

Statistics for Data Science: Week 4

Myrto Limnios and Rajita Chandak

Institute of Mathematics – EPFL

rajita.chandak@epfl.ch, myrto.limnios@epfl.ch

- ① Model phenomenon by distribution $F(y_1, \dots, y_n; \theta)$ on \mathcal{Y}^n , some $n \geq 1$.
- ② Distributional form is known but $\theta \in \Theta$ is unknown.
- ③ Observe realisation of $(Y_1, \dots, Y_n)^\top \in \mathcal{Y}^n$ from this distribution.
- ④ Use the realisation $\{Y_1, \dots, Y_n\}$ in order to make assertions concerning the true value of θ , and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:

- ① **Point Estimation.** Given realisation $(Y_1, \dots, Y_n)^\top$ from $F(y_1, \dots, y_n; \theta)$, how can we produce an educated guess for the unknown true parameter θ ?

How? With a **point estimator**!

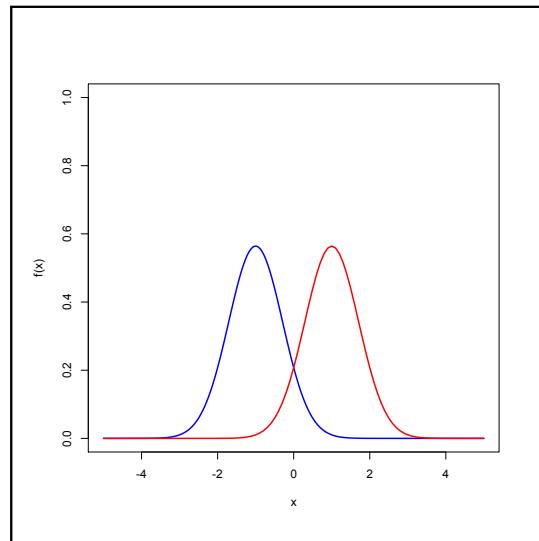
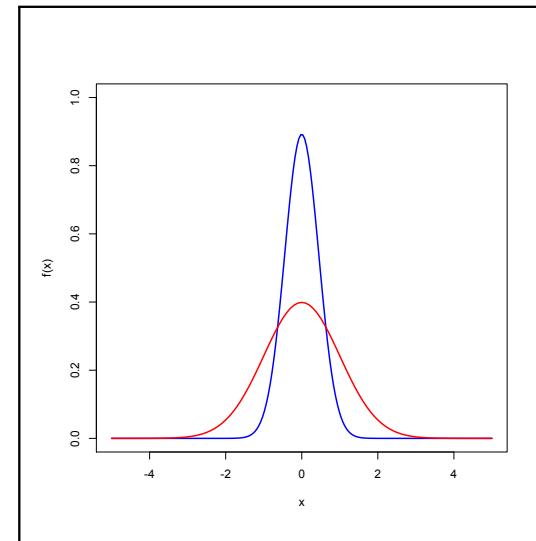
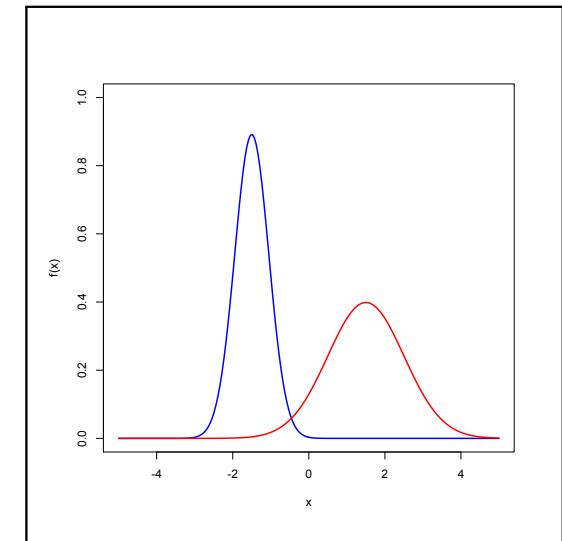
Definition (Point Estimator)

A statistic with codomain Θ is called a *point estimator*, i.e. a point estimator is a statistic $\underline{T} : \mathcal{Y}^n \rightarrow \Theta$.

Since the objective of an estimator is to estimate the θ that generated the data, we typically denote it by $\hat{\theta}(Y_1, \dots, Y_n)$, or just $\hat{\theta}$. Note that θ is a deterministic parameter, whereas $\hat{\theta}$ is a random variable.

But **which** estimator?

