

Statistics for Data Science: Week 3

Myrto Limnios and Rajita Chandak

Institute of Mathematics – EPFL

rajita.chandak@epfl.ch, myrto.limnios@epfl.ch

To understand the information carried by statistics on θ , we need to understand how they partition the sample space \mathcal{Y}^n .

- $\mathbf{Y} = (Y_1, \dots, Y_n) \stackrel{iid}{\sim} F_\theta$ and $T(\mathbf{Y})$ a statistic.
- The *level sets* or *contours* of T are the sets

$$A_t = \{ \mathbf{y} \in \mathcal{Y}^n : T(\mathbf{y}) = t \}.$$

$$T(y) = 2y_i = t_i$$

(all potential samples that could have given us the value t for T)

→ Clearly, T is constant when restricted to a level set.

To understand the information carried by statistics on θ , we need to understand how they partition the sample space \mathcal{Y}^n .

- $\mathbf{Y} = (Y_1, \dots, Y_n) \stackrel{iid}{\sim} F_\theta$ and $T(\mathbf{Y})$ a statistic.
- The *level sets* or *contours* of T are the sets

$$A_t = \{\mathbf{y} \in \mathcal{Y}^n : T(\mathbf{y}) = t\}.$$

(all potential samples that could have given us the value t for T)

→ Clearly, T is constant when restricted to a level set.

- Any realization of \mathbf{Y} that falls in a given level set is equivalent as far as T is concerned, as T reduces all these values to the same output.
- Any inference drawn through T will be the same within a given level set.
- So let's look at the distribution of \mathbf{Y} conditional on a given level set A_t of T , $F_{\mathbf{Y}|T=t}(\mathbf{y})\dots$

- Suppose $F_{Y|T=t}$ changes depending on θ : we are losing information.
- Suppose $F_{Y|T=t}$ is functionally independent of θ
 - ⇒ Then Y contains no information about θ on the set A_t
 - ⇒ In other words, Y is ancillary for θ on A_t

- Suppose $F_{Y|T=t}$ changes depending on θ : we are losing information.
- Suppose $F_{Y|T=t}$ is functionally independent of θ
 - ➡ Then Y contains no information about θ on the set A_t
 - ➡ In other words, Y is ancillary for θ on A_t
- If this is true for each $t \in \text{Range}(T)$ then $T(Y)$ contains the same information about θ as Y itself does.
 - ↪ It does not matter whether we observe $Y = (Y_1, \dots, Y_n)$ or just $T(Y)$.
 - ↪ Knowing the exact value Y in addition to knowing $T(Y)$ does not give us any additional information - Y is irrelevant if we already know $T(Y)$.

- Suppose $F_{\mathbf{Y}|T=t}$ changes depending on θ : we are losing information.
- Suppose $F_{\mathbf{Y}|T=t}$ is functionally independent of θ
 - ➡ Then \mathbf{Y} contains no information about θ on the set A_t
 - ➡ In other words, \mathbf{Y} is ancillary for θ on A_t
- If this is true for each $t \in \text{Range}(T)$ then $T(\mathbf{Y})$ contains the same information about θ as \mathbf{Y} itself does.
 - ↪ It does not matter whether we observe $\mathbf{Y} = (Y_1, \dots, Y_n)$ or just $T(\mathbf{Y})$.
 - ↪ Knowing the exact value \mathbf{Y} in addition to knowing $T(\mathbf{Y})$ does not give us any additional information - \mathbf{Y} is irrelevant if we already know $T(\mathbf{Y})$.

Definition (Sufficient Statistic)

A statistic $T = T(\mathbf{Y})$ is said to be sufficient for the parameter θ if the conditional probability distribution of the sample given the statistic

$$F_{\mathbf{Y}|T(\mathbf{Y})=t}(y_1, \dots, Y_n) = \mathbb{P}[Y_1 \leq y_1, \dots, Y_n \leq y_n | T(Y_1, \dots, Y_n) = t]$$

does *not* depend on θ .

