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Point Estimation

© Model phenomenon by distribution F(y1, ..., y,; ) on V", some n > 1.

@ Distributional form is known but 0 € © is unknown.

© Observe realisation of (Y1,..., ¥,)| € V" from this distribution.

@ Use the realisation {Y1,..., Y,} in order to make assertions concerning the

true value of #, and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:
@ Point Estimation. Given realisation (Y1,..., Y,)" from F(yi, ..., yn; 6), how
can we produce an educated guess for the unknown true parameter 67

How? With a point estimator!
Definition (Point Estimator)

A statistic with codomain © is called a point estimator, i.e. a point estimator is a
statistic T : )" — O.

Since the objective of an estimator is to estimate the 0 that generated the data,
we typically denote it by 6(Y1, ..., Y,), or just 6. Note that 6 is a deterministic
parameter, whereas 6 is a random variable.
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But which estimator?

@ Any statistic taking values in © could be used!
@ Simpler yet, if we are given some 0, how do we judge its quality?

@ Since estimators are random variables, every different realisation of the
sample (Yi,..., Y,) will produce a different realised value for 6 .

@ A good estimator should be such that it typically manifests realisations that
fall near the true 6.

@ More precisely, the sampling distribution of an estimator should be
concentrated around the true parameter value 6.
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Mean Squared Error

Definition (Mean Squared Error) |

Let A be an estimator of a parameter ¢ corresponding to a model {Fy : 0 € ©},
© C RY. The mean squared error of 0 is defined as

MSE(8, 0) [He eH ]

And here's the relation to means and variances:

Lemma (Bias-Variance Decomposition)
The MSE admits the decomposition

MSE(d, ) = HE[@] ~ 9H2 +E[|16 - E@)|]-

bias? variance
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Proof.
We expand the MSE after adding and subtracting E[d]:

E[)1§ - 6]%] E[||§ — E[4] + E[8] - 6]*]

- E[(é — E[f] +E[d] — 6)7 (8 — E[d] + E[d] — 9)}

IEG] - 0112 + E[I10 — E@)IP] + 2E (9 - EF]) T E[9] - 0)]

IEG] - 6112 + E{I10 — B@)I?] + 2(E[)] - EF]) (7] - 0)
—_———

=0

by linearity of the expectation and since (E[0] — 6) is deterministic.
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As foretold, the concentration of an estimator f around the true parameter 6 can
always be bounded by the MSE:

Lemma

Let @ be an estimator of § € RP. For any e > 0,

MSE(8, 6)

PO 6] > d < =

e Note that MSE(6,,0) =30 = 4, 2 6.
@ When an estimator has this property, we call it consistent.
Definition (Consistency)

An estimator én of 6, constructed on the basis of a sample of size n, is consistent
if 0, 25 0 as n — .

Note that a vanishing MSE implies consistency, but the converse generally fails.
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Consistency of sample mean of sample mean of Yi,..., Y, ~ N(0,1), towards the
true parameter value 0 (by law of large numbers).




Identifiability

Is it always possible to get consistent estimators?
Depends on whether the estimation problem is well-posed
Definition (Identifiability )

A probability model {Fy}oco is called identifiable if for any pair 61,6, € © we
have the implication
01 7é 92 — Fgl 7& F92.

@ Lack of identifiability means that the same model can be produced by more
than one parameter.

@ In this case we could never distinguish amongst the parameters that give the
same model.

e Example: if we have N(u; + 2, 02), we can never identify each y;, but only
their sum.

@ Henceforth we will tacitly assume identifiability (and make special mention if
it is at stake).
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Fundamental limitations to estimation accuracy

@ We can use the MSE to compare estimators or to gauge their performance.
@ But is there a best possible MSE for a given problem?

@ This is a very difficult problem, equivalent to finding a uniformly optimal
estimator: a statistic T, such that

MSE(T,,6) < MSE(T,6)

for all 6 € © and all other estimators T.
o To see this, let T = ¢ be a trivial (constant) estimator and observe that for
any non-trivial estimator S we have MSE(S, §) > MSE(T, ) at 0 = c.
e So if we want to do well for all & we can't do perfectly for any specific 6.

@ Here's a simpler question to ask instead (ruling out trivial estimators):

Among unbiased estimators (bias zero), can we make the MSE arbitrarily small? ‘

@ If so, how? (what is the crucial ingredient at play?)
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@ Rephrasing, we are asking whether there is fundamental lower bound for the
variance of an unbiased estimator of 6.

@ We will concetrate on 1-dimensional parameters for simplicity.