- Any statistic taking values in Θ could be used!
- Simpler yet, if we are given some $\hat{\theta}$, how do we judge its quality?
- Since estimators are *random variables*, every different realisation of the sample (Y_1, \dots, Y_n) will produce a different realised value for $\hat{\theta}$.
- A good estimator should be such that it typically manifests realisations that fall near the true θ .
- More precisely, the sampling distribution of an estimator should be concentrated around the true parameter value θ .



Definition (Mean Squared Error)

Let $\hat{\theta}$ be an estimator of a parameter θ corresponding to a model $\{F_\theta : \theta \in \Theta\}$, $\Theta \subseteq \mathbb{R}^d$. The mean squared error of $\hat{\theta}$ is defined as

$$\text{MSE}(\hat{\theta}, \theta) = \mathbb{E} \left[\left\| \hat{\theta} - \theta \right\|^2 \right].$$

↓ estimate
 ↑ true parameter

And here's the relation to means and variances:

Lemma (Bias-Variance Decomposition)

The MSE admits the decomposition

$$\mathbb{E}[\|X - \mathbb{E}[X]\|^2]$$

$$\text{MSE}(\hat{\theta}, \theta) = \underbrace{\left\| \mathbb{E}[\hat{\theta}] - \theta \right\|^2}_{\text{bias}^2} + \underbrace{\mathbb{E} \left[\left\| \hat{\theta} - \mathbb{E}(\hat{\theta}) \right\|^2 \right]}_{\text{variance}}.$$

low bias, low variance

low bias, high variance

high bias, low variance

$$\|a+b\|^2 = \|a\|^2 + \|b\|^2 + 2a^T b$$

$$a = \hat{\theta} - \mathbb{E}[\hat{\theta}] , \quad b = \mathbb{E}[\hat{\theta}] - \theta$$

Proof.

We expand the MSE after adding and subtracting $\mathbb{E}[\hat{\theta}]$:

$$\begin{aligned}
 \mathbb{E}[\|\hat{\theta} - \theta\|^2] &= \mathbb{E}[\|\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta\|^2] \\
 &= \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta)^\top (\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta)] \\
 &= \|\mathbb{E}[\hat{\theta}] - \theta\|^2 + \mathbb{E}[\|\hat{\theta} - \mathbb{E}[\hat{\theta}]\|^2] + 2\mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^\top (\mathbb{E}[\hat{\theta}] - \theta)] \\
 &= \|\mathbb{E}[\hat{\theta}] - \theta\|^2 + \mathbb{E}[\|\hat{\theta} - \mathbb{E}[\hat{\theta}]\|^2] + 2\underbrace{(\mathbb{E}[\hat{\theta}] - \mathbb{E}[\hat{\theta}])^\top}_{=0} (\mathbb{E}[\hat{\theta}] - \theta)
 \end{aligned}$$

non random

bias² var

by linearity of the expectation and since $(\mathbb{E}[\hat{\theta}] - \theta)$ is deterministic.

□

As foretold, the concentration of an estimator $\hat{\theta}$ around the true parameter θ can always be bounded by the MSE:

Lemma

Let $\hat{\theta}$ be an estimator of $\theta \in \mathbb{R}^p$. For any $\epsilon > 0$,

$$\mathbb{P}[\|\hat{\theta} - \theta\| > \epsilon] \leq \frac{\text{MSE}(\hat{\theta}, \theta)}{\epsilon^2} \xrightarrow{\text{Markov's inequality}} 0$$

- Note that $\text{MSE}(\hat{\theta}_n, \theta) \xrightarrow{n \rightarrow \infty} 0 \implies \hat{\theta}_n \xrightarrow{P} \theta$.
- When an estimator has this property, we call it **consistent**.

