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Point Estimation

© Model phenomenon by distribution F(y1, ..., y,;0) on )", some n > 1.

@ Distributional form is known but 6 € © is unknown.

© Observe realisation of (Y,...,Y,)" € V" from this distribution.

© Use the realisation {Y1,..., Y,} in order to make assertions concerning the

true value of 6, and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:
@ Point Estimation. Given realisation (Y1,...,Y,)' from F(y1, ..., yn: 0), how
can we produce an educated guess for the unknown true parameter 67

How? With a point estimator!

Definition (Point Estimator)

A statistic with codomain © is called a point estimator, i.e. a point estimator is a
statistic T : )" — O.

Since the objective of an estimator is to estimate the 6 that generated the data,
we typically denote it by (Y1, ..., ¥n), or just'@. Note that 6 is a deterministic
parameter, whereas 6 is a random variable.
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But which estimator?

@ Any statistic taking values in © could be used!
o Simpler vet, if we are given some 6, how do we judge its quality?

@ Since estimators are random variables, every different realisation of the
sample (Y1,...,Y,) will produce a different realised value for 6 .

@ A good estimator should be such that it typically manifests realisations that
fall near the true 6.

@ More precisely, the sampling distribution of an estimator should be
concentrated around the true parameter value 6.
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Mean Squared Error

Definition (Mean Squared Error) ’

Let O be an estimator of a parameter 0 corresponding to a model {Fo:0 €O}
© C RY. The mean squared error of 6 is defined as

(/69 matc
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And here’'s the relation to means and variances:

MSE(, §) = [

Lemma (Bias-Variance Decomposition)

The MSE admits the decomposition U! X - G/:T)(l uz}
J

MSE(d, 0) = ||E[6] - 91| +E[H9 50 Ol

\ .
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Proof.
We expand the MSE after adding and subtractlng E[6]:

) o
B0 o) = E[I0- E[@]Hﬁ:e]—e@
- [(9 E[d] + E[d] — 0)7 (9 — E[d] + E[]] —

_ 0L
= [[EI6] - 611° + E[lI6 — EG) "] + 4E] (8 — EI SONCOR M

= ||E[0] — 0]> + E[||0 — E()||*] + 2SE[H] — IE‘3[6’]2 (E[0] - 0)
vt e =0

NN m”dOM

by linearity of the expectation and since (E[f] — 6) is deterministic.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 6/35



As foretold, the concentration of an estimator 6 around the true parameter 6 can
always be bounded by the MSE:

Lemma |
Let § be an estimator of § € RP. For any € > 0,
leéafé W\@tw‘b"d
v MSE(8, 0
BlI0— 0] > < o0 5 0
“——~——— €
4
o Note that MSE(6,,0) =3 0 = 0, 2 6.
M
@ When an estimator has this property, we call it consistent.
Definition (Consistency)
An estimator QA,, of 6, constructed on the basis of a sample of size n, is consistent
if@nﬁﬁasn—ﬂm. )

Note that a vanishing MSE implies consistency, but the converse generally fails.

e
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Consistency of sample mean of sample mean of Yi,. ~ N(0,1), towards the
true parameter value 0 (by law of large numbers). L7V - D 2,509
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|[dentifiability

Is it always possible to get consistent estimators?

Depends on whether the estimation problem is well-posed

Definition (ldentifiability )

A probability model {Fy}gco is called identifiable if for any pair 01,60, € © we
have the implication  f¢ T

5 = O+, 01+ 0, = Fy, # Fy,.

@ Lack of identifiability means that the same model can be produced by more
than one parameter.

@ In this case we could never distinguish amongst the parameters that give the
same model.

@ Example: if we have N@ 02), we can never identify each u;, but only
their sum.

@ Henceforth we will tacitly assume identifiability (and make special mention if
it is at stake).
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Fundamental limitations to estimation accuracy

@ We can use the MSE to compare estimators or to gauge their performance.

@ But is there a best possible MSE for a given problem?

@ This is a very difficult problem, equivalent to finding a uniformly optimal

estimator: a statistic T, such that a Q- %_2\1 \

/
MSE(T.,0) < MSE(T, 6)

for all & € © and all other estimators T.

o To see this, let T = ¢ be a trivial (constant) estimator and observe that for
any non-trivial estimator@/\/e have MSE(S,0) > MSE(T,0) at § = c.
e So if we want to do well for all & we can’t do perfectly for any specific 6.