The Question

For Y = (Yi,..., Y,) with joint density/frequncy f(y; ) depending on an
unknown 6 € R, does there exist some function A(f) > 0 such that

var[d] > A(6), VO

for any estimator 0 such that E[0] = 7

@ At a next step we can ask if this bound is achievable.
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Let's assume we can interchange differentiation and integration in the form

& [ S(y)F(y:0)dy= [ S(y)SED L f(y;0)dy = [ S(y)f(v:0) S log f(y: 0)dy
whenever an integral such as the one on the left hand side presents itself.
O Setting U= 2 log f(Y;0) and S(y) = 1, this gives that

B{U] = [ 7(3:0) 108 (v 0)dy = 55 [ (vi0)dy =0

@ Therefore var[U] = E[U?] = E [(% log f(Y; 9))2}

@ For 0 unbiased, our “interchange ansatz” with S(y) = (y) gives

cov (é, U) =E[J U] - E[é]E[/Ul - /é(y)f(y; 0)% log f(y; 0)dy = fnz[e] —1

=0 :9

Now the Cauchy-Schwartz inequality gives

_ cov? (@, U)
Var(@) Z T(lj)

1
E|(%logf(¥:0))’]

— var(d) >
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In summary, we have established:

Cramér-Rao Lower Bound

Given sufficient regularity, any unbiased estimator é( Y) of finite variance satisfies:

A 1 1
var[0(Y =
= E [(% log f(Y;e)ﬂ Z,(9)

The quantity Z,(6) is fundamental, and called Fisher information.

o If Y =(Y1,...,Y,) hasiid entries, we have f(y;0) = []._, f(yi; ) and so
7.(6) = nT1(9).

@ By further interchanges of integration/differentiation it typically holds that

2

T,(0) = -E [;02 log F(Y; 9)]

@ The deeper meaning of all this will become clearer when we study likelihood.
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Is the Cramér-Rao bound tight (achievable) though?

if Var[é] =

Zn(9)

cov? [QA, 2 log £(Y; 9)}

th 0] =
en  var(f] var [% log £(Y; )]

which occurs if and only if % log f(Y;0) is a linear function of § (correlation 1):

% log (Y 6) = A0)I(Y) + B(6)

Solving this differential equation yields, for all y,
log f(y;0) = A*(0) + B*(6) + S(y)

~

so that varg(6) attains the lower bound if and only if the density (frequency) of Y
is a one-parameter exponential family with sufficient statistic 6.
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So what ingredients go into pushing towards this lower bound?

The Rao-Blackwell Theorem tells us that sufficiency is key:

Theorem (Rao-Blackwell Theorem)

Let O be an unbiafed estimator of O with finite variance, and let T be sufficient for
0. Then 0* :=E[0|T] is also an unbiased estimator of 6 and

A A

var(6*) < var(0).

Equality is attained if and only if Po[0* = ] = 1.

Comments:
@ Throwing away irrelevant aspects of the data improves estimation quality.

@ These irrelevant aspects contribute to the variation of the estimator (as they
have sampling variation of their own), but without furnishing any useful
information on the parameter

° 0 = E[0A|T] is called a “Rao-Blackwellised” version of .
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Proof.

Since T is sufficient for 0, E[0| T = t] = h(t) is independent of 6, so that §* is
well-defined as a statistic (depends only on Y and not 6). Then,

E[§*] = E[E[0] T]] = E[d] = 6.
Furthermore, from the law of total variance, we have
Var(GA) = var[E(§| )+ E[var(é\ )] > Var[E(HA\ )= var(é*)
In addition, note that
var(4|T) := E[(§ — E[6| T])*| T] = E[(§ - )| T]

~

so that E[var(A|T)] = E(A — 6*)2 > 0 unless if P(6* = §) = 1. O
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Suppose that 6 is an unbiased estimator of g(#) and T, S are f-sufficient.

?
e What is the relationship between var(E[d| T]) % var(E[0]S])
—— N——
% 0%
@ Intuition suggests that whichever of T, S carries the least irrelevant
information (in addition to the relevant information) should “win”

< More formally, if T = h(S) then we should expect that 0% dominate 0%.

Proposition

For # an unbiased estimator of 6 and T, S two O-sufficient statistics, define
g% =E[A|T] & 6% :=E[f|S].
Then, the following implication holds

T = h(S) = var(%) < var(0%)

@ Essentially this means that the best possible “Rao-Blackwellisation” is
achieved by conditioning on a minimally sufficient statistic.
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Proof.
Recall the tower property of conditional expectation: if Y = f(X), then

E[Z|Y] = E{E(Z|X)|Y}.