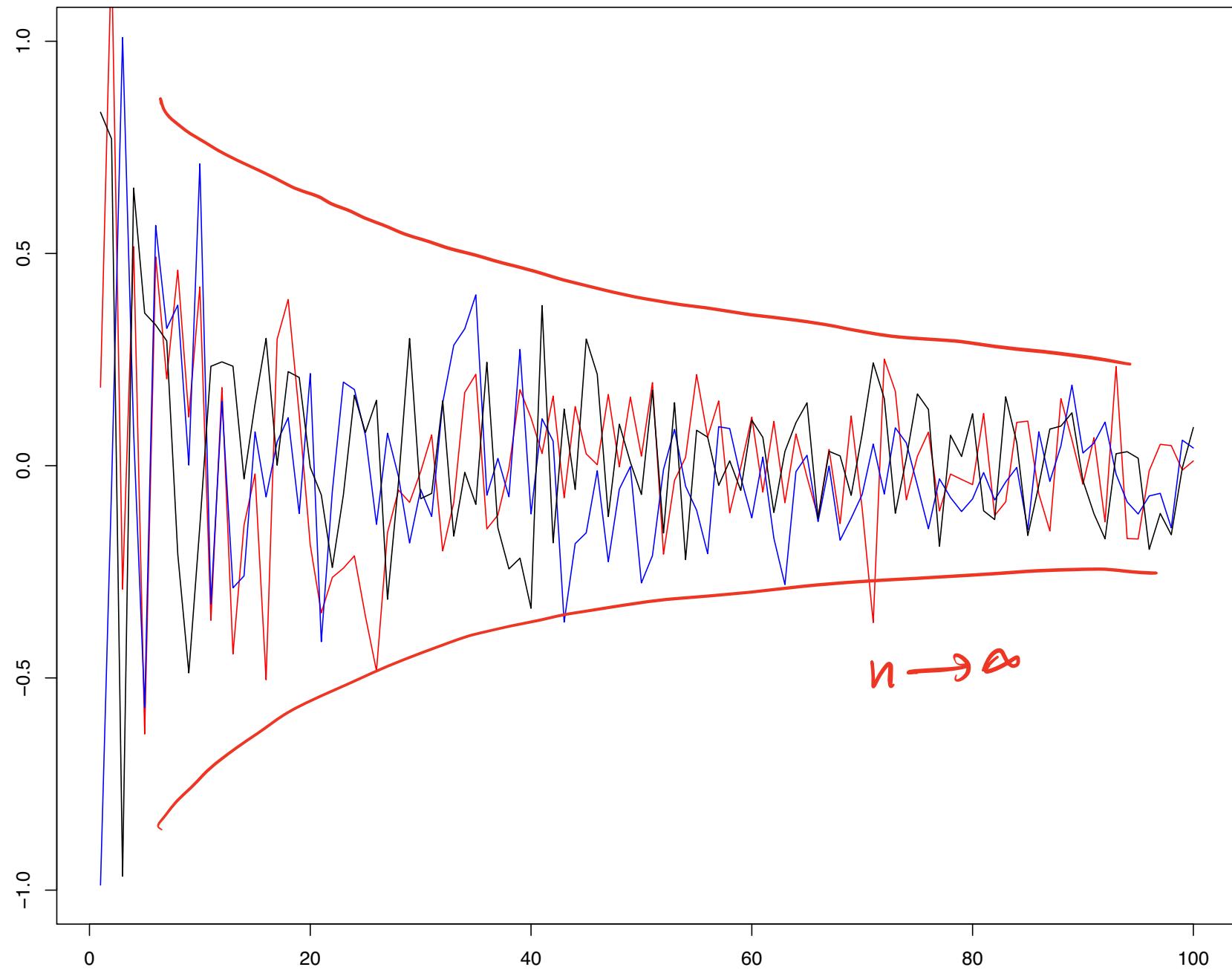
Definition (Consistency)

An estimator $\hat{\theta}_n$ of θ , constructed on the basis of a sample of size n , is consistent if $\hat{\theta}_n \xrightarrow{P} \theta$ as $n \rightarrow \infty$.

Note that a vanishing MSE implies consistency, but the converse generally fails.

Consistency of sample mean of sample mean of $Y_1, \dots, Y_n \sim \mathcal{N}(0, 1)$, towards the true parameter value 0 (by law of large numbers).

$$\frac{1}{n} \sum Y_i = \hat{\theta} \xrightarrow{?} 0 = \theta$$



Is it always possible to get consistent estimators?

Depends on whether the estimation problem is well-posed

Definition (Identifiability)

A probability model $\{F_\theta\}_{\theta \in \Theta}$ is called identifiable if for any pair $\theta_1, \theta_2 \in \Theta$ we have the implication

$$\hat{\theta} \rightarrow \theta \neq \theta_2, \quad \theta_1 \neq \theta_2 \implies F_{\theta_1} \neq F_{\theta_2}.$$

- Lack of identifiability means that the same model can be produced by more than one parameter.
- In this case we could never distinguish amongst the parameters that give the same model.
- Example: if we have $N(\mu_1 + \mu_2, \sigma^2)$, we can never identify each μ_i , but only their sum.
- Henceforth we will tacitly assume identifiability (and make special mention if it is at stake).

Fundamental limitations to estimation accuracy

- We can use the MSE to compare estimators or to gauge their performance.
- But is there a *best possible MSE* for a given problem?
- This is a very difficult problem, equivalent to finding a **uniformly optimal estimator**: a statistic T_* such that

$$\text{MSE}(T_*, \theta) \leq \text{MSE}(T, \theta)$$

$$S = \frac{1}{n} \sum Y_i$$

for all $\theta \in \Theta$ and all other estimators T .