Example (Coin Tossing) $\downarrow \text{IP(H)}$

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \text{Bernoulli}(\theta)$, and $T(\mathbf{Y}) = \sum_{i=1}^n Y_i$. For $\mathbf{y} \in \{0, 1\}^n$,

$$\begin{aligned}
 \mathbb{P}[\mathbf{Y} = \mathbf{y} | T = t] &\stackrel{\text{Bayes Rule}}{=} \frac{\mathbb{P}[\mathbf{Y} = \mathbf{y}, T = t]}{\mathbb{P}[T = t]} = \frac{\mathbb{P}[\mathbf{Y} = \mathbf{y}]}{\mathbb{P}[T = t]} \mathbf{1}\{\sum_{i=1}^n y_i = t\} \\
 &= \frac{\theta^{\sum_{i=1}^n y_i} (1 - \theta)^{n - \sum_{i=1}^n y_i}}{\binom{n}{t} \theta^t (1 - \theta)^{n-t}} \mathbf{1}\{\sum_{i=1}^n y_i = t\} \\
 &= \frac{\theta^t (1 - \theta)^{n-t}}{\binom{n}{t} \theta^t (1 - \theta)^{n-t}} \mathbf{1}\{\sum_{i=1}^n y_i = t\} \\
 &= \binom{n}{t}^{-1} \mathbf{1}\{\sum_{i=1}^n y_i = t\}.
 \end{aligned}$$

Example (Coin Tossing)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \text{Bernoulli}(\theta)$, and $T(\mathbf{Y}) = \sum_{i=1}^n Y_i$. For $\mathbf{y} \in \{0, 1\}^n$,

$$\begin{aligned}\mathbb{P}[\mathbf{Y} = \mathbf{y} | T = t] &= \frac{\mathbb{P}[\mathbf{Y} = \mathbf{y}, T = t]}{\mathbb{P}[T = t]} = \frac{\mathbb{P}[\mathbf{Y} = \mathbf{y}]}{\mathbb{P}[T = t]} \mathbf{1}\{\sum_{i=1}^n y_i = t\} \\ &= \frac{\theta^{\sum_{i=1}^n y_i} (1 - \theta)^{n - \sum_{i=1}^n y_i}}{\binom{n}{t} \theta^t (1 - \theta)^{n-t}} \mathbf{1}\{\sum_{i=1}^n y_i = t\} \\ &= \frac{\theta^t (1 - \theta)^{n-t}}{\binom{n}{t} \theta^t (1 - \theta)^{n-t}} \mathbf{1}\{\sum_{i=1}^n y_i = t\} \\ &= \binom{n}{t}^{-1} \mathbf{1}\{\sum_{i=1}^n y_i = t\}.\end{aligned}$$

- T is sufficient for $\theta \rightarrow$ Given # of tosses that came heads, knowing which tosses came heads is irrelevant in deciding the probability of heads:

0 0 1 1 1 0 1 VS 1 0 0 0 1 1 1 VS 1 0 1 0 1 0 1

- Definition hard to verify (especially for continuous variables)
- Definition does not allow easy identification of sufficient statistics

- Definition hard to verify (especially for continuous variables)
- Definition does not allow easy identification of sufficient statistics

Theorem (Fisher-Neyman Factorization Theorem)

Suppose that $\mathbf{Y} = (Y_1, \dots, Y_n)$ has a joint density or frequency function $f(\mathbf{y}; \theta)$, $\theta \in \Theta$. A statistic $T = T(\mathbf{Y})$ is sufficient for θ if and only if

$$f(\mathbf{y}; \theta) = g(T(\mathbf{y}), \theta) h(\mathbf{y}),$$

- Definition hard to verify (especially for continuous variables)
- Definition does not allow easy identification of sufficient statistics

Theorem (Fisher-Neyman Factorization Theorem)

Suppose that $\mathbf{Y} = (Y_1, \dots, Y_n)$ has a joint density or frequency function $f(\mathbf{y}; \theta)$, $\theta \in \Theta$. A statistic $T = T(\mathbf{Y})$ is sufficient for θ if and only if

$$f(\mathbf{y}; \theta) = g(T(\mathbf{y}), \theta)h(\mathbf{y}).$$

Example

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \mathcal{U}[0, \theta]$ with pdf $f(y; \theta) = \mathbf{1}\{y \in [0, \theta]\}/\theta$. Then,

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{\theta^n} \mathbf{1}\{\mathbf{y} \in [0, \theta]^n\} = \frac{\mathbf{1}\{\max[y_1, \dots, y_n] \leq \theta\} \mathbf{1}\{\min[y_1, \dots, y_n] \geq 0\}}{\theta^n}$$

Therefore $T(\mathbf{Y}) = Y_{(n)} = \max[Y_1, \dots, Y_n]$ is sufficient for θ .

Proof of Neyman-Fisher Theorem - Discrete Real Statistic.

