exists, the MLE ϕ̂n must thus satisfy

∇ϕℓ(ϕ̂n) = 0 =⇒ ∇ϕγ(ϕ̂n) = n−1τ .

Furthermore, existence of the MLE guarantees uniqueness by strict concavity:

−∇2
ϕℓ(ϕ) = n∇2

ϕγ(ϕ) = cov{τ} ≻ 0,
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Example (Consistency of MLE in Rk for exponential families, ctd)

Now notice that by the law of large numbers

1

n

n∑
i=1

Tj(Yi )
p→ E[Tj ] =

∂

∂ϕj
γ(ϕ), j = 1, ..., k.

It follows that
∇ϕγ(ϕ̂n) = n−1τ

p→ ∇ϕγ(ϕ).

Now if ∇ϕγ : Rk → Rk were continuously invertible, with inverse map h, then the
continuous mapping theorem would give us:

∇ϕγ(ϕ̂n)
p→ ∇ϕγ(ϕ) =⇒ h

(
∇ϕγ(ϕ̂n)

) p→ h
(
∇ϕγ(ϕ)

)
=⇒ ϕ̂n

p→ ϕ.

In fact, the inverse function theorem tells us that the infinitely differentiable
function ∇ϕγ : Rk → Rk must admit a continuously differentiable inverse map h
locally.

In summary: provided it exists, the MLE of the natural parameter in a
k-parameter natural exponential family with open parameter space Φ is consistent.
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Assuming we can get consistency, we can focus on understanding the sampling
distribution of the MLE.

For simplicity, assume X1, ...,Xn are iid with density/frequency f (x ; θ), θ ∈ R.
Introduce the notation:

ℓ(xi ; θ) = log f (xi ; θ)

ℓ′(xi ; θ), ℓ
′′(xi ; θ) and ℓ

′′′(xi ; θ) are partial derivatives w.r.t θ.

Regularity Conditions (∗)
(A1) Θ is an open subset of R.
(A2) The support of f , supp(f ), is independent of θ.

(A3) f is thrice continuously differentiable w.r.t. θ for all x ∈ supp(f ).

(A4) Eθ[ℓ′(Xi ; θ)] = 0 ∀θ and varθ[ℓ
′(Xi ; θ)] = I1(θ) ∈ (0,∞) ∀θ.

(A5) −Eθ[ℓ′′(Xi ; θ)] = J1(θ) ∈ (0,∞) ∀θ.
(A6) ∃ M(x) > 0 and δ > 0 such that Eθ0 [M(Xi )] <∞ and

|θ − θ0| < δ =⇒ |ℓ′′′(x ; θ)| ≤ M(x)

Let’s demistify these conditions...
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If Θ is open, then for θ the true parameter, it always makes sense for an
estimator θ̂ to have a symmetric distribution around θ (e.g. Gaussian).

Under condition (A2) we have d
dθ

∫
supp f

f (x ; θ)dx = 0 for all θ ∈ Θ so that, if
we can interchange integration and differentiation,

0 =

∫
d

dθ
f (x ; θ)dx =

∫
ℓ′(x ; θ)f (x ; θ)dx = Eθ[ℓ′(Xi ; θ)]

so that in the presence of (A2), (A4) is essentially a condition that enables
differentiation under the integral and asks that the r.v. ℓ′ have a finite second
moment for all θ.

Similarly, (A5) requires that ℓ′′ have a first moment for all θ.

Conditions (A2) and (A6) are smoothness conditions that will allow us to
‘linearize’ the problem, while the other conditions will allow us to ‘control’
the random linearization.

Furthermore, if we can differentiate twice under the integral sign

0 =

∫
d

dθ
[ℓ′(x ; θ)f (x ; θ)]dx =

∫
ℓ′′(x ; θ)f (x ; θ)dx +

∫
(ℓ′(x ; θ))2f (x ; θ)dx

so that I(θ) = J (θ).
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Asymptotic Normality of the MLE

Theorem (Asymptotic Distribution of the MLE)

Let X1, ...,Xn be iid random variables with density (frequency) f (x ; θ) and
satisfying the stated regularity conditions. If the MLE θ̂n exists uniquely and is
consistent, we have

√
n(θ̂n − θ)

d→ N
(
0,

I1(θ)
J 2
1 (θ)

)
.