- To see this, let $T = c$ be a trivial (constant) estimator and observe that for any non-trivial estimator S we have $\text{MSE}(S, \theta) > \text{MSE}(T, \theta)$ at $\theta = c$.
- So if we want to do well for all θ we can't do perfectly for any specific θ .
- Here's a simpler question to ask instead (ruling out trivial estimators):

$$\mathbb{E}[\hat{\theta}] = \theta$$

Among unbiased estimators (bias zero), can we make the MSE arbitrarily small?

- If so, **how?** (what is the crucial ingredient at play?)

- Rephrasing, we are asking whether there is fundamental lower bound for the variance of an unbiased estimator of θ .
- We will concentrate on **1-dimensional parameters** for simplicity.

The Question

For $\mathbf{Y} = (Y_1, \dots, Y_n)^\top$ with joint density/frequency $f(\mathbf{y}; \theta)$ depending on an unknown $\theta \in \mathbb{R}$, does there exist some function $\Lambda(\theta) > 0$ such that

$$\text{var}[\hat{\theta}] \stackrel{?}{\geq} \Lambda(\theta), \quad \forall \theta$$

for any estimator $\hat{\theta}$ such that $\mathbb{E}[\hat{\theta}] = \theta$?

- At a next step we can ask if this bound is achievable.

Let's assume we can interchange differentiation and integration in the form

Leibniz Rule

$$\frac{d}{d\theta} \int S(\mathbf{y}) f(\mathbf{y}; \theta) d\mathbf{y} \stackrel{!}{=} \int S(\mathbf{y}) \frac{f(\mathbf{y}; \theta)}{f(\mathbf{y}; \theta)} \frac{d}{d\theta} f(\mathbf{y}; \theta) d\mathbf{y} = \int S(\mathbf{y}) f(\mathbf{y}; \theta) \frac{d}{d\theta} \log f(\mathbf{y}; \theta) d\mathbf{y}$$

whenever an integral such as the one on the left hand side presents itself.

① Setting $U = \frac{\partial}{\partial \theta} \log f(\mathbf{Y}; \theta)$ and $S(\mathbf{y}) = 1$, this gives that

$$\mathbb{E}[U] = \int f(\mathbf{y}; \theta) \frac{\partial}{\partial \theta} \log f(\mathbf{y}; \theta) d\mathbf{y} = \frac{d}{d\theta} \int f(\mathbf{y}; \theta) d\mathbf{y} \stackrel{!}{=} 0$$

② Therefore $\text{var}[U] = \mathbb{E}[U^2] = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log f(\mathbf{Y}; \theta)\right)^2\right]$

$$\hat{\theta} \Rightarrow \mathbb{E}[\hat{\theta}] = \theta$$

③ For $\hat{\theta}$ unbiased, our "interchange ansatz" with $S(\mathbf{y}) = \hat{\theta}(\mathbf{y})$ gives

$$\text{cov}(\hat{\theta}, U) = \mathbb{E}[\hat{\theta} U] - \mathbb{E}[\hat{\theta}] \mathbb{E}[U] = \int \hat{\theta}(\mathbf{y}) f(\mathbf{y}; \theta) \frac{d}{d\theta} \log f(\mathbf{y}; \theta) d\mathbf{y} = \frac{d}{d\theta} \mathbb{E}[\hat{\theta}] \stackrel{!}{=} 1$$

Now the Cauchy-Schwartz inequality gives

$$\text{var}(\hat{\theta}) \geq \frac{\text{cov}^2(\hat{\theta}, U)}{\text{var}(U)} \Rightarrow \text{var}(\hat{\theta}) \geq \frac{1}{\mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log f(\mathbf{Y}; \theta)\right)^2\right]} = \Lambda(\theta)$$

$$\frac{\partial}{\partial \theta} \int f(y; \theta) = \int \frac{\partial}{\partial \theta} f(y; \theta) = \int \frac{f(y; \theta)}{f(y; \theta)} \frac{\partial}{\partial \theta} f(y; \theta)$$

$$\begin{aligned} \frac{\partial}{\partial \theta} \log f(y; \theta) &= \frac{1}{f(y; \theta)} \cdot \frac{\partial}{\partial \theta} f(y; \theta) \\ &= \int f(y) \frac{\partial}{\partial \theta} \log(f(y; \theta)) \end{aligned}$$

In summary, we have established:

Cramér-Rao Lower Bound

Given sufficient regularity, any unbiased estimator $\hat{\theta}(\mathbf{Y})$ of finite variance satisfies:

$$\text{var}[\hat{\theta}(\mathbf{Y})] \geq \frac{1}{\mathbb{E} \left[\left(\frac{\partial}{\partial \theta} \log f(\mathbf{Y}; \theta) \right)^2 \right]} = \frac{1}{\mathcal{I}_n(\theta)}$$

The quantity $\mathcal{I}_n(\theta)$ is fundamental, and called **Fisher information**.