Suppose first that T is sufficient. Then

$$\begin{aligned} \underline{f(y; \theta)} &= \mathbb{P}_\theta[\mathbf{Y} = \mathbf{y}] = \sum_t \mathbb{P}_\theta[\mathbf{Y} = \mathbf{y}, T = t] \\ &= \mathbb{P}_\theta[\mathbf{Y} = \mathbf{y}, T = T(\mathbf{y})] = \mathbb{P}_\theta[T = T(\mathbf{y})] \mathbb{P}[\mathbf{Y} = \mathbf{y} | T = T(\mathbf{y})] \end{aligned}$$

Bayes Rule

$g(t)$

Since T is sufficient, $\mathbb{P}[\mathbf{Y} = \mathbf{y} | T = T(\mathbf{y})]$ is independent of θ and so $f(y; \theta) = g(T(\mathbf{y}); \theta)h(\mathbf{y})$.

$h(\mathbf{y})$

Proof of Neyman-Fisher Theorem - Discrete Real Statistic.

Suppose first that T is sufficient. Then

$$\begin{aligned} f(y; \theta) &= \mathbb{P}_\theta[\mathbf{Y} = \mathbf{y}] = \sum_t \mathbb{P}_\theta[\mathbf{Y} = \mathbf{y}, T = t] \\ &= \mathbb{P}_\theta[\mathbf{Y} = \mathbf{y}, T = T(\mathbf{y})] = \mathbb{P}_\theta[T = T(\mathbf{y})] \mathbb{P}[\mathbf{Y} = \mathbf{y} | T = T(\mathbf{y})] \end{aligned}$$

Since T is sufficient, $\mathbb{P}[\mathbf{Y} = \mathbf{y} | T = T(\mathbf{y})]$ is independent of θ and so $f(y; \theta) = g(T(\mathbf{y}); \theta)h(\mathbf{y})$. Now suppose that $f(y; \theta) = g(T(\mathbf{y}); \theta)h(\mathbf{y})$. Then if $T(\mathbf{y}) = t$,

$$\begin{aligned} \mathbb{P}[\mathbf{Y} = \mathbf{y} | T = t] &= \frac{\mathbb{P}[\mathbf{Y} = \mathbf{y}, T = t]}{\mathbb{P}[T = t]} = \frac{\mathbb{P}[\mathbf{Y} = \mathbf{y}]}{\mathbb{P}[T = t]} \mathbf{1}\{T(\mathbf{y}) = t\} \\ &= \frac{g(T(\mathbf{y}); \theta)h(\mathbf{y})\mathbf{1}\{T(\mathbf{y}) = t\}}{\sum_{\mathbf{z}: T(\mathbf{z})=t} g(T(\mathbf{z}); \theta)h(\mathbf{z})} = \frac{h(\mathbf{y})\mathbf{1}\{T(\mathbf{y}) = t\}}{\sum_{T(\mathbf{z})=t} h(\mathbf{z})}. \end{aligned}$$

which does not depend on θ . □

Example (Sufficient statistics for i.i.d. normal samples)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Recall that we can write

$$f(y; \mu, \sigma^2) = \frac{e^{-\frac{1}{2} \left(\frac{y-\mu}{\sigma} \right)^2}}{\sigma \sqrt{2\pi}} = \exp \left\{ -\frac{1}{2\sigma^2} y_i^2 + \frac{\mu}{\sigma^2} y_i - \frac{1}{2} \log(2\pi\sigma^2) - \frac{\mu^2}{2\sigma^2} \right\}$$

exponential family formulation

$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

$\Phi_1 \quad T_1 \quad \Phi_2 + \Phi_3$

$S(y) = 0$

and so

$$\underbrace{f_{Y_1, \dots, Y_n}(y_1, \dots, y_n)}_{\text{Factorised form}} = \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n y_i^2 + \frac{\mu}{\sigma^2} \sum_{i=1}^n y_i - \frac{n}{2} \log(2\pi\sigma^2) - \frac{n\mu^2}{2\sigma^2} \right\}.$$

Consequently, Fisher-Neyman factorisation implies that the statistic

$$S(\mathbf{Y}) = (S_1(\mathbf{Y}), S_2(\mathbf{Y}))^\top = \left(\underbrace{\sum_{i=1}^n Y_i}_{\text{Sufficient statistic}}, \underbrace{\sum_{i=1}^n Y_i^2}_{\text{Sufficient statistic}} \right)^\top = (\bar{Y}, \sum_{i=1}^n Y_i^2)^\top$$

is sufficient for the parameter (μ, σ^2) and so is the statistic

$$T(\mathbf{Y}) = (T_1(\mathbf{Y}), T_2(\mathbf{Y}))^\top = \left(\underbrace{n^{-1} \sum_{i=1}^n Y_i}_{\text{Sufficient statistic}}, \underbrace{n^{-1} \sum_{i=1}^n (Y_i - \bar{Y})^2}_{\text{Sufficient statistic}} \right)^\top$$

since T and S are 1-1 functions of each other.