When I1(θ) = J1(θ), we have of course
√
n(θ̂n − θ)

d→ N
(
0, 1

I1(θ)

)
.

Note that this can be interpreted as

θ̂n
d
≈ N

(
θ ,

1

nI1(θ)

)
≡ N

(
θ ,

1

In(θ)

)
.

In order words: the MLE is approximately normally distributed, approximately
unbiased, and approximately achieving the Cramér-Rao lower bound!
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Why In(θ)? (... curvature)
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Why In(θ)? (... curvature)
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Proof.

Under conditions (A1)-(A3), if θ̂n maximizes the likelihood, we have

n∑
i=1

ℓ′(Xi ; θ̂n) = 0.

Expanding this equation in a Taylor series, we get

0 =
n∑

i=1

ℓ′(Xi ; θ̂n) =
n∑

i=1

ℓ′(Xi ; θ) +

+(θ̂n − θ)
n∑

i=1

ℓ′′(Xi ; θ)

+
1

2
(θ̂n − θ)2

n∑
i=1

ℓ′′′(Xi ; θ
∗
n)

with θ∗n lying between θ and θ̂n.
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Dividing accross by
√
n yields

0 =
1√
n

n∑
i=1

ℓ′(Xi ; θ) +
√
n(θ̂n − θ)

1

n

n∑
i=1

ℓ′′(Xi ; θ)

+
1

2

√
n(θ̂n − θ)2

1

n

n∑
i=1

ℓ′′′(Xi ; θ
∗
n)

which suggests that
√
n(θ̂n − θ) equals

−n−1/2
∑n

i=1 ℓ
′(Xi ; θ)

n−1
∑n

i=1 ℓ
′′(Xi ; θ) + (θ̂n − θ)(2n)−1

∑n
i=1 ℓ

′′′(Xi ; θ∗n)
.

Now, from the central limit theorem and condition (A4), it follows that

1√
n

n∑
i=1

ℓ′(Xi ; θ)
d→ N (0, I1(θ)).
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Next, the weak law of large numbers along with condition (A5) implies

1
n

∑n
i=1 ℓ

′′(Xi ; θ)
p→ −J (θ).

By Slutsky’s lemma, the theorem will follow if we show that Rn
p→ 0. This is

established in the next lemma, which we appeal to, completing the proof.

Lemma
In the same context as in the previous theorem,

Rn = (θ̂n − θ) 1
2n

∑n
i=1 ℓ

′′′(Xi ; θ
∗
n)

p→ 0

for any random variable θ∗n on the segment joining θ̂n and θ.

Proof. (∗)
We have that for any ϵ > 0

P[|Rn| > ϵ] = P[|Rn| > ϵ, |θ̂n − θ| > δ]︸ ︷︷ ︸
≤P[|θ̂n−θ|>δ]

p→0

+ P[|Rn| > ϵ, |θ̂n − θ| ≤ δ]
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If |θ̂n − θ| < δ, (A6) implies |Rn| ≤ δ
2n

∑n
i=1 M(Xi ) = M̄n.

so we may write

P[|Rn| > ϵ, |θ̂n − θ| ≤ δ] ≤ P[|Rn| > ϵ, |Rn| ≤ (1/2)δM̄n]

and for ξ > 0, the last term can be bounded by

P[|Rn| > ϵ, |Rn| ≤ (1/2)δM̄n, M̄n ≤ M + ξ]+

+P[|Rn| > ϵ, |Rn| ≤ (1/2)δM̄n, M̄n > M + ξ]

which in turn is bounded by

≤ P[|Rn| > ϵ, |Rn| ≤ (1/2)δ(M + ξ)] + P[M̄n > M + ξ]

≤ P[|Rn| > ϵ, |Rn| ≤ (1/2)δ(M + ξ)] + P[|M̄n −M| > ξ]

But the law of large numbers implies that

M̄n =
1

n

n∑
i=1

M(Xi )
p→ E[M(X1)] <∞,
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It follows that
P[|M̄n −M| > ξ] → 0.

