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Point Estimation

1 Model phenomenon by distribution F (y1, ..., yn; θ) on Yn, some n ≥ 1.

2 Distributional form is known but θ ∈ Θ is unknown.

3 Observe realisation of (Y1, ...,Yn)
⊤ ∈ Yn from this distribution.

4 Use the realisation {Y1, . . . ,Yn} in order to make assertions concerning the
true value of θ, and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:
1 Point Estimation. Given realisation (Y1, . . . ,Yn)

⊤ from F (y1, ..., yn; θ), how
can we produce an educated guess for the unknown true parameter θ?

How? With a point estimator!

Definition (Point Estimator)

A statistic with codomain Θ is called a point estimator, i.e. a point estimator is a
statistic T : Yn → Θ.

Since the objective of an estimator is to estimate the θ that generated the data,
we typically denote it by θ̂(Y1, ...,Yn), or just θ̂. Note that θ is a deterministic
parameter, whereas θ̂ is a random variable.
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But which estimator?

Any statistic taking values in Θ could be used!

Simpler yet, if we are given some θ̂, how do we judge its quality?

Since estimators are random variables, every different realisation of the
sample (Y1, . . . ,Yn) will produce a different realised value for θ̂ .

A good estimator should be such that it typically manifests realisations that
fall near the true θ.

More precisely, the sampling distribution of an estimator should be
concentrated around the true parameter value θ.
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Mean Squared Error

Definition (Mean Squared Error)

Let θ̂ be an estimator of a parameter θ corresponding to a model {Fθ : θ ∈ Θ},
Θ ⊆ Rd . The mean squared error of θ̂ is defined as

MSE(θ̂, θ) = E
[∥∥∥θ̂ − θ

∥∥∥2] .
And here’s the relation to means and variances:

Lemma (Bias-Variance Decomposition)

The MSE admits the decomposition

MSE(θ̂, θ) =
∥∥∥E[θ̂]− θ

∥∥∥2︸ ︷︷ ︸
bias2

+ E
[∥∥θ̂ − E(θ̂)

∥∥2]︸ ︷︷ ︸
variance

.
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Proof.

We expand the MSE after adding and subtracting E[θ̂]:

E[∥θ̂ − θ∥2] = E[∥θ̂ − E[θ̂] + E[θ̂]− θ∥2]

= E
[
(θ̂ − E[θ̂] + E[θ̂]− θ)⊤(θ̂ − E[θ̂] + E[θ̂]− θ)

]
= ∥E[θ̂]− θ∥2 + E

[
∥θ̂ − E(θ̂)∥2] + 2E

[
(θ̂ − E[θ̂])⊤(E[θ̂]− θ)

]
= ∥E[θ̂]− θ∥2 + E[∥θ̂ − E(θ̂)∥2] + 2(E[θ̂]− E[θ̂])︸ ︷︷ ︸

=0

⊤
(E[θ̂]− θ)

by linearity of the expectation and since (E[θ̂]− θ) is deterministic.
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As foretold, the concentration of an estimator θ̂ around the true parameter θ can
always be bounded by the MSE:

Lemma

Let θ̂ be an estimator of θ ∈ Rp. For any ϵ > 0,

P[∥θ̂ − θ∥ > ϵ] ≤ MSE(θ̂, θ)

ϵ2

Note that MSE(θ̂n, θ)
n→∞−→ 0 =⇒ θ̂n

p−→ θ.

When an estimator has this property, we call it consistent.

Definition (Consistency)

An estimator θ̂n of θ, constructed on the basis of a sample of size n, is consistent

if θ̂n
p−→ θ as n → ∞.

Note that a vanishing MSE implies consistency, but the converse generally fails.
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Consistency of sample mean of sample mean of Y1, ...,Yn ∼ N (0, 1), towards the
true parameter value 0 (by law of large numbers).
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Identifiability

Is it always possible to get consistent estimators?

Depends on whether the estimation problem is well-posed

Definition (Identifiability )

A probability model {Fθ}θ∈Θ is called identifiable if for any pair θ1, θ2 ∈ Θ we
have the implication

θ1 ̸= θ2 =⇒ Fθ1 ̸= Fθ2 .