In summary, we have established:

Cramér-Rao Lower Bound

Given sufficient regularity, any unbiased estimator $\hat{\theta}(\mathbf{Y})$ of finite variance satisfies:

$$\text{var}[\hat{\theta}(\mathbf{Y})] \geq \frac{1}{\mathbb{E} \left[\left(\frac{\partial}{\partial \theta} \log f(\mathbf{Y}; \theta) \right)^2 \right]} = \frac{1}{\mathcal{I}_n(\theta)}$$

The quantity $\mathcal{I}_n(\theta)$ is fundamental, and called **Fisher information**.

- If $\mathbf{Y} = (Y_1, \dots, Y_n)^\top$ has iid entries, we have $f(\mathbf{y}; \theta) = \prod_{i=1}^n f(y_i; \theta)$ and so

$$\mathcal{I}_n(\theta) = \underline{n \mathcal{I}_1(\theta)}.$$

- By further interchanges of integration/differentiation it typically holds that

$$\mathcal{I}_n(\theta) = -\mathbb{E} \left[\frac{\partial^2}{\partial \theta^2} \log f(\mathbf{Y}; \theta) \right] \circledcirc$$

- The deeper meaning of all this will become clearer when we study **likelihood**.

Is the Cramér-Rao bound **tight (achievable)** though?

if $\text{var}[\hat{\theta}] \bigcirc \frac{1}{\mathcal{I}_n(\theta)}$ *if*

then $\text{var}[\hat{\theta}] = \frac{\text{cov}^2 \left[\hat{\theta}, \frac{\partial}{\partial \theta} \log f(\mathbf{Y}; \theta) \right]}{\text{var} \left[\frac{\partial}{\partial \theta} \log f(\mathbf{Y}; \theta) \right]}$

which occurs if and only if $\frac{\partial}{\partial \theta} \log f(\mathbf{Y}; \theta)$ is a linear function of $\hat{\theta}$ (correlation 1):

$$\underbrace{\frac{\partial}{\partial \theta} \log f(\mathbf{Y}; \theta)}_{A(\theta) \hat{\theta}(\mathbf{Y}) + B(\theta)}$$

Solving this differential equation yields, for all \mathbf{y} ,

$$\log f(\mathbf{y}; \theta) = \underbrace{A^*(\hat{\theta}) + B^*(\theta) + S(\mathbf{y})}_{}$$

so that $\text{var}_{\theta}(\hat{\theta})$ attains the lower bound if and only if the density (frequency) of \mathbf{Y} is a one-parameter exponential family with sufficient statistic $\hat{\theta}$.

So what ingredients go into pushing towards this lower bound?

The Rao-Blackwell Theorem tells us that sufficiency is key:

Theorem (Rao-Blackwell Theorem)

Let $\hat{\theta}$ be an unbiased estimator of θ with finite variance, and let T be sufficient for θ . Then $\hat{\theta}^* := \mathbb{E}[\hat{\theta} | T]$ is also an unbiased estimator of θ and

$$\text{var}(\hat{\theta}^*) \leq \text{var}(\hat{\theta}).$$

Equality is attained if and only if $\mathbb{P}_{\theta}[\hat{\theta}^* = \hat{\theta}] = 1$.

So what ingredients go into pushing towards this lower bound?

The Rao-Blackwell Theorem tells us that sufficiency is key:

Theorem (Rao-Blackwell Theorem)

Let $\hat{\theta}$ be an unbiased estimator of θ with finite variance, and let T be sufficient for θ . Then $\hat{\theta}^* := \mathbb{E}[\hat{\theta} | T]$ is also an unbiased estimator of θ and

$$\frac{1}{I(\theta)} \stackrel{?}{\leq} \text{var}(\hat{\theta}^*) \leq \text{var}(\hat{\theta}).$$

Equality is attained if and only if $\mathbb{P}_\theta[\hat{\theta}^* = \hat{\theta}] = 1$.

Comments:

- Throwing away irrelevant aspects of the data improves estimation quality.
- These irrelevant aspects contribute to the variation of the estimator (as they have sampling variation of their own), but without furnishing any useful information on the parameter
- $\hat{\theta}^* = \mathbb{E}[\hat{\theta} | T]$ is called a “Rao-Blackwellised” version of $\hat{\theta}$.

Proof.