Since we can always choose δ to be as small as we wish, we can make the term

P[|Rn| > ϵ, |Rn| ≤ (1/2)δ(M + ξ)]

equal to zero. In summary, we have established that Rn
p→ 0
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Optimal Estimation and the Role of Bias in Finite Samples

Does this mean that likelihood estimators are essentially optimal?

The result holds asymptotically in n, so care must be taken in interpreting it.

For finite sample size n, the theorem says very little.

Though bias must vanish asymptotically for consistency to go through...

... a little bit of bias can help reduce variance in finite samples.

The delicate finite-sample tradeoff of bias and variance is decisive.

Manifested both in parametric and (quite lucidly) nonparametric estimation.
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Here’s a spectacularly simple (and surprising) counterexample by Charles Stein.

Stein’s setup
1 Let Y1, ...,Yn be independent random variables.

2 Assume that Yi ∼ N (µi , σ
2).

Notice that each Yi has a different mean but same variance.

3 Suppose that σ2 is known, say σ2 = 1 (wlog)

4 Unknown parameter to estimate: µ = (µ1, ..., µn)
⊤ ∈ Rn

5 Consider mean squared error to judge quality.

↪→ Looks like the usual setup, but notice the subtlety: the dimension of the
parameter dim(µ)=n grows along with the dimension of the sample size.

Is this artificial? No: many modern problems have # parameters comparable to #
observations.

↪→ Will later see other examples with parameter dimension fixed relative to
sample size (ridge regression).
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By independence, the loglikelihood in Stein’s setup is

ℓ(µ) = −n

2
log(2π)− 1

2

n∑
i=1

(Yi − µi )
2

and by differentiation and convexity, we have

µ̂ = (Y1, ...,Yn)
⊤

is the unique MLE of µ.

Intuition: we essentially have n Gaussian mean separate problems, each of
sample size 1.

Hence separately estimate each of these means by corresponding sample mean
(which is Yi since there is only 1 observation in each sample)

The MSE of this estimator can be easily calculated to be equal to n:

MSE(µ̂,µ) = E∥µ̂− µ∥2 =
n∑

i=1

(Yi − µi )
2 = n.

Stein realised that one can always improve this MSE by cleverly introducing bias...
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The James-Stein Estimator

Theorem (James-Stein)

Let Y = (Y1, ...,Yn)
⊤ be such that Y ∼ N (µ, In×n), µ ∈ Rn (Stein’s setup). Let

µ̃a be an estimator defined as

µ̃a =

(
1− a

∥Y ∥2

)
Y =

(
1− a

∥µ̂∥2

)
µ̂,

i.e. a shrunken version of the MLE µ̂. Then, if n ≥ 3,

1 for all a ∈ (0, 2n − 4),

MSE(µ̃a,µ) ≤ MSE(µ̂,µ)

2 for a = n − 2,
MSE(µ̃n−2, 0) < MSE(µ̂, 0)

3 For all µ ∈ Rn and all a ∈ (0, 2n − 4),

MSE(µ̃n−2,µ) ≤ MSE(µ̃a,µ).
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Comments:

The result is surprising, not just because the MLE is outperformed.

The JS estimator takes the MLE and shrinks it towards zero.

The amount of shrinkage depends on ∥Y ∥

That is, we take into account the estimate of µi in order to estimate µj

(i ̸= j), even though these are completely unrelated (no “smoothness”
assumptions on µ).

The performance of the MLE as compared to the JS estimator becomes
worse and worse as n grows.

The proof is surprisingly elementary (once one knows what to look for!)
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We’ll need a simple lemma first.