Lack of identifiability means that the same model can be produced by more
than one parameter.

In this case we could never distinguish amongst the parameters that give the
same model.

Example: if we have N(µ1 + µ2, σ
2), we can never identify each µi , but only

their sum.

Henceforth we will tacitly assume identifiability (and make special mention if
it is at stake).
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Fundamental limitations to estimation accuracy

We can use the MSE to compare estimators or to gauge their performance.

But is there a best possible MSE for a given problem?

This is a very difficult problem, equivalent to finding a uniformly optimal
estimator: a statistic T∗ such that

MSE(T∗, θ) ≤ MSE(T , θ)

for all θ ∈ Θ and all other estimators T .

To see this, let T = c be a trivial (constant) estimator and observe that for
any non-trivial estimator S we have MSE(S , θ) > MSE(T , θ) at θ = c.
So if we want to do well for all θ we can’t do perfectly for any specific θ.

Here’s a simpler question to ask instead (ruling out trivial estimators):

Among unbiased estimators (bias zero), can we make the MSE arbitrarily small?

If so, how? (what is the crucial ingredient at play?)
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Rephrasing, we are asking whether there is fundamental lower bound for the
variance of an unbiased estimator of θ.

We will concetrate on 1-dimensional parameters for simplicity.

The Question

For Y = (Y1, ...,Yn)
⊤ with joint density/frequncy f (y ; θ) depending on an

unknown θ ∈ R, does there exist some function Λ(θ) > 0 such that

var[θ̂] ≥ Λ(θ), ∀θ

for any estimator θ̂ such that E[θ̂] = θ?

At a next step we can ask if this bound is achievable.
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Let’s assume we can interchange differentiation and integration in the form

d
dθ

∫
S(y)f (y ; θ)dy !

=
∫
S(y) f (y ;θ)f (y ;θ)

d
dθ f (y ; θ)dy =

∫
S(y)f (y ; θ) d

dθ log f (y ; θ)dy

whenever an integral such as the one on the left hand side presents itself.
1 Setting U = ∂

∂θ log f (Y ; θ) and S(y) = 1, this gives that

E[U] =

∫
f (y ; θ)

∂

∂θ
log f (y ; θ)dy =

d

dθ

∫
f (y ; θ)dy = 0

2 Therefore var[U] = E[U2] = E
[(

∂
∂θ log f (Y ; θ)

)2]
3 For θ̂ unbiased, our “interchange ansatz” with S(y) = θ̂(y) gives

cov
(
θ̂,U

)
= E[θ̂U]− E[θ̂]E[U]︸︷︷︸

=0

=

∫
θ̂(y)f (y ; θ)

d

dθ
log f (y ; θ)dy =

d

dθ
E[θ̂]︸︷︷︸
=θ

= 1

Now the Cauchy-Schwartz inequality gives

var(θ̂) ≥
cov2

(
θ̂,U

)
var (U)

=⇒ var(θ̂) ≥ 1

E
[(

∂
∂θ log f (Y ; θ)

)2]
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In summary, we have established:

Cramér-Rao Lower Bound

Given sufficient regularity, any unbiased estimator θ̂(Y ) of finite variance satisfies:

var[θ̂(Y )] ≥ 1

E
[(

∂
∂θ log f (Y ; θ)

)2] =
1

In(θ)

The quantity In(θ) is fundamental, and called Fisher information.

If Y = (Y1, ...,Yn)
⊤ has iid entries, we have f (y ; θ) =

∏n
i=1 f (yi ; θ) and so

In(θ) = nI1(θ).