Since T is sufficient for θ , $\mathbb{E}[\hat{\theta}|T = t] = h(t)$ is independent of θ , so that $\hat{\theta}^*$ is well-defined as a statistic (depends only on Y and not θ). Then,

$$\mathbb{E}[\hat{\theta}^*] = \mathbb{E}[\mathbb{E}[\hat{\theta}|T]] \stackrel{\substack{\text{defn} \\ \text{property of conditional exp.}}}{=} \mathbb{E}[\hat{\theta}] = \theta. \quad \begin{matrix} \uparrow \text{by assumption.} \\ \hat{\theta}^* \text{ by defn.} \end{matrix}$$

Furthermore, from the law of total variance, we have

$$\text{var}(\hat{\theta}) = \text{var}[\mathbb{E}(\hat{\theta}|T)] + \mathbb{E}[\text{var}(\hat{\theta}|T)] \stackrel{\substack{\text{defn.} \\ > 0 \\ = 0?}}{\geq} \text{var}[\mathbb{E}(\hat{\theta}|T)] = \text{var}(\hat{\theta}^*)$$

In addition, note that

$$\text{var}(\hat{\theta}|T) := \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}|T])^2 | T] \stackrel{\text{defn.}}{=} \mathbb{E}[(\hat{\theta} - \hat{\theta}^*)^2 | T]$$

so that $\mathbb{E}[\text{var}(\hat{\theta}|T)] = \mathbb{E}(\hat{\theta} - \hat{\theta}^*)^2 > 0$ unless if $\mathbb{P}(\hat{\theta}^* = \hat{\theta}) = 1$. □

Suppose that $\hat{\theta}$ is an unbiased estimator of $g(\theta)$ and T, S are θ -sufficient.

- What is the relationship between $\text{var}(\underbrace{\mathbb{E}[\hat{\theta}|T]}_{\hat{\theta}_T^*}) \stackrel{?}{\leqslant} \text{var}(\underbrace{\mathbb{E}[\hat{\theta}|S]}_{\hat{\theta}_S^*})$
- Intuition suggests that whichever of T, S carries the least irrelevant information (in addition to the relevant information) should “win”
 - More formally, if $T = h(S)$ then we should expect that $\hat{\theta}_T^*$ dominate $\hat{\theta}_S^*$.

Suppose that $\hat{\theta}$ is an unbiased estimator of $g(\theta)$ and T, S are θ -sufficient.

- What is the relationship between $\text{var}(\underbrace{\mathbb{E}[\hat{\theta}|T]}_{\hat{\theta}_T^*}) \stackrel{?}{\leqslant} \text{var}(\underbrace{\mathbb{E}[\hat{\theta}|S]}_{\hat{\theta}_S^*})$
- Intuition suggests that whichever of T, S carries the least irrelevant information (in addition to the relevant information) should “win”
 - ↪ More formally, if $T = h(S)$ then we should expect that $\hat{\theta}_T^*$ dominate $\hat{\theta}_S^*$.

Proposition

For $\hat{\theta}$ an unbiased estimator of θ and T, S two θ -sufficient statistics, define

$$\underbrace{\hat{\theta}_T^*}_{\text{red}} := \mathbb{E}[\hat{\theta}|T] \quad \& \quad \underbrace{\hat{\theta}_S^*}_{\text{red}} := \mathbb{E}[\hat{\theta}|S].$$

Then, the following implication holds

$$\text{red} \quad T = h(S) \implies \text{var}(\hat{\theta}_T^*) \leq \text{var}(\hat{\theta}_S^*)$$

- Essentially this means that the best possible “Rao-Blackwellisation” is achieved by conditioning on a minimally sufficient statistic.

Proof.

Recall the *tower property* of conditional expectation: if $Y = f(X)$, then

$$\mathbb{E}[Z|Y] = \mathbb{E}\{\mathbb{E}(Z|X)|Y\}.$$

Since $T = f(S)$ we have

T

$$\begin{aligned}\hat{\theta}_T^* &\stackrel{\text{defn.}}{=} \mathbb{E}[\hat{\theta}|T] \\ \text{tower property} &\stackrel{\text{defn.}}{=} \mathbb{E}[\mathbb{E}(\hat{\theta}|S)|T] \\ \text{minimal suff.} &\rightarrow = \mathbb{E}[\hat{\theta}_S^*|T]\end{aligned}$$

The conclusion now follows from the Rao-Blackwell theorem. □

$$\mathbb{E} [(\hat{\theta} - \theta)^2]$$
$$\max (\hat{\theta} - \theta)$$

- So now we have a means to judge the quality of an estimator
- In certain cases, we even know what's the best performance we can hope for.
- And (minimal) **sufficiency** can help us approach it.
- But how can we actually come up with an estimator in the first place?
- We need **general** methods that can be applied in any model context to yield an estimator.
- Preferably methods that yield **good** estimators relative to our performance measures/bounds.

→ The main focus will be on a key method called **maximum likelihood**.

Motivation: recall our understanding of statistics as “inverse probability”.

→ For the moment, consider the discrete case for simplicity.