Lemma (∗).
Let Y ∼ N (θ, σ2) and h : R → R be differentiable. If

1 E|h(Y )| <∞,

2 lim
y→±∞

{
h(y) exp

[
− 1

2σ2
(y − θ)2

]}
= 0,

then
E[h(Y )(Y − θ)] = σ2E [h′(Y )] .

Proof (∗).
By definition, E[h(Y )(Y − θ)] = 1

σ
√
2π

∫∞
−∞ h(y)(y − θ)e−

1
2σ2 (y−θ)

2

dy .

Integration by parts transforms the right hand side into

− σ2

σ
√
2π

(
h(y)e−

1
2σ2 (y−θ)

2
)∣∣∣+∞

−∞︸ ︷︷ ︸
=0

+
σ2

σ
√
2π

∫ ∞

−∞
h′(y)e−

1
2σ2 (y−θ)

2

dy︸ ︷︷ ︸
=σ2E[h′(Y )]
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Proof of the James-Stein Theorem. (∗)

MSE(µ̃a,µ) = E
∥∥∥∥(1− a

∥Y ∥2

)
Y − µ

∥∥∥∥2 = E
∥∥∥∥Y − µ− aY

∥Y ∥2

∥∥∥∥2
= E ∥Y − µ∥2 − 2E

(
aY⊤(Y − µ)

∥Y ∥2

)
+ E

[
a2∥Y ∥2

∥Y ∥4

]
= n − 2a

n∑
i=1

E

[
Yi (Yi − µi )∑n

j=1 Y
2
j

]
+ a2E

[
1

∥Y ∥2

]
Now define n differentiable functions hi : Rn → R by

u = (u1, . . . , un)
hi7→ ui

u2i +
∑n

j ̸=i u
2
j

and observe that, for all i ∈ {1, ..., n} and all {uj}j ̸=i ∈ Rn−1,

lim
ui→±∞

{
hi (u) exp

[
− 1

2σ2 (ui − µi )
2
]}

= 0,

where we note that hi becomes an R → R function once {uj}j ̸=i ∈ Rn−1 is fixed.
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We now use the tower property and apply our lemma to re-write E
[
Yi (Yi−µi )∑n

j=1 Y
2
j

]
as

E
{
E
[

Yi

Y 2
i +

∑
j ̸=i Y

2
j
(Yi − µi )

∣∣∣ {Yj}j ̸=i

]}
= E

{
E [hi (Y )(Yi − µi )| {Yj}j ̸=i ]

}
=

= E
{
E
[
∂
∂ui

hi (u)|u=Y |{Yj}j ̸=i

] }
= E

[
∂
∂ui

hi (u)|u=Y

]
= E

[
∥Y ∥2−2Y 2

i

∥Y ∥4

]
It follows that the MSE can be written as

MSE(µ̃a,µ) = n − 2aE
[
n∥Y ∥2 − 2∥Y ∥2

∥Y ∥4

]
+ a2E

[
1

∥Y ∥2

]
= n + [a2 − 2a(n − 2)]E

[
1

∥Y ∥2

]
︸ ︷︷ ︸

>0

.

Now, the polynomial p(a) = a2 − 2a(n − 2) is strictly negative in the range
(0, 2n − 4). Therefore, we have proven part (1). Furthermore, on the same range,
p(a) has a unique minimum at a = n − 2, which proves part (3). For part (2),
note that if µ = 0, ∥Y ∥2 ∼ χ2

n, so E[1/∥Y ∥2] = 1/(n − 2) (recall that n ≥ 3).
Consequently, MSE(δn−2, 0) = 2.
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Beyond Mean Squared Error

Much of our discussion can be extended to cases where the MSE is replaced by
some other convex measure of performance.

One can formulate a general framework as follows:

Replace ∥θ̂ − θ∥ by different deviation measure L(θ̂, θ) called a loss function.

The expected loss is then called the risk,

R(θ̂, θ) = E[L(θ̂, θ)].