By further interchanges of integration/differentiation it typically holds that

In(θ) = −E
[
∂2

∂θ2
log f (Y ; θ)

]
The deeper meaning of all this will become clearer when we study likelihood.
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Is the Cramér-Rao bound tight (achievable) though?

if var[θ̂] =
1

In(θ)

then var[θ̂] =
cov2

[
θ̂, ∂

∂θ log f (Y ; θ)
]

var
[

∂
∂θ log f (Y ; θ)

]
which occurs if and only if ∂

∂θ log f (Y ; θ) is a linear function of θ̂ (correlation 1):

∂

∂θ
log f (Y ; θ) = A(θ)θ̂(Y ) + B(θ)

Solving this differential equation yields, for all y ,

log f (y ; θ) = A∗(θ̂) + B∗(θ) + S(y)

so that varθ(θ̂) attains the lower bound if and only if the density (frequency) of Y
is a one-parameter exponential family with sufficient statistic θ̂.
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So what ingredients go into pushing towards this lower bound?

The Rao-Blackwell Theorem tells us that sufficiency is key:

Theorem (Rao-Blackwell Theorem)

Let θ̂ be an unbiased estimator of θ with finite variance, and let T be sufficient for
θ. Then θ̂∗ := E[θ̂|T ] is also an unbiased estimator of θ and

var(θ̂∗) ≤ var(θ̂).

Equality is attained if and only if Pθ[θ̂
∗ = θ̂] = 1.

Comments:

Throwing away irrelevant aspects of the data improves estimation quality.

These irrelevant aspects contribute to the variation of the estimator (as they
have sampling variation of their own), but without furnishing any useful
information on the parameter

θ̂∗ = E[θ̂|T ] is called a “Rao-Blackwellised” version of θ̂.
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Proof.

Since T is sufficient for θ, E[θ̂|T = t] = h(t) is independent of θ, so that θ̂∗ is
well-defined as a statistic (depends only on Y and not θ). Then,

E[θ̂∗] = E[E[θ̂|T ]] = E[θ̂] = θ.

Furthermore, from the law of total variance, we have

var(θ̂) = var[E(θ̂|T )] + E[var(θ̂|T )] ≥ var[E(θ̂|T )] = var(θ̂∗)

In addition, note that

var(θ̂|T ) := E[(θ̂ − E[θ̂|T ])2|T ] = E[(θ̂ − θ̂∗)2|T ]

so that E[var(θ̂|T )] = E(θ̂ − θ̂∗)2 > 0 unless if P(θ̂∗ = θ̂) = 1.
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Suppose that θ̂ is an unbiased estimator of g(θ) and T , S are θ-sufficient.

What is the relationship between var(E[θ̂|T ]︸ ︷︷ ︸
θ̂∗
T

)
?

⪌ var(E[θ̂|S ]︸ ︷︷ ︸
θ̂∗
S

)

Intuition suggests that whichever of T ,S carries the least irrelevant
information (in addition to the relevant information) should “win”

↪→ More formally, if T = h(S) then we should expect that θ̂∗T dominate θ̂∗S .

Proposition

For θ̂ an unbiased estimator of θ and T ,S two θ-sufficient statistics, define

θ̂∗T := E[θ̂|T ] & θ̂∗S := E[θ̂|S ].

Then, the following implication holds

T = h(S) =⇒ var(θ̂∗T ) ≤ var(θ̂∗S)

Essentially this means that the best possible “Rao-Blackwellisation” is
achieved by conditioning on a minimally sufficient statistic.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 17 / 35



Proof.

Recall the tower property of conditional expectation: if Y = f (X ), then

E[Z |Y ] = E{E(Z |X )|Y }.

Since T = f (S) we have

θ̂∗T = E[θ̂|T ]

= E[E(θ̂|S)|T ]

= E[θ̂∗S |T ]

The conclusion now follows from the Rao-Blackwell theorem.
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Estimation Methods and Maximum Likelihood

So now we have a means to judge the quality of an estimator

In certain cases, we even know what’s the best performance we can hope for.

And (minimal) sufficiency can help us approach it.

But how can we actually come up with an estimator in the first place?

We need general methods that can be applied in any model context to yield
an estimator.

Preferably methods that yield good estimators relative to our performance
measures/bounds.

↪→ The main focus will be on a key method called maximum likelihood.
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Motivation: recall our understanding of statistics as “inverse probability”.

↪→ For the moment, consider the discrete case for simplicity.