Since T = f(S) we have

0% = E[O|T]
= E[E(0|5)[T]
= E[05|T]
The conclusion now follows from the Rao-Blackwell theorem. ]
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Estimation Methods and Maximum Likelihood

@ So now we have a means to judge the quality of an estimator

@ In certain cases, we even know what's the best performance we can hope for.
@ And (minimal) sufficiency can help us approach it.

@ But how can we actually come up with an estimator in the first place?

@ We need general methods that can be applied in any model context to yield
an estimator.

@ Preferably methods that yield good estimators relative to our performance
measures/bounds.

< The main focus will be on a key method called maximum likelihood.
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Motivation: recall our understanding of statistics as “inverse probability”.

< For the moment, consider the discrete case for simplicity.

Probability Perspective

Given a parameter § € ©, then for any (yi,...,¥,) " € V", we can evaluate

(.y17 ~-~7)/n) = PG[Yl =Y1,- Yn = }/n]

that is, how the probability varies as a function of the sample (=the result).

Statistics Perspective

Given a sample (yi,...,¥,) " € V", then for any 6 € © we can calculate

0 — IE:00[\/1 = Y1, Y, = yn]

that is, how the probability varies as a function of 6 (=the model).

Intuition: we imagine that, having our sample, the values of 8 that are most
plausible are those that render the observed sample most probable...
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Likelihood and Maximum Likelihood Estimators

This motivates the following definition...
Definition (Likelihood)

Let (Y1,..., Y,) be a sample of random variables with joint density/frequency
f(Y1s -, Yn: 0), where 8 € RP. The likelihood of 6 is defined as

L(0) = F(Y4,..., Y 0).

If (Y1,..., Yn) hasi.i.d. entries, each with density/frequency f(y;; ) then,
L(o) =[] f(v0)
i=1

.. and the following estimation method
Definition (Maximum Likelihood Estimator)

In the same context, a maximum likelihood estimator (MLE) of @ is an estimator
such that

A

L) < L@), Veoeo.
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Many comments are in order:

@ When there exists a unique maximum, we speak of the MLE § = arg maxL(6)
6c0

@ The likelihood is a random function.

It is the joint density/frequency of the sample, but viewed as a function of 6.

It is NOT “the probability of #"

L(8) is the answer to the question how does the joint density/probability of
the sample vary as we vary 07

e In the discrete case it is exactly “the probability of observing our sample” as a
function of 6.

o In the continuous case, since F(y +€/2;0) — F(y —&/2;0) = ||e||f(y;0) as
llell 4 0, we can view ||e|| x L(8) as being the “probability of observing
something in the neighbourhood of our sample”, as a function of 6.
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o If a sufficient statistic T exists for § then Fisher-Neyman factorisation implies
L(0) = g(T(Y);0)h(Y) o g(T(Y); 0)
i.e. any MLE depends on data only through a sufficient statistic.

@ Since the sufficient statistic was arbitrary, if a minimally sufficient statistic
exists, the MLE will have used an estimator that has achieved the maximal
sufficient reduction of the data.

@ MLE's are also equivariant. If g: © — ©’ is a bijection, and if 6 is the MLE
of 0, then g(f) is the MLE of g(0) (you can take the hat out: g(f) = g(6))

@ When the likelihood is differentiable in 6, its maximum L(#) must solve the
equation
VolL(0) =0,

@ But before declaring a solution as an MLE, we must verify it to be a
maximum (and not a minimum!).
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@ If the likelihood is twice differentiable in €, we can verify this by checking
— VoL(0)|,_s >~ 0,
i.e that minus the Hessian is positive definite. In one dimension, this reduces

to the standard second derivative criterion.

@ To solve VyL(0) = 0 when the Y; are independent, we must painfully
calculate the derivative of an n-fold product.

@ To avoid this, we focus instead on the loglikelihood £(#) := log L(#) instead.
Maximisation of ¢ is equivalent to maximisation of L by monotonicity.

@ When the Y; are independent, ¢ has the advantage of being a sum rather
than a product

£(0) = log <ﬁ fy,.(Y,-;9)> = i log fy,(Y;; 0).

i=1 i=1

@ Of course, under twice differentiability, verification of a maximum can be
checked again by whether or not

Vol(0)p_5=0 & — V5l(0)|,_s >~ 0.