The choice of loss function can be crucial and must be made judiciously.
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Example (Exponential Distribution)

Let Y1, ...,Yn
iid∼ Exponential(λ), n ≥ 2. The MLE of λ is

λ̂ = 1
Ȳ

with Ȳ the empirical mean. We can easily calculate

E[λ̂] = nλ
n−1 .

It follows that λ̃ = (n − 1)λ̂/n is an unbiased estimator of λ. Observe now that

MSE(λ̃) < MSE(λ̂)

since λ̃ is unbiased and var(λ̃) < var(λ̂). Hence the λ̂ is strictly dominated by λ̃.

Observe that the parameter space here is (0,∞):

In such cases, quadratic loss penalises over-estimation more heavily than
under-estimation

The maximum possible under-estimation is bounded!

What happens if we change the loss function to account for that?
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Example (Exponential Distribution, continued)

Consider a different loss function

L(a, b) = a/b − 1− log(a/b)

where, for each fixed a, limb→0L(a, b) = limb→∞L(a, b) = ∞.

Now, for n > 1,

R(λ, λ̃) = Eλ
[
nλȲ

n − 1
− 1− log

(
nλȲ

n − 1

)]
= Eλ

[
λȲ − 1− log(λȲ )

]︸ ︷︷ ︸
R(λ,λ̂)

+
Eλ(λȲ )

n − 1
− log

(
n

n − 1

)
︸ ︷︷ ︸

g(n)

where we wrote Ȳ = n−1
n Ȳ + 1

n Ȳ . Note that Eλ[Ȳ ] = λ−1, so

g(n) =
1

n − 1
− log

(
n

n − 1

)
.

We claim that g(n) > 0 for n ≥ 2.
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Example (Exponential Distribution, continued)

Using log x =
∫ x

1
t−1dt, this follows if

1

x
> log(x + 1)− log x , x > 1

⇐⇒ 1

x
>

∫ x+1

x

t−1dt, x > 1

which holds by a rectangle area bound on the integral, as follows:

1

x
= [(x + 1)− x ]

1

x
=

∫ x+1

x

1

x
dt >

∫ x+1

x

1

t
dt, when x > 1

Consequently, R(λ̃, λ) > R(λ̂, λ) and λ̂ dominates λ̃.
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Decision Theory
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An Abstract Nomenclature for Inference

We can push generality even further, and obtain an all encompassing framework.

Called decision theory, it views inference as a game between nature and the
statistician.

Recall our general framework for statistical inference:

1 Model phenomenon by distribution F (y1, ..., yn; θ) on Yn, some n ≥ 1.

2 Distributional form is known but θ ∈ Θ is unknown.

3 Observe realisation of (Y1, ...,Yn)
⊤ ∈ Yn from this distribution.

4 Use the realisation {Y1, . . . ,Yn} in order to make assertions concerning the
true value of θ, and quantify the uncertainty associated with these assertions.

The decision theory framework formalises step (4) to include estimation, testing,
and confidence intervals.
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The decision theory framework has the following elements:

A family of distributions F , usually assumed to admit densities (frequencies).
This is the variant of the game we decide to play.

A parameter space Θ which parametrizes the family F = {Fθ}θ∈Θ. This
represents the space of possible plays/moves available to Nature.

A data space Yn, on which the parametric family is supported. This
represents the space of possible outcomes following a play by Nature.

An action space A, which represents the space of possible actions or
decisions or plays/moves available to the statistician.

A set D of decision rules. Any δ ∈ D is a (measurable) function δ : Yn → A.
These represent the possible strategies available to the statistician.

A loss function L : Θ×A → R+. This represents how much the statistician
has to pay nature when losing.

Choice of A determines what inference we are making. Choice of D determines
what class of procedures we are willing to entertain. Choice of L determines how
we measure our errors.
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The statistician would like to pick strategy δ so as to limit his losses. But the
losses are random, which is why risk comes into play.

Given a decision rule δ : Yn → A, the risk is R(δ, θ) = E [L(δ(Y ), θ)] .