Probability Perspective

Given a parameter θ ∈ Θ, then for any (y1, ..., yn)
⊤ ∈ Yn, we can evaluate

(y1, ..., yn) 7→ Pθ[Y1 = y1, ...,Yn = yn]

that is, how the probability varies as a function of the sample (=the result).

Statistics Perspective

Given a sample (y1, ..., yn)
⊤ ∈ Yn, then for any θ ∈ Θ we can calculate

θ 7→ Pθ[Y1 = y1, ...,Yn = yn]

that is, how the probability varies as a function of θ (=the model).

Intuition: we imagine that, having our sample, the values of θ that are most
plausible are those that render the observed sample most probable...
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Likelihood and Maximum Likelihood Estimators

This motivates the following definition...

Definition (Likelihood)

Let (Y1, . . . ,Yn) be a sample of random variables with joint density/frequency
f (y1, ..., yn; θ), where θ ∈ Rp. The likelihood of θ is defined as

L(θ) = f (Y1, ...,Yn; θ).

If (Y1, ...,Yn)
⊤ has i.i.d. entries, each with density/frequency f (yi ; θ) then,

L(θ) =
n∏

i=1

f (Yi ; θ)

... and the following estimation method

Definition (Maximum Likelihood Estimator)

In the same context, a maximum likelihood estimator (MLE) of θ̂ is an estimator
such that

L(θ) ≤ L(θ̂), ∀ θ ∈ Θ.
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Many comments are in order:

When there exists a unique maximum, we speak of the MLE θ̂ = argmax
θ∈Θ

L(θ)

The likelihood is a random function.

It is the joint density/frequency of the sample, but viewed as a function of θ.

It is NOT “the probability of θ”

L(θ) is the answer to the question how does the joint density/probability of
the sample vary as we vary θ?

In the discrete case it is exactly “the probability of observing our sample” as a
function of θ.

In the continuous case, since F (y + ε/2 ; θ)− F (y − ε/2; θ) ≈ ∥ε∥f (y ; θ) as
∥ε∥ ↓ 0, we can view ∥ϵ∥ × L(θ) as being the “probability of observing
something in the neighbourhood of our sample”, as a function of θ.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 22 / 35



If a sufficient statistic T exists for θ then Fisher-Neyman factorisation implies

L(θ) = g(T (Y ); θ)h(Y ) ∝ g(T (Y ); θ)

i.e. any MLE depends on data only through a sufficient statistic.

Since the sufficient statistic was arbitrary, if a minimally sufficient statistic
exists, the MLE will have used an estimator that has achieved the maximal
sufficient reduction of the data.

MLE’s are also equivariant. If g : Θ → Θ′ is a bijection, and if θ̂ is the MLE

of θ, then g(θ̂) is the MLE of g(θ) (you can take the hat out: g(θ̂) = ĝ(θ))

When the likelihood is differentiable in θ, its maximum L(θ) must solve the
equation

∇θL(θ) = 0,

But before declaring a solution as an MLE, we must verify it to be a
maximum (and not a minimum!).
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If the likelihood is twice differentiable in θ, we can verify this by checking

− ∇2
θL(θ)

∣∣
θ=θ̂

≻ 0,

i.e that minus the Hessian is positive definite. In one dimension, this reduces
to the standard second derivative criterion.

To solve ∇θL(θ) = 0 when the Yi are independent, we must painfully
calculate the derivative of an n-fold product.

To avoid this, we focus instead on the loglikelihood ℓ(θ) := log L(θ) instead.
Maximisation of ℓ is equivalent to maximisation of L by monotonicity.

When the Yi are independent, ℓ has the advantage of being a sum rather
than a product

ℓ(θ) = log

(
n∏

i=1

fYi (Yi ; θ)

)
=

n∑
i=1

log fYi (Yi ; θ).