Example (Sufficient statistics for k -parameter exponential families)

More generally, consider a k -parameter exponential family, with density

$$f(y) = \exp \left\{ \sum_{j=1}^k \phi_j T_j(y) - \gamma(\phi_1, \dots, \phi_k) + S(y) \right\}, \quad y \in \mathcal{Y}.$$

Then an i.i.d. sample $(Y_1, \dots, Y_n)^\top$ has joint distribution

$$f_{Y_1, \dots, Y_n}(y_1, \dots, y_n) = \exp \left\{ \sum_{j=1}^k \phi_j \tau_j(y_1, \dots, y_n) - n\gamma(\phi_1, \dots, \phi_n) + \sum_{i=1}^n S(y_i) \right\}$$

where

$$\tau_j(y_1, \dots, y_n) = \sum_{i=1}^n T_j(y_i).$$

So the statistic

$$\underline{\tau(Y_1, \dots, Y_n)} = (\tau_1(Y_1, \dots, Y_n), \dots, \tau_k(Y_1, \dots, Y_n))^\top$$

is sufficient for (ϕ_1, \dots, ϕ_k) by Fisher-Neyman factorisation.

- We have seen that sufficient statistic compresses data without information loss on parameter of interest.
- How much info can we throw away? Is there a “necessary” statistic?

Definition (Minimally Sufficient Statistic)

A statistic $T = T(\mathbf{Y})$ is said to be *minimally sufficient* for the parameter θ if it is sufficient for θ and for any other sufficient statistic $S = S(\mathbf{Y})$ there exists a function $g(\cdot)$ with

$$T(\mathbf{Y}) = g(S(\mathbf{Y})).$$

Lemma

If T and S are *minimally sufficient statistics* for a parameter θ , then there exists injective functions \underline{g} and \underline{h} such that $S = g(T)$ and $T = h(S)$.

Theorem

Let $\mathbf{Y} = (Y_1, \dots, Y_n)$ have joint density or frequency function $f(\mathbf{y}; \theta)$ and $T = T(\mathbf{Y})$ be a statistic. If $f(\mathbf{y}; \theta)/f(\mathbf{z}; \theta) \perp \theta \iff T(\mathbf{y}) = T(\mathbf{z})$. Then T is minimally sufficient for θ .

Proof. (*)

Assume for simplicity that $f(\mathbf{y}; \theta) > 0$ for all $\mathbf{y} \in \mathbb{R}^n$ and $\theta \in \Theta$. Let $\mathcal{T} = \{T(\mathbf{u}) : \mathbf{u} \in \mathbb{R}^n\}$ be the image of \mathbb{R}^n under T and let A_t be the level sets of T . For each t , choose a representative element $\mathbf{w}_t \in A_t$. Notice that for any \mathbf{y} , $\mathbf{w}_{T(\mathbf{y})}$ is in the same level set as \mathbf{y} , so that

$$f(\mathbf{y}; \theta)/f(\mathbf{w}_{T(\mathbf{y})}; \theta)$$

does not depend on θ by assumption. Let $g(t, \theta) := f(\mathbf{w}_t; \theta)$ and notice

$$f(\mathbf{y}; \theta) = \frac{f(\mathbf{w}_{T(\mathbf{y})}; \theta)f(\mathbf{y}; \theta)}{f(\mathbf{w}_{T(\mathbf{y})}; \theta)} = g(T(\mathbf{y}), \theta)h(\mathbf{y})$$

and sufficiency follows from the Fisher-Neyman factorization theorem.

[minimality part] Suppose that T' is another sufficient statistic. By the factorization thm: $\exists g', h' : f(\mathbf{y}; \theta) = \underbrace{g'(T'(\mathbf{y}); \theta)}_{\text{defn.}} h'(\mathbf{y})$. Let \mathbf{y}, \mathbf{z} be such that $T'(\mathbf{y}) = T'(\mathbf{z})$. Then

$$\frac{f(\mathbf{y}; \theta)}{f(\mathbf{z}; \theta)} = \frac{g'(T'(\mathbf{y}); \theta)h'(\mathbf{y})}{g'(T'(\mathbf{z}); \theta)h'(\mathbf{z})} = \frac{h'(\mathbf{y})}{h'(\mathbf{z})} \perp\!\!\!\perp \theta$$

Since ratio does not depend on θ , we have by assumption $T(\mathbf{y}) = T(\mathbf{z})$. Hence T is a function of T' ; so is minimal by arbitrary choice of T' . \square