The key principle of decision theory is that

decision rules should be compared by comparing their risk functions

Risk varies depending on true state of nature, though.

So comparisons can be made in different ways:

1 Uniform (hard). Seek dominance everywhere in Θ.

2 Minimax (relaxed). Compare worst-case risks over Θ.

3 Bayes (relaxed). Compare average risk over Θ

Will not go into details, but will give two definitions for educational purposes.
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Rather than look at risk at every θ minimax risk concentrates on maximum risk

Definition (Minimax Decision Rule)

Let D be a class of decision rules for an experiment ({fθ}θ∈Θ,L). If

supθ∈Θ R(θ, δ) ≤ supθ∈Θ R(θ, δ′), ∀ δ′ ∈ D,

then δ is called a minimax decision rule.

Rather than look at risk at every θ Bayes risk concentrates on average risk

Definition (Bayes Risk)

Let π(θ) be a probability density (frequency) on Θ and let δ be a decision rule for
the experiment ({fθ}θ∈Θ,L). The π-Bayes risk of δ is defined as

r(π, δ) =

∫
Θ

R(θ, δ)π(θ)dθ =

∫
Θ

∫
X
L(θ, δ(y))fθ(y)dyπ(θ)dθ

If δ ∈ D is such that r(π, δ) ≤ r(π, δ′) for all δ′ ∈ D, then δ is called a Bayes
decision rule with respect to π.

The prior π(θ) places different emphasis for different values of θ based on our
prior interest/knowedge.
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Comments:

Minimax rules are useful to establish the fundamental inferential complexity
or a statistical experiment.

But using them for more practical purposes requires caution.

Motivated as follows: we do not know anything about θ so let us insure
ourselves against the worst thing that can happen.

Makes sense if you are in a zero-sum adversarial game: if your opponent
chooses θ to maximize L then one should look for minimax rules.

If there is no reason to believe that “nature” is trying to “do her worst”, then
the minimax approach is overly conservative: it places emphasis on the “bad
θ”.

Bayes rules are quite attractive as they can nearly never be uniformly
dominated.

Intuitively, if you can show your rule to be Bayes for a nice prior, you know
you’re doing reasonably well.
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Hypothesis Testing

1 Model phenomenon by distribution F (y1, ..., yn; θ) on Yn, some n ≥ 1.

2 Distributional form is known but θ ∈ Θ is unknown.

3 Observe realisation of (Y1, ...,Yn)
⊤ ∈ Yn from this distribution.

4 Use the realisation {Y1, . . . ,Yn} in order to make assertions concerning the
true value of θ, and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:

1 Hypothesis Testing. Given two disjoint regions Θ0 and Θ1, which is more
plausible to contain the true θ that generated our observation (Y1, . . . ,Yn)

⊤?
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The context:

1 We know that the true parameter lies in one of two subsets: Θ0 or Θ1, with
Θ0 ∩Θ1 = ∅.

2 We need to use the sample (Y1, ..,Yn)
⊤ at hand to decide between the two

possibilities.

3 This situation presents itself often in science, where two concurrent theories
need to be confronted with the empirical evidence.

1 The null hypothesis H0 which states that θ ∈ Θ0,

H0 : θ ∈ Θ0,

and

2 The alternative hypothesis that postulates θ ∈ Θ1,

H1 : θ ∈ Θ1.
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Example (Searching for the Higgs)

One of the biggest questions of the last quarter century in physics: whether
the infamous Higgs boson existed or not.

Using the standard model of particle physics, we can calculate how many
diphotons would be produced on average in the absence of Higgs’ boson. Call
this number b > 0.

Similarly, we can calculate the additional mean number of diphotons produce
if the Higgs boson existed. Call this number s > 0.

Diphoton events are well-accounted to be Poissonian with mean (say) µ.

Our null hypothesis (no Higgs) is then

H0 : µ = b,

and the competing alternative is

H1 : µ = b + s.

□
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Our decision must be based on the sample, so we need to define:

Definition (Test Function)

A test function is a map δ : Yn → {0, 1}.