@ Here's a simpler question to ask instead (ruling out trivial estimators):
A
Z[e)=0

Among unbiased estimators (bias zero), can we make the MSE arbitrarily small?

@ If so, how? (what is the crucial ingredient at play?)
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@ Rephrasing, we are asking whether there is fundamental lower bound for the
variance of an unbiased estimator of 6.

@ We will concetrate on 1-dimensional parameters for simplicity.

The Question
For Y = (Y1,...,Y,)' with joint density/frequncy depending on an

unknown 6 € R, does there exist some function A(6) > 0 such that

var|[d] éﬂ@, Vo

for any estimator # such that E[d] = 07

@ At a next step we can ask if this bound is achievable.
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Let's assume we can mterchange differentiation and integration in the formz fanie

—— Leioni
@(y y:0)dy= | 50&8—%@# J Sl 0) g5 log f (y: 0)dy

whenever an integral such as the one on the left hand side presents itself.

@ Setting U = 2 log f(Y;0) and S(y) = 1, this gives that _%- 1
AAN————— -
0 d Y

E[U]Z/f(y; 0) 5 los f(y:0)dy = — | fy:0)dy =0

N . e e —

@ Therefore var[U] = E[U?] = E [(% log f(Y; 9))2} e ® zléﬁelze
2 ©

(3] For f unbiased, our “interchange ansatz’ with S(y) — O(y) gives 29

cov (0 U = E[6 U] —% / y)f(y;0 Iog f(y;0)dy = iIE[@]BQ 1

=0
SC%) §
N
Now the Cauchy-Schwartz inequality gives (KZX‘P]] ¢ gl %L 4
5 x=9 1=V
cov? (6, U ! NG

Var(é) > — Var(é) >

var (U)
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In summary, we have established:

Cramér-Rao Lower Bound

Given sufficient regularity, any unbiased estimator (Y of finite variance satisfies:

A 1 1
var|0(Y =
= E {(% log f(Y;H))z] Zn(0)

o~ - e
i g

The quantity Z,(6) is fundamental, and called Fisher information.
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In summary, we have established:

Cramér-Rao Lower Bound

Given sufficient regularity, any unbiased estimator (Y of finite variance satisfies:

A 1 1
var[f0(Y)] > —
E {(% log f(Y; (9))2 Zn(0)
0
The quantity Z,(6) is fundamental, and called Fisher information.

o If Y =(Y1,...,Y,) ' hasiid entries, we have f(y;0) = []"_, f(y:;0) and so

= e

T.(0) = nZ:(6).

@ By further interchanges of integration/differentiation it typically holds that

7,(0) = —E [aa—; og f(Y;e)] €

f\/\/l/

@ The deeper meaning of all this will become clearer when we study likelihood.
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Is the Cramér-Rao bound tight (achievable) though?
vV

. A 1
if var[@]@zn(e)
4

cov? [9“, 9 Jog £(Y; 9)}
var [ 2 log f(Y;0)]

then  var[d] =

which occurs if and only |f 5 log f(Y;0) is a linear function of f (correlation 1):

0

96 log F(Y;0) = A(QU(Y + B(6)

Solving this differential equation vyields, for all y,

so that varg(f) attains the lower bound if and only if the density (frequency) of Y
is a one-parameter exponential family with sufficient statistic 0.
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So what ingredients go into pushing towards this lower bound?

The Rao-Blackwell Theorem tells us that sufficiency is key:

Theorem (Rao-Blackwell Theorem)

Let § be an unw 6 with finite variance, and let T be sufficient for
6. Then §* :=E[A|T] is also an unbiased estimator of 6 and

Var(é*)@ar(é).

— <

Equality is attained if and only if Pg[0* = 0] = 1.

e — )
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So what ingredients go into pushing towards this lower bound?

The Rao-Blackwell Theorem tells us that sufficiency is key:

Theorem (Rao-Blackwell Theorem)

Let § be an unbiafed estimator of 6 with finite variance, and let T be sufficient for
6. Then 0* :=E[0|T] is also an unbiased estimator of § and

—‘7—2-[97 2 var(é*)iar(é).

Equality is attained if and only if Pg[0* = 0] = 1.

Comments:
@ Throwing away irrelevant aspects of the data improves estimation quality.