[minimality part] Suppose that T' is another sufficient statistic. By the factorization thm: $\exists g', h' : f(\mathbf{y}; \theta) = g'(T'(\mathbf{y}); \theta)h'(\mathbf{y})$. Let \mathbf{y}, \mathbf{z} be such that $T'(\mathbf{y}) = T'(\mathbf{z})$. Then

$$\frac{f(\mathbf{y}; \theta)}{f(\mathbf{z}; \theta)} = \frac{g'(T'(\mathbf{y}); \theta)h'(\mathbf{y})}{g'(T'(\mathbf{z}); \theta)h'(\mathbf{z})} = \frac{h'(\mathbf{y})}{h'(\mathbf{z})}.$$

Since ratio does not depend on θ , we have by assumption $T(\mathbf{y}) = T(\mathbf{z})$. Hence T is a function of T' ; so is minimal by arbitrary choice of T' . \square

Example (Bernoulli Trials)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \text{Bernoulli}(\theta)$. Let $\mathbf{z}, \mathbf{y} \in \{0, 1\}^n$ be two possible outcomes. Then

$$\frac{f(\mathbf{z}; \theta)}{f(\mathbf{y}; \theta)} = \frac{\theta^{\sum z_i} (1 - \theta)^{n - \sum z_i}}{\theta^{\sum y_i} (1 - \theta)^{n - \sum y_i}}$$

which is constant if and only if $T(\mathbf{z}) = \sum z_i = \sum y_i = T(\mathbf{y})$, so that T is minimally sufficient.

Example (Minimal sufficiency for k -parameter exponential families)

An i.i.d. sample $(Y_1, \dots, Y_n)^\top$ from an exponential family has joint distribution

$$f_{Y_1, \dots, Y_n}(y_1, \dots, y_n) = \exp \left\{ \sum_{j=1}^k \phi_j \tau_j(y_1, \dots, y_n) - n\gamma(\phi_1, \dots, \phi_n) + \sum_{i=1}^n S(y_i) \right\}$$

where $\tau_j(y_1, \dots, y_n) = \sum_{i=1}^n T_j(y_i)$, as before. If the $\{T_j\}_{j=1}^k$ are non-trivial, the ratio $f(\mathbf{y})/f(\mathbf{z})$ will be constant with respect to (ϕ_1, \dots, ϕ_k) if and only if as (ϕ_1, \dots, ϕ_k) varies, the quantity below remains constant.

$$\underbrace{\sum_{j=1}^k \phi_j (\tau_j(y_1, \dots, y_n) - \tau_j(z_1, \dots, z_n))}_{\text{constant}} = c \prod_{j=1}^k (\phi_j - \phi_j)$$

So if (ϕ_1, \dots, ϕ_k) range over an open parameter space of dimension k , this must imply that

$$\underbrace{\tau_j(y_1, \dots, y_n)}_{\text{constant}} = \underbrace{\tau_j(z_1, \dots, z_n)}_{\text{constant}}.$$

Conversely, when the latter is true, the density ratio is clearly independent of the parameters, and so the statistic $\tau(\mathbf{y}) = (\tau_1(\mathbf{y}), \dots, \tau_k(\mathbf{y}))$ is minimally sufficient for (ϕ_1, \dots, ϕ_k) .

Anything we do will be a function $T(Y_1, \dots, Y_n)$ of the sample

Sampling theory aims to understand:

- ① ✓ What information do different forms of functions $T : \mathcal{Y}^n \rightarrow \mathbb{R}^p$ carry on the parameter θ ? ✓
- ② ? What is the probability distribution of $T(Y_1, \dots, Y_n)$ and how does it relate to $F(y_1, \dots, y_n; \theta)$?

$$T_n = \frac{1}{n} \sum_{i=1}^n Y_i \quad f_T$$

Anything we do will be a function $T(Y_1, \dots, Y_n)$ of the sample

Sampling theory aims to understand:

- ① ✓ What information do different forms of functions $T : \mathcal{Y}^n \rightarrow \mathbb{R}^p$ carry on the parameter θ ? ✓
- ② ? What is the probability distribution of $T(Y_1, \dots, Y_n)$ and how does it relate to $F(y_1, \dots, y_n; \theta)$?

We will now:

- (2a) Review important special cases where sampling distributions can be **exactly determined**, focussing on the iid sampling case.
→ focussing on sufficient statistics of Gaussian and exponential families.
- (2b) Study ways of getting **approximations to the sampling behaviour** when the precise form is not explicitly available or is tedious (**stochastic convergence**).