0
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Let Y1,...,Ys & Bernoulli(p). The likelihood is
Lip) =[] f(Yiip) =] p"(1—p) = = p=ia V(1 — p)r=2ia ¥
i=1 i=1

giving loglikelihood
{(p) =logp» _ Yi+log(1 - p) (n -3 Y;) :
i=1 i=1
This is twice differentiable in p and we calculate

dipﬁ(p)Zp‘lZY,-—(I—p)‘1 <n—ZY,->.

i=1
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Solving
n n
3w (- 30%) o
i=1 i=1
we get the unique root %27:1 Y; = Y. Calling this p, we now verify that
d2 n B n
d—pge(P)Z—PZZYi—(l—P) 2 <”_ZYI> )
i=1 i=1

which is a negative expression, since 0 < 27:1 Y; < nandt p € (0,1). Thus

N |
p=Y = ;Z

is the unique MLE of p. O
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Let Yi,..., s  Exp(\). The likelihood is

n n n
L) =[TFviN) =] re™ = A"exp {—)\Z Y,-} :
i=1 i=1 i=1
and the log likelihood is
n
((A) =nloghA—\>_ Y.
i=1

This is twice differentiable in A and we calculate

d -
)= ZY
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Setting ¢/(\) = 0 we get a unique root

Call this 5\, and note that )
d n
et =—%3

is always negative, since A > 0. Thus

is the unique MLE of . O
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Let Yi,..., Y, % N(u,02). The likelihood is

L(u,0%) = ilfllf(Yf;uaol) = (@)neXP{—W}-

giving loglikelihood

p,0%) = —= Iog (2mo?) ~ 5.2 Z — )2

All partial second derivatives exist and are
%) 1
iy 2y — = Y, —
ot = FXi=m

0 N n il %
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Solving V(,.02)0(p, 02) = 0 for (u,0?) gives a system of equations in two
unknowns, with unique root

(V, (Y- V)2> .

Call this (f1,62), and let's verify it's a maximum. Note that

0? 5 n 9? 5 n 1 )
a—,ugg(ﬂ,a)——;a me(ﬂya)—ﬁ—;iz:;(y:—ﬂ)
0 2 0 2 ia(Yi—p) _ np— ny

6,u5‘02£(u70 )= 3028;/(%0 )=- ot A

Calculating these derivatives at (ji, 52), we get

0? n 02
—/ 5) 2 = T 5 ——==ll 9 2
o2 (1, 0%) (o2 (0.52) 52 d(02)? (n,0%)

(k,0%)=(2,62)
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= o .
0020 e

0? 5
8/180’26('“’0’ )

(u,02)=(f1,62) (,0%)=(,62)

Thus the matrix

— V2, _af ,02‘ ]
[ o ()] oy oo

is diagonal. If both of its diagonal elements are positive, then it will be positive
definite. This is indeed the case since 62 > 0 nd so the unique MLE of (u,0?) is
given by

n

(7,5%) = (V (Y- V)2) .

i=1

Note that from our Gaussian sampling results we get that o2 is biased.
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Let Yi,..., Y, 2 Poisson(A). Then
n AY' N n n
Ly =]] {We_ } = log L(A) = —nX+logA) Y= > log(Yi)
i=1 i=1

Setting Vg log L(0) = —n+ A1 3. ¥; = 0 we obtain A = Y since
VilogL(f) =—-A"2YY;<O.

Let Y1, ..., Yo " U[0,6]. The likelihood is

L) =0""T[1H0< Yi <0} =07"1{0 > Y}

(=il

Hence if 0 < Y{p the likelihood is zero. In the domain [Y{), o0), the likelihood is
a decreasing function of #. Hence 6 = Yin) -
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Let Y1,..., Y, iig./\/(u, 1), and suppose we're interested in estimating P[Y; < y],
for a given y € R. Note that

PYi<y]=P[Vi—u<y—u =&y —p),

where ® is the standard normal CDF. The mapping p +— ®(y — u) is bijective,
since ® is strictly monotone. So by equivariance, the MLE of P[Y; < y]is
®(y — f1), where i is the MLE of p (which by our previous example is i = Y).

v,
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Let Yi,..., Y, % £ with

fly)=exp{oT(y) — () +S(¥)}, yey

where ¢ € ® C R is the natural parameter. Suppose we can write ¢ = 7(6),
where 6 € © is the usual parameter and 7 : © — @ is a differentiable bijection (so
that v(¢) = v(n(8)) = d(0), for d = v on). In this notation, the
density/frequency takes the form

exp{¢T(y) —v(¢) +S(y)} =exp{n(0) T(y) — d(0) + S(y)} -

Equivariance now implies that if 6 is the MLE of ¢, then n(0) is the MLE of
¢ = n(0). The converse is also true: if ¢ is the MLE of ¢, then n71(9) is the
MLE of 8 = n=1(¢). ]

”
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Examples show that likelihood generally gives sensible estimators — still:
@ Beyond intuition, is there a canonical mathematical reason for it?

@ What rigorous guarantees can we offer?

— Can we get consistency?

— Can we approach reasonable MSE performance?

To answer these questions, we go back to entropy and Kullback-Leibler divergence.
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