Obtaining 0 or 1 must be decided on whether or not the sample satisfies a certain
condition:

δ(Y1, . . . ,Yn) =

{
1, if T (Y1, . . . ,Yn) ∈ C ,

0, if T (Y1, . . . ,Yn) /∈ C ,

where

T is a statistic called a test statistic and

C is a subset of the range of T , called critical region.

In compact form

δ(Y1, . . . ,Yn) = 1{T (Y1, . . . ,Yn) ∈ C}.
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To choose good test functions we need to quantify the performance of a test
function.

Remark that, obviously, δ is just a Bernoulli random variable:

δ =

{
1, with probability P[T (Y1, . . . ,Yn) ∈ C ],

0, with probability P[T (Y1, . . . ,Yn) /∈ C ].

So a good test function must have a sampling distribution concentrated
around the right decision.

The difference from point estimation is that our action space is discrete.

Can we get an analogue of mean squared error?
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Possible errors1 to be made?

Action / Truth H0 H1

0 Type II Error

1 Type I Error

By an abuse of terminology, we could define:

MSE(δ,Hi ) = Eθ[(δ − i)2], i ∈ {0, 1}.

Since δ is Bernoulli, and i takes values in {0, 1}, we have

MSE(δ,Hi ) = Eθ[(δ − i)2] = Eθ[|δ − i |] =

{
Eθ[δ], if θ ∈ Θ0,

1− Eθ[δ], if θ ∈ Θ1.

=

{
Pθ[δ = 1], if θ ∈ Θ0,

1− Pθ[δ = 1], if θ ∈ Θ1.

=

{
Pθ[δ = 1], if θ ∈ Θ0,

Pθ[δ = 0], if θ ∈ Θ1.

1Potential asymmetry in practice: false positive VS false negative. Will return to this.
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In decision theory terms, the action space is A = {0, 1} and the loss function is
the so-called “0–1” loss,

L(a, θ) =


1 if θ ∈ Θ0 & a = 1 (Type I Error)

1 if θ ∈ Θ1 & a = 0 (Type II Error)

0 otherwise (No Error)

i.e. we lose 1 unit whenever committing a type I or type II error.

The risk function then becomes

R(δ, θ) =

{
Eθ[1{δ = 1}] = Pθ[δ = 1] if θ ∈ Θ0 (prob of type I error)

Eθ[1{δ = 0}] = Pθ[δ = 0] if θ ∈ Θ1 (prob of type II error)

In short,
R(δ, θ) = Pθ[δ = 1]1{θ ∈ Θ0}+ Pθ[δ = 0]1{θ ∈ Θ1}

Can we hope to simultaneously control both type I and II error probabilities? ↪→
Unfortunately the answer is no.
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Here’s why let δ(Y1, . . . ,Yn) = 1{T (Y1, . . . ,Yn) ∈ C} and suppose we wish to
reduce the type I error probability

Pθ[δ = 1], θ ∈ Θ0,

for all θ ∈ Θ0.

To do this, we must replace C by a subset C∗ ⊂ C , obtaining

δ∗ = 1{T (Y1, . . . ,Yn) ∈ C∗}.

Observe that, ∀ θ ∈ Θ0,

Pθ[δ∗ = 1] = P[T (Y1, . . . ,Yn) ∈ C∗] ≤ P[T (Y1, . . . ,Yn) ∈ C ] = Pθ[δ = 1]

On the other hand C∗ ⊂ C =⇒ C c
∗ ⊃ C c and so ∀ θ ∈ Θ1

Pθ[δ∗ = 0] = P[T (Y1, . . . ,Yn) /∈ C∗] ≥ P[T (Y1, . . . ,Yn) /∈ C ] = Pθ[δ = 0].