@ These irrelevant aspects contribute to the variation of the estimator (as they
have sampling variation of their own), but without furnishing any useful
information on the parameter

o 0* =E[A|T] is called a “Rao-Blackwellised” version of 6.
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Proof.

Since T is sufficient for 0, E[d| T = t] = h(t) is independent of 6, so that §* is
well-defined as a statistic (depends only on Y and not #). Then,
Jde-aq Y property of covrett Hoved  exp-
E[0*] = E[E[A| T]] = E[d] = 6.

aAsSWptron -
F ' A |
urthermore, from the law of total varlar::g, we have & vy defn
A R ¢ <9 ~
var(f) = var[E(9] T)] + Elvar(4| T)] & jar[E(8| T)] = var(9*)
R o7 T
In addition, note that Jebn - f(&h-
A & A A A A
var(6] T) := E[(0 — E[0| T])*| T] = E[(6 — 0")*| T]
so that E[var(él T)] = E(f — 6*)2 > 0 unless if P(6* = 0) = 1. ]
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Suppose that § is an unbiased estimator of g(#) and T, S are 6-sufficient.

g A_—T— 2

o What is the relationship between var(E[6| T]) % var(E[0]S])
~—— ~——
0% 0;
@ Intuition suggests that whichever of T, S carries the least irrelevant

information (in addition to the relevant information) should “win”
< More formally, if T = h(S) then we should expect that 0% dominate 0%.

—
“ [
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Suppose that § is an unbiased estimator of g(#) and T, S are 6-sufficient.

?
o What is the relationship between var(E[6| T]) % var(E[0]S])
N—— N——
0% 0;
@ Intuition suggests that whichever of T, S carries the least irrelevant
information (in addition to the relevant information) should “win”

< More formally, if T = h(S) then we should expect that 0% dominate 0%.
Proposition

For 6 an unbiased estimator of § and T,S two O-sufficient statistics, define

* . =FE[A|T] & 6%:=E[d|S].

= —

Then, the following implication holds

@ — var(0%) < Var(HS)

@ Essentially this means that the best possible “Rao-Blackwellisation™ is
achieved by conditioning on a minimally sufficient statistic.
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Proof.

Recall the tower property of conditional expectation: if Y = f(X), then
J
E[Z]Y] = E{E(Z|X)[Y}.

= E[|T]
AL X ~
tower propery = E[E(9]5)[T]
poaiwal o= E[3IT]
au‘("-(;b
The conclusion now follows from the Rao-Blackwell theorem. D)
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Estimation Methods and Maximum Likelihood

2
2 [Ug-ou]
N
max (€ - 9)
@ So now we have a means to judge the quality of an estimator

@ In certain cases, we even know what's the best performance we can hope for.
@ And (minimal) sufficiency can help us approach it.

@ But how can we actually come up with an estimator in the first place?

<

@ We need general methods that can be applied in any model context to yield
an estimator.

@ Preferably methods that yield good estimators relative to our performance
—
measures/bounds.

— The main focus will be on a key method called maximum likelihood.
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Motivation: recall our understanding of statistics as “inverse probability” .

— For the moment, consider the discrete case for simplicity.

Probability Perspective

Given a parameter § € ©, then for any (y1,...,y,)' € V", we can evaluate

(Y1, -5 ¥n) — Po[Y1 = v1, .oy Yo = il

that is, how the probability varies as a function of the sample (=the result).

Statistics Perspective

Given a sample (y1,...,y,)" € V", then for any § € © we can calculate
il% Pg[yl = VY1, .er, Yn — yn]
that is, how the probability varies as a function of 8 (=the model).

Intuition: we imagine that, having our sample, the values of § that are most
plausible are those that render the observed sample most probable...
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Likelihood and Maximum Likelihood Estimators

This motivates the following definition...
Definition (Likelihood)

Let (Yi,...,Y,) be a sample of random variables with joint density/frequency

f(y1s..r, ¥ 0), where & € RP. The likelihood of 6 is defined as
d r

v J
L(0) = F(Yi, ..., Yn: 0).

If (Y1,...,Y,)' hasi.i.d. entries, each with density/frequency f(y;; #) then,

16) = [T F(vi:6)
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Likelihood and Maximum Likelihood Estimators

This motivates the following definition...

Definition (Likelihood)

Let (Yi,...,Y,) be a sample of random variables with joint density/frequency
f(y1,.--, ¥Yn; 0), where 6 € RP. The likelihood of 6 is defined as

um:f()m[)m.