Of course, under twice differentiability, verification of a maximum can be
checked again by whether or not

∇θℓ(θ)|θ=θ̂ = 0 & − ∇2
θℓ(θ)

∣∣
θ=θ̂

≻ 0.
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Example (MLE for Bernoulli trials)

Let Y1, . . . ,Yn
iid∼ Bernoulli(p). The likelihood is

L(p) =
n∏

i=1

f (Yi ; p) =
n∏

i=1

pYi (1− p)1−Yi = p
∑n

i=1 Yi (1− p)n−
∑n

i=1 Yi

giving loglikelihood

ℓ(p) = log p
n∑

i=1

Yi + log(1− p)

(
n −

n∑
i=1

Yi

)
.

This is twice differentiable in p and we calculate

d

dp
ℓ(p) = p−1

n∑
i=1

Yi − (1− p)−1

(
n −

n∑
i=1

Yi

)
.
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Example (MLE for Bernoulli trials, continued)

Solving

p−1
n∑

i=1

Yi − (1− p)−1

(
n −

n∑
i=1

Yi

)
= 0,

we get the unique root 1
n

∑n
i=1 Yi = Ȳ . Calling this p̂, we now verify that

d2

dp2
ℓ(p) = −p2

n∑
i=1

Yi − (1− p)−2

(
n −

n∑
i=1

Yi

)
,

which is a negative expression, since 0 ≤
∑n

i=1 Yi ≤ n andt p ∈ (0, 1). Thus

p̂ = Ȳ =
1

n

n∑
i=1

Yi

is the unique MLE of p.
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Example (MLE for exponential distribution)

Let Y1, . . . ,Yn
iid∼ Exp(λ). The likelihood is

L(λ) =
n∏

i=1

f (Yi ;λ) =
n∏

i=1

λe−λYi = λn exp

{
−λ

n∑
i=1

Yi

}
.

and the log likelihood is

ℓ(λ) = n log λ− λ

n∑
i=1

Yi .

This is twice differentiable in λ and we calculate

d

dλ
ℓ(λ) = nλ−1 −

n∑
i=1

Yi .
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Example (MLE for exponential distribution, continued)

Setting ℓ′(λ) = 0 we get a unique root(
1

n

n∑
i=1

Yi

)−1

= 1/Ȳ .

Call this λ̂, and note that
d2

dλ2
ℓ(λ) = − n

λ2

is always negative, since λ > 0. Thus

λ̂ =

(
1

n

n∑
i=1

Yi

)−1

= 1/Ȳ

is the unique MLE of λ.
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Example (MLE for Gaussian distribution)

Let Y1, . . . ,Yn
iid∼ N(µ, σ2). The likelihood is

L(µ, σ2) =
n∏

i=1

f (Yi ;µ, σ
2) =

(
1√
2πσ2

)n

exp

{
−
∑n

i=1(Yi − µ)2

2σ2

}
.

giving loglikelihood

ℓ(µ, σ2) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(Yi − µ)2.

All partial second derivatives exist and are

∂

∂µ
ℓ(µ, σ2) =

1

σ2

n∑
i=1

(Yi − µ)

∂

∂σ2
ℓ(µ, σ2) = − n

2σ2
+

1

2σ4

n∑
i=1

(Yi − µ)2.
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Example (MLE for Gaussian distribution, continued)

Solving ∇(µ,σ2)ℓ(µ, σ
2) = 0 for (µ, σ2) gives a system of equations in two

unknowns, with unique root(
Ȳ , n−1

n∑
i=1

(Yi − Ȳ )2

)
.

Call this (µ̂, σ̂2), and let’s verify it’s a maximum. Note that

∂2

∂µ2
ℓ(µ, σ2) = − n

σ2
,

∂2

∂(σ2)2
ℓ(µ, σ2) =

n

2σ4
− 1

σ6

n∑
i=1

(Yi − µ)2

∂2

∂µ∂σ2
ℓ(µ, σ2) =

∂2

∂σ2∂µ
ℓ(µ, σ2) = −

∑n
i=1(Yi − µ)

σ4
=

nµ− nȲ

σ4
.