Theorem (Sampling Distribution of Gaussian Sufficient Statistics)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, and define

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i \quad \& \quad S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2.$$

The pair (\bar{Y}, S^2) is minimally sufficient for (μ, σ^2) and:

- ① The sample mean is distributed as $\bar{Y} \sim N(\mu, \sigma^2/n)$.
- ② The random variables \bar{Y} and S^2 are independent.
- ③ The random variable S^2 satisfies $\frac{n-1}{\sigma^2} S^2 \sim \chi_{n-1}^2$. *degrees of freedom*

Theorem (Sampling Distribution of Gaussian Sufficient Statistics)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, and define

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i \quad \& \quad S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2.$$

The pair (\bar{Y}, S^2) is minimally sufficient for (μ, σ^2) and:

- ① The sample mean is distributed as $\bar{Y} \sim N(\mu, \sigma^2/n)$.
- ② The random variables \bar{Y} and S^2 are independent.
- ③ The random variable S^2 satisfies $\frac{n-1}{\sigma^2} S^2 \sim \chi_{n-1}^2$.

Corollary (Moments of Sufficient Statistics)

If $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, then

$$\underline{\mathbb{E}[\bar{Y}] = \mu}, \quad \underline{\text{var}(\bar{Y}) = \frac{\sigma^2}{n}}, \quad \underline{\mathbb{E}[S^2] = \sigma^2}, \quad \underline{\text{var}(S^2) = \frac{2\sigma^4}{n-1}}.$$

(which is why we typically prefer factor of $(n-1)^{-1}$ instead of n^{-1} in S^2)

Theorem (Sums of Gaussian Squares)

Let $\{Z_1, \dots, Z_k\}$ be i.i.d. $N(0, 1)$ random variables. Then,

$$Z_1^2 + \dots + Z_k^2 \sim \underline{\chi_k^2}$$

Theorem (Sums of Gaussian Squares)

Let $\{Z_1, \dots, Z_k\}$ be i.i.d. $N(0, 1)$ random variables. Then,

$$Z_1^2 + \dots + Z_k^2 \sim \chi_k^2.$$

Recall that a random variable X is said to follow the chi-square distribution with parameter $k \in \mathbb{N}$ (called the number of degrees of freedom), denoted $X \sim \chi_k^2$, if it holds that $X \sim \text{Gamma}(k/2, 1/2)$. In other words,

$$f_X(x; k) = \begin{cases} \frac{1}{2^{k/2}\Gamma(\frac{k}{2})} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}, & \text{if } x \geq 0 \\ 0 & \text{if } x < 0. \end{cases}$$

The mean, variance and moment generating function of $X \sim \chi_k^2$ are given by

$$\mathbb{E}[X] = k, \quad \text{var}[X] = 2k, \quad M(t) = (1 - 2t)^{-k/2}, \quad t < \frac{1}{2}.$$

Theorem (Student's Statistic and its Sampling Distribution)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Then, the empirically standardised mean satisfies

$$\sqrt{n} \left(\frac{\bar{Y} - \mu}{\sigma} \right)$$

standardized statistic

$$\frac{\bar{Y} - \mu}{S/\sqrt{n}} \sim \text{t}_{n-1}.$$

↖ unknown quantity

Theorem (Student's Statistic and its Sampling Distribution)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Then, the empirically standardised mean satisfies

$$\frac{\bar{Y} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

Recall that a random variable X is said to follow Student's t distribution with parameter $k \in \mathbb{N}$ (called the number of degrees of freedom), denoted $X \sim t_k$, if,

$$f_X(x; k) = \frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2}) \sqrt{k\pi}} \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}},$$

Assuming $k > 2$, the mean and variance of $X \sim t_k$ are given by

$$\mathbb{E}[X] = 0, \quad \text{var}[X] = \underbrace{\frac{k}{k-2}}_{\text{ }}.$$

The mean is undefined for $k = 1$ and the variance is undefined for $k \leq 2$. The moment generating function is undefined for any $k \in \mathbb{N}$.