Probability Perspective

Given a parameter $\theta \in \Theta$, then for any $(y_1, \dots, y_n)^\top \in \mathcal{Y}^n$, we can evaluate

$$\underline{(y_1, \dots, y_n)} \mapsto \mathbb{P}_\theta[Y_1 = y_1, \dots, Y_n = y_n]$$

that is, how the probability varies as a function of the sample (=the result).

Statistics Perspective

Given a sample $(y_1, \dots, y_n)^\top \in \mathcal{Y}^n$, then for any $\theta \in \Theta$ we can calculate

$$\underline{\theta} \mapsto \mathbb{P}_\theta[Y_1 = y_1, \dots, Y_n = y_n]$$

that is, how the probability varies as a function of θ (=the model).

Intuition: we imagine that, having our sample, the values of θ that are most plausible are those that render the observed sample most probable...

This motivates the following definition...

Definition (Likelihood)

Let (Y_1, \dots, Y_n) be a sample of random variables with joint density/frequency $f(y_1, \dots, y_n; \theta)$, where $\theta \in \mathbb{R}^p$. The likelihood of θ is defined as

$$L(\theta) = f(Y_1, \dots, Y_n; \theta).$$

If $(Y_1, \dots, Y_n)^\top$ has i.i.d. entries, each with density/frequency $f(y_i; \theta)$ then,

$$L(\theta) = \prod_{i=1}^n f(Y_i; \theta)$$

This motivates the following definition...

Definition (Likelihood)

Let (Y_1, \dots, Y_n) be a sample of random variables with joint density/frequency $f(y_1, \dots, y_n; \theta)$, where $\theta \in \mathbb{R}^p$. The likelihood of θ is defined as

$$L(\theta) = f(\hat{Y}_1, \dots, \hat{Y}_n; \theta).$$

If $(Y_1, \dots, Y_n)^\top$ has i.i.d. entries, each with density/frequency $f(y_i; \theta)$ then,

$$L(\theta) = \prod_{i=1}^n f(\hat{Y}_i; \theta)$$

... and the following estimation method

Definition (Maximum Likelihood Estimator)

In the same context, a maximum likelihood estimator (MLE) of $\hat{\theta}$ is an estimator such that

$$L(\theta) \leq L(\hat{\theta}), \quad \forall \theta \in \Theta.$$

$$\hat{\theta}_1, \hat{\theta}_2 : L(\hat{\theta}_1) = L(\hat{\theta}_2)$$

Many comments are in order:

- When there exists a unique maximum, we speak of the MLE $\hat{\theta} = \arg \max_{\theta \in \Theta} L(\theta)$
- The likelihood is a random function.
- It is the joint density/frequency of the sample, but viewed as a function of θ .
- It is NOT “the probability of θ ”
- $L(\theta)$ is the answer to the question *how does the joint density/probability of the sample vary as we vary θ ?*
 - In the discrete case it is exactly “the probability of observing our sample” as a function of θ .
 - In the continuous case, since $F(\mathbf{y} + \epsilon/2; \theta) - F(\mathbf{y} - \epsilon/2; \theta) \approx \|\epsilon\| f(\mathbf{y}; \theta)$ as $\|\epsilon\| \downarrow 0$, we can view $\|\epsilon\| \times L(\theta)$ as being the “probability of observing something in the neighbourhood of our sample”, as a function of θ .

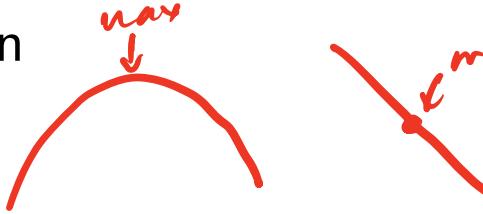
- If a sufficient statistic T exists for θ then Fisher-Neyman factorisation implies

$$\text{If } f = \prod g(T; \theta) h(\mathbf{y})$$

$$L(\theta) = \underbrace{g(T(\mathbf{Y}); \theta) h(\mathbf{Y})}_{\text{circled}} \propto g(T(\mathbf{Y}); \theta)$$

i.e. any MLE depends on data only through a sufficient statistic.

- Since the sufficient statistic was arbitrary, if a minimally sufficient statistic exists, the MLE will have used an estimator that has achieved the maximal sufficient reduction of the data.
- MLE's are also *equivariant*. If $g : \Theta \rightarrow \Theta'$ is a bijection, and if $\hat{\theta}$ is the MLE of θ , then $g(\hat{\theta})$ is the MLE of $g(\theta)$ (you can take the hat out: $g(\hat{\theta}) = \widehat{g(\theta)}$)
- When the likelihood is differentiable in θ , its maximum $L(\theta)$ must solve the equation



$$\nabla_{\theta} L(\theta) = 0,$$

$$\frac{\partial}{\partial \theta} L(\theta) = 0$$

- But before declaring a solution as an MLE, we must verify it to be a maximum (and not a minimum!).