Calculating these derivatives at (µ̂, σ̂2), we get

∂2

∂µ2
ℓ(µ, σ2)

∣∣∣∣
(µ,σ2)=(µ̂,σ̂2)

= − n

σ̂2
,

∂2

∂(σ2)2
ℓ(µ, σ2)

∣∣∣∣
(µ,σ2)=(µ̂,σ̂2)

= − n

2σ̂4
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Example (MLE for Gaussian distribution, continued)

∂2

∂µ∂σ2
ℓ(µ, σ2)

∣∣∣∣
(µ,σ2)=(µ̂,σ̂2)

=
∂2

∂σ2∂µ
ℓ(µ, σ2)

∣∣∣∣
(µ,σ2)=(µ̂,σ̂2)

=
nµ̂− nµ̂

σ̂4
= 0.

Thus the matrix [
− ∇2

(µ,σ2)ℓ(µ, σ
2)
∣∣∣
(µ,σ2)=(µ̂,σ̂2)

]
is diagonal. If both of its diagonal elements are positive, then it will be positive
definite. This is indeed the case since σ̂2 > 0 nd so the unique MLE of (µ, σ2) is
given by

(µ̂, σ̂2) =

(
Ȳ ,

1

n

n∑
i=1

(Yi − Ȳ )2

)
.

Note that from our Gaussian sampling results we get that σ2 is biased.
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Example (MLE for Poisson Distribution)

Let Y1, ...,Yn
iid∼ Poisson(λ). Then

L(λ) =
n∏

i=1

{
λYi

Yi !
e−λ

}
=⇒ log L(λ) = −nλ+ log λ

n∑
i=1

Yi −
n∑

i=1

log(Yi !)

Setting ∇θ log L(θ) = −n + λ−1
∑

Yi = 0 we obtain λ̂ = Ȳ since
∇2

θ log L(θ) = −λ−2
∑

Yi < 0.

Example (MLE for Uniform Distribution – a non-differentiable case)

Let Y1, ...,Yn
iid∼ U [0, θ]. The likelihood is

L(θ) = θ−n
n∏

i=1

1{0 ≤ Yi ≤ θ} = θ−n1{θ ≥ Y(n)}.

Hence if θ < Y(n) the likelihood is zero. In the domain [Y(n),∞), the likelihood is

a decreasing function of θ. Hence θ̂ = Y(n) .
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Example (Equivariance of the MLE)

Let Y1, . . . ,Yn
iid∼ N (µ, 1), and suppose we’re interested in estimating P[Y1 ≤ y ],

for a given y ∈ R. Note that

P[Y1 ≤ y ] = P[Y1 − µ ≤ y − µ] = Φ(y − µ),

where Φ is the standard normal CDF. The mapping µ 7→ Φ(y − µ) is bijective,
since Φ is strictly monotone. So by equivariance, the MLE of P[Y1 ≤ y ] is
Φ(y − µ̂), where µ̂ is the MLE of µ (which by our previous example is µ̂ = Ȳ ).
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Example (Equivariance and usual vs natural parameterisation)

Let Y1, . . . ,Yn
iid∼ f , with

f (y) = exp {ϕT (y)− γ(ϕ) + S(y)} , y ∈ Y

where ϕ ∈ Φ ⊆ R is the natural parameter. Suppose we can write ϕ = η(θ),
where θ ∈ Θ is the usual parameter and η : Θ → Φ is a differentiable bijection (so
that γ(ϕ) = γ(η(θ)) = d(θ), for d = γ ◦ η). In this notation, the
density/frequency takes the form

exp {ϕT (y)− γ(ϕ) + S(y)} = exp {η(θ)T (y)− d(θ) + S(y)} .

Equivariance now implies that if θ̂ is the MLE of θ, then η(θ̂) is the MLE of
ϕ = η(θ). The converse is also true: if ϕ̂ is the MLE of ϕ, then η−1(ϕ̂) is the
MLE of θ = η−1(ϕ).
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Examples show that likelihood generally gives sensible estimators – still:

Beyond intuition, is there a canonical mathematical reason for it?

What rigorous guarantees can we offer?

↪→ Can we get consistency?

↪→ Can we approach reasonable MSE performance?

To answer these questions, we go back to entropy and Kullback-Leibler divergence.
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