Theorem (Ratios of Gaussian Sums of Squares and F-Statistic)

Let $Y_1 \sim \chi^2_{d_1}$ and $Y_2 \sim \chi^2_{d_2}$ be independent random variables. Then,

$$\frac{Y_1/d_1}{Y_2/d_2} \sim F_{d_1, d_2}.$$

Theorem (Ratios of Gaussian Sums of Squares and F-Statistic)

Let $Y_1 \sim \chi^2_{d_1}$ and $Y_2 \sim \chi^2_{d_2}$ be independent random variables. Then,

$$\frac{Y_1/d_1}{Y_2/d_2} \sim F_{d_1, d_2}.$$

A random variable X is said to follow the Snedecor-Fisher F distribution with parameters $d_1 \in \mathbb{N}$ and $d_2 \in \mathbb{N}$, denoted $X \sim F_{d_1, d_2}$, if

$$f_X(x; d_1, d_2) = \begin{cases} \frac{1}{B\left(\frac{d_1}{2}, \frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{d_1/2} x^{\frac{d_1}{2}-1} \left(1 + \frac{d_1}{d_2}x\right)^{-\frac{d_1+d_2}{2}}, & \text{if } x \geq 0 \\ 0 & \text{if } x < 0. \end{cases}$$

The mean, variance of $X \sim F_{d_1, d_2}$ are given by

$$\mathbb{E}[X] = \frac{d_2}{d_2 - 2}, \text{ provided } \underbrace{d_2 > 2}, \text{ var}[X] = \frac{2d_2^2(d_1 + d_2 - 2)}{d_1(d_2 - 4)(d_2 - 2)^2} \text{ provided } \underbrace{d_2 > 4}.$$

The moment generating function does not exist.

Some remarks:

- Notice that in all cases we considered sampling distributions when the sample is **iid** Normal.
- It's possible to consider samples that are **jointly Normally distributed** but not iid. This we postpone till later, when we bring in covariates and study regression.
- It's not particularly productive to insist on the formulae for the densities of χ^2 , t and F distributions.
 - Much better to think of them as being implicitly defined via their relation to iid Gaussian sampling (sums of squares and their normalised ratios, etc).
 - This is what is crucial to remember, along with the relation of their parameters (degrees of freedom) to the setting at hand.

Theorem (Sampling from an Exponential Family)

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} f$, where

$$f(y) = \exp \left\{ \sum_{i=1}^k \phi_i T_i(y) - \gamma(\phi_1, \dots, \phi_k) + S(y) \right\}, \quad \phi = (\phi_1, \dots, \phi_k)^\top \in \Phi \subseteq \mathbb{R}^k$$

be a density of a k -parameter exponential family form.

$$\theta \in \Theta$$

If Φ is open, then:

① The minimally sufficient statistic for ϕ is $\tau = (\tau_1, \dots, \tau_k)$ where

$$\tau_j(y_1, \dots, y_n) = \sum_{i=1}^n T_j(y_i).$$

② The function γ is infinitely differentiable in all k of its variables, and

$$\mathbb{E}[\tau] = n \nabla_\phi \gamma(\phi) \quad \text{and} \quad \text{cov}[\tau] = n \nabla_\phi^2 \gamma(\phi),$$

that is,

$$\mathbb{E}[\tau_j] = n \frac{\partial}{\partial \phi_j} \gamma(\phi_1, \dots, \phi_k) \quad \text{and} \quad \text{cov}\{\tau_m, \tau_j\} = n \frac{\partial^2}{\partial \phi_m \partial \phi_j} \gamma(\phi_1, \dots, \phi_k).$$

(recall that minimal sufficiency was already shown in an example)

Proof. (*)

Focus on case $k = 1$, so that $\tau_j = \tau = \sum_{i=1}^n T(Y_i)$. Let $\phi_0 \in \Phi$. Since Φ is open, there exists s sufficiently small so that $\phi_0 + s \in \Phi$. Now note that the MGF $M_{T(Y_1)}(u) = \mathbb{E}[\exp(uT(Y_1))]$ evaluated at s is

$$\mathbb{E}[e^{sT(Y_1)}]$$

$$\text{defn} \int_{\mathbb{R}} e^{sT(y)} e^{\phi_0 T(y) - \gamma(\phi_0) + S(y)} dy = e^{\gamma(\phi_0 + s) - \gamma(\phi_0)} \underbrace{\int_{\mathbb{R}} e^{(\phi_0 + s)T(y) - \gamma(\phi_0 + s) + S(y)} dy}_{=1} = \int f_{\gamma}(y) dy$$

① Therefore $M_{T(Y_1)}(s) < \infty$ for s sufficiently small, and thus:

- all moments of $T(Y_1)$ exist,
- and $M_{T(Y_1)}(s)$ is infinitely differentiable on an open neighbourhood of 0.

② Furthermore, $\gamma(s + \phi_0)$ is infinitely differentiable for s small enough, i.e. γ is infinitely differentiable in an open neighbourhood of ϕ_0 . But ϕ_0 is arbitrary so γ is infinitely differentiable everywhere on Φ .