- If the likelihood is twice differentiable in θ , we can verify this by checking

$$-\nabla_{\theta}^2 L(\theta) \Big|_{\theta=\hat{\theta}} \succ 0, \quad \frac{\partial^2}{\partial \theta^2} L(\theta)$$

i.e that minus the Hessian is positive definite. In one dimension, this reduces to the standard second derivative criterion.

- To solve $\nabla_{\theta} L(\theta) = 0$ when the Y_i are independent, we must painfully calculate the derivative of an n -fold product.
- To avoid this, we focus instead on the loglikelihood $\ell(\theta) := \log L(\theta)$ instead. Maximisation of ℓ is equivalent to maximisation of L by monotonicity.
- When the Y_i are independent, ℓ has the advantage of being a sum rather than a product

$$\ell(\theta) = \log \left(\prod_{i=1}^n f_{Y_i}(Y_i; \theta) \right) = \sum_{i=1}^n \log f_{Y_i}(Y_i; \theta).$$

- Of course, under twice differentiability, verification of a maximum can be checked again by whether or not

$$\nabla_{\theta} \ell(\theta) \Big|_{\theta=\hat{\theta}} = 0 \quad \& \quad -\nabla_{\theta}^2 \ell(\theta) \Big|_{\theta=\hat{\theta}} \succ 0.$$

Example (MLE for Bernoulli trials)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \text{Bernoulli}(p)$. The likelihood is

$$L(p) = \prod_{i=1}^n f(Y_i; p) = \prod_{i=1}^n p^{Y_i} (1-p)^{1-Y_i} = p^{\sum_{i=1}^n Y_i} (1-p)^{n-\sum_{i=1}^n Y_i}$$

density of $\text{Ber}(p)$

algebra.

giving loglikelihood

$$\ell(p) = \log p \sum_{i=1}^n Y_i + \log(1-p) \left(n - \sum_{i=1}^n Y_i \right).$$

property of log

This is twice differentiable in p and we calculate

$$\frac{d}{dp} \ell(p) = p^{-1} \sum_{i=1}^n Y_i - (1-p)^{-1} \left(n - \sum_{i=1}^n Y_i \right) = 0$$

Example (MLE for Bernoulli trials, continued)

Solving

$$p^{-1} \sum_{i=1}^n Y_i - (1-p)^{-1} \left(n - \sum_{i=1}^n Y_i \right) = 0,$$

$$\hat{P}_{MLE} = \frac{1}{n} \sum Y_i$$

we get the unique root $\frac{1}{n} \sum_{i=1}^n Y_i = \bar{Y}$. Calling this \hat{p} , we now verify that

$$\frac{d^2}{dp^2} \ell(p) = -p^2 \sum_{i=1}^n Y_i - (1-p)^{-2} \left(n - \sum_{i=1}^n Y_i \right),$$

which is a negative expression, since $0 \leq \sum_{i=1}^n Y_i \leq n$ and $p \in (0, 1)$. Thus

$$\hat{p} = \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$$

is the unique MLE of p .

□

Example (MLE for exponential distribution)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \text{Exp}(\lambda)$. The likelihood is

$$L(\lambda) = \prod_{i=1}^n f(Y_i; \lambda) = \prod_{i=1}^n \lambda e^{-\lambda Y_i} = \lambda^n \exp \left\{ -\lambda \sum_{i=1}^n Y_i \right\}.$$

and the log likelihood is

$$\ell(\lambda) = \underbrace{n \log \lambda - \lambda \sum_{i=1}^n Y_i}_{\text{log likelihood}}.$$

This is twice differentiable in λ and we calculate

$$\frac{d}{d\lambda} \ell(\lambda) = n \lambda^{-1} - \sum_{i=1}^n Y_i. \quad \stackrel{\lambda}{\uparrow} \quad \stackrel{\lambda}{\downarrow} \quad = 0$$

Example (MLE for exponential distribution, continued)

Setting $\ell'(\lambda) = 0$ we get a unique root

$$\left(\frac{1}{n} \sum_{i=1}^n Y_i \right)^{-1} = 1/\bar{Y}.$$

Call this $\hat{\lambda}$, and note that

$$\frac{d^2}{d\lambda^2} \ell(\lambda) = -\frac{n}{\lambda^2}$$

is always negative, since $\lambda > 0$. Thus

$$\hat{\lambda} = \left(\frac{1}{n} \sum_{i=1}^n Y_i \right)^{-1} = 1/\bar{Y}$$

is the unique MLE of λ .

□