By reducing the type I error probability we increased the type II error probability

We need to make some concessions...
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The Neyman-Pearson framework

The fundamental paradigm of Neyman and Pearson informally dictates:

1 In applications, one type of error (false positive or negative) is typically more
severe.

2 Say this is the type I error, and exploit the asymmetry: fix a tolerance ceiling
for the probability of this error.

3 Given this ceiling, consider only test functions that respect it, and focus on
minimising type II error (i.e. maximising power).
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In mathematical terms:

The Neyman-Pearson Framework
1 We fix an α ∈ (0, 1), usually small (called the significance level)

2 We declare that we only consider test functions δ : X → {0, 1} such that

δ ∈ D(Θ0, α) =
{
δ : supθ∈Θ0

Pθ[δ = 1] ≤ α
}

i.e. rules for which prob of type I error is bounded above by α

↪→ Jargon: we fix a significance level for our test

3 Within this restricted class of rules, choose δ to minimize prob of type II error:

Pθ[δ(X ) = 0] = 1− Pθ[δ(X ) = 1], θ ∈ Θ1

4 Equivalently, maximize the power

β(θ, δ) = Pθ[δ(X ) = 1] = Eθ[1{δ(X ) = 1}]= Eθ[δ(X )], θ ∈ Θ1

(since δ = 1 ⇐⇒ 1{δ = 1} = 1 and δ = 0 ⇐⇒ 1{δ = 1} = 0)
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Neyman-Pearson setup naturally exploits any asymmetric structure

But, if natural asymmetry absent, need judicious choice of H0

Example: Biden VS Trump 2024. Pollsters gather iid sample Y from Florida with
Yi = 1{vote Trump}. Which pair of hypotheses to test?{

H0 : Trump wins Florida

H1 : Biden wins Florida
OR

{
H0 : Biden wins Florida

H1 : Trump wins Florida

Which pair to choose to make a prediction? (confidence intervals?)

If Trump is conducting poll to decide whether he’ll spend more money to
campaign in Florida, then his possible losses due to errors are:

(a) Spend more $’s to campaign in Florida even though he would win anyway:
lose $’s

(b) Lose Florida to Biden because he thought he would win without any extra
effort.

(b) is much worse than (a) (especially since Trump had lots of $’s)
Hence Trump would pick H0 = {Biden wins Florida} as his null
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Finding Good Test Functions

Consider the simplest situation:

Θ0 = {θ0} & Θ1 = {θ1}

The Neyman-Pearson Lemma - Continuous Case

Let Y have joint density/frequency f ∈ {f0, f1} and suppose we wish to test

H0 : f = f0 vs H1 : f = f1.

If Λ(Y ) = f1(Y )/f0(Y ) is a continuous random variable, then there exists a k > 0
such that

P0[Λ(Y ) ≥ k] = α

and the test whose test function is given by

δ(Y ) = 1{Λ(Y ) ≥ k},

is a most powerful (MP) test of H0 versus H1 at significance level α.
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Proof.
Use obvious notation E0, E1, P0, P1 corresponding to H0 or H1. Let
G0(t) = P0[Λ ≤ t]. By assumption, G0 is a differentiable distribution function, and
so is onto [0, 1]. Consequently, the set K1−α = {t : G0(t) = 1− α} is non-empty
for any α ∈ (0, 1). Setting k = inf{t ∈ K1−α} we will have P0[Λ ≥ k] = α and k
is simply the 1− α quantile of the distribution G0. Consequently,

P0[δ = 1] = α (since P0[δ = 1] = P0[Λ ≥ k])

and therefore δ ∈ D({θ0}, α) (i.e. δ indeed respects the level α).
To show that δ is also most powerful, it suffices to prove that if ψ is any function
with ψ(y) ∈ {0, 1}, then

E0[ψ(Y )] ≤ E0[δ(Y )]︸ ︷︷ ︸
=α(by first part of proof)

=⇒ E1[ψ(Y )]︸ ︷︷ ︸
β1(ψ)

≤ E1[δ(Y )]︸ ︷︷ ︸
β1(δ)

.

(recall that β1(δ) = 1− P1[δ = 0] = P1[δ = 1] = E1[δ]).
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