If (Y1,...,Y,)' hasi.i.d. entries, each with density/frequency f(y;; #) then,

16) = [T #(v:0

.. and the following estimation method

Definition (Maximum Likelihood Estimator)

In the same context, a maximum likelihood estimator (MLE) of f is an estimator
such that

L(0) < L(H), VHe®o.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 21/35



N

6. , D2 - I/(%l) - LL62;)
Many comments are in order:

@ When there exists a unique maximum, we speak of the MLE § = arg maxL(0)

@ [ he likelihood i1s a random function.

@ It is the joint density/frequency of the sample, but viewed as a function of 6.

—e——

@ It is NOT “the probability of 8"

@ L(0) is the answer to the question how does the joint density/probability of
the sample vary as we vary 07

e In the discrete case it is exactly “the probability of observing our sample” as a
function of 6.

o In the continuous case, since F(y +&/2;0) — F(y —€/2;0) =~ ||e||f(y; 0) as
el 4 0, we can view ||¢|| x L(0) as being the “probability of observing
something in the neighbourhood of our sample”, as a function of 6.
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@ If a sufficient statistic T exists for 6 then Fisher-Neyman factorisation implies
_ : C
Tl 0¥ 1) g vy v (00

I.e. any MLE depends on data only through a sufficient statistic.

@ Since the sufficient statistic was arbitrary, if a minimally sufficient statistic
exists, the MLE will have used an estimator that has achieved the maximal
sufficient reduction of the data.

o MLE’s are also equivariant. If g : © — ©’ is a bijection, and if 6 is the MLE
of 6, then g(0) is the MLE of g(6) (you can take the hat out: g(8) = g(9))

@ When the likelihood is differentiable in 6, its maximum L(6) must solve the
. way
equation J s a I,CQ) -0
/\ \ Vo (9) =0, >

@ But before declaring a solution as an MLE, we must verify it to be a
maximum (and not a minimum!).
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@ If the likelihood is twice differentiable in 6, we can verify this by checking

(92.

2 (

N V6@9)|0:9A ~ O’ cace" L 9)

i.e that minus the Hessian is positive definite. In one dimension, this reduces
to the standard second derivative criterion. 9 @(9) i-QC@))

@ To solve VyL(6) = 0 when the Y; are independent, we must pamfully
calculate the derivative of an n-fold product. ——-—Q@fﬁﬁﬁ

@ To avoid this, we focus instead on the loglikelihood /() := log L(6) instead.
Maximisation of £ is equivalent to maximisation of L by monotonicity.

@ When the Y; are independent, ¢ has the advantage of being a sum rather
than a product

((6) — log (H fy,-(»f,-;e)) — 3 log (Yi6).

=1

AAN_—~ r~—

@ Of course, under twice differentiability, verification of a maximum can be
checked again by whether or not

Vi), =0 & - V20(0)|, ;-

-
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n

Let Yi,..., Y, < Bernoulli(p). The likelihood is (15

al
L(p)—Hf(Y,,p)—Hp (1 p)- Y:_fpz,ly(l p)™ St Y

giving loglikelihood

fropert o o5
‘L n n
((p) = logpz Y; + log(1 — p) (n — Z Y,-> .

This is twice differentiable in p and we calculate

d n n
i=1 - i=1

~——— —/
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olving we N

Py Yi—(1-p) (n—zv,-)‘io,

we get the unique root %Zle Y; = Y. Calling this p, we now verify that

2 n J/ n
L o)=Y V) (n—zn),
=1 =1

which is a negative expression, since 0 < > " . Y; < nandt p € (0,1). Thus

¢—\

_—

Lo 1
:YEEZ:

is the unique MLE of p.
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Let Yi,...,Ys S Exp(\). The likelihood is

_ . . e—AY_ n . : 4
L()\)_il;[lf(Y,,)\) H)\ ?{ A;Y,}

and the log likelihood is

((N) =nlogA—A> Y.
- i=1
— J

This is twice differentiable in A and we calculate /X

J
9y = @ZY =0
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Setting ¢/(A) = 0 we get a unique root

1 < C _
) =y
n <
=1
Call this )\, and note that :
d n
oW ==3

et

is always negative, since A > 0. Thus

—1
n 1 — _

is the unique MLE of A.

—
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