Now we may differentiate w.r.t. s , and, setting $s = 0$, we get

$$\mathbb{E}[T(Y_1)] = \gamma'(\phi) \text{ and } \text{var}[T(Y_1)] = \gamma''(\phi).$$

The conclusion follows by the fact that $\tau = \sum_{i=1}^n T(Y_i)$. □

Unfortunately, the sampling distribution of a statistic $T(Y_1, \dots, Y_n)$ **isn't always obtainable in a closed/convenient form**

- Even when T is the sufficient statistic in an exponential family, we may not have a nice workable form for the sampling distribution.
- In this case we know that the sampling distribution is again a k -parameter exponential family, but its form may be tedious to work with.

Unfortunately, the sampling distribution of a statistic $T(Y_1, \dots, Y_n)$ **isn't always obtainable in a closed/convenient form**

- Even when T is the sufficient statistic in an exponential family, we may not have a nice workable form for the sampling distribution.
- In this case we know that the sampling distribution is again a k -parameter exponential family, but its form may be tedious to work with.

General strategy:

Approximate the sampling distribution $\underline{F_{T(Y_1, \dots, Y_n)}}$ by a simpler distribution G

Of course we must make sense of what it means that “the distribution $\underline{F_{T(Y_1, \dots, Y_n)}}$ is approximated by the distribution G ”.

- ① We will view $\underline{F_{T(Y_1, \dots, Y_n)}}$ as a sequence of functions indexed by sample size n .
- ② Thus, “approximation by G ” will be understood as a form of convergence of $\underline{F_n}$ to G as $n \rightarrow \infty$.
$$\underline{F_n} \longrightarrow G = \underline{F_\infty}$$
- ③ En route, we will also discover a stronger form of convergence.

Definition (Convergence in Distribution (Weak Convergence))

Let $\{F_n\}_{n \geq 1}$ be a sequence of distribution functions and G be a distribution function on \mathbb{R} . We say that F_n converges in distribution (or weakly) to G , and write $F_n \xrightarrow{d} G$, whenever

$$\underbrace{F_n(y) \xrightarrow{n \rightarrow \infty} G(y)}_{\xrightarrow{\quad} P(T_n \leq y) \xrightarrow{\quad} P(G \leq y)}$$

for all y constituting continuity points of G (i.e. all y such that $\lim_{\varepsilon \rightarrow 0} G(y + \varepsilon) = G(y)$).

Definition (Convergence in Distribution (Weak Convergence))

Let $\{F_n\}_{n \geq 1}$ be a sequence of distribution functions and G be a distribution function on \mathbb{R} . We say that F_n converges in distribution (or weakly) to G , and write $F_n \xrightarrow{d} G$, whenever

$$\underline{F_n(y) \xrightarrow{n \rightarrow \infty} G(y)}, \quad F_n \rightarrow F$$

for all y constituting continuity points of G (i.e. all y such that $\lim_{\varepsilon \rightarrow 0} G(y + \varepsilon) = G(y)$).

Example

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \mathcal{U}[0, 1]$, $M_n = \max\{Y_1, \dots, Y_n\}$, and $Q_n = n(1 - M_n)$.

$$\mathbb{P}[Q_n \leq y] = \mathbb{P}[M_n \geq 1 - y/n] = 1 - \left(1 - \frac{y}{n}\right)^n \xrightarrow{n \rightarrow \infty} 1 - e^{-y}$$

for all $y \geq 0$. Hence $\underline{Q_n} \xrightarrow{d} \underline{Q}$, with $Q \sim \exp(1)$.

Comments:

- ① Convergence in distribution \equiv pointwise convergence of distribution function, with the exception that it is **not necessary to have convergence at discontinuity points of the limit**.

Comments:

- ① Convergence in distribution \equiv pointwise convergence of distribution function, with the exception that it is **not necessary to have convergence at discontinuity points of the limit.**
- ② When $F_n(y) = \mathbb{P}[Y_n \leq y]$ for a sequence of random variables $\{Y_n\}_{n \geq 1}$ and $G(y) = \mathbb{P}[Z \leq y]$ for another random variable Z , we will abuse notation and write

$$Y_n \xrightarrow{d} Z.$$

Comments:

- ① Convergence in distribution \equiv pointwise convergence of distribution function, with the exception that it is **not necessary to have convergence at discontinuity points of the limit.**
- ② When $F_n(y) = \mathbb{P}[Y_n \leq y]$ for a sequence of random variables $\{Y_n\}_{n \geq 1}$ and $G(y) = \mathbb{P}[Z \leq y]$ for another random variable Z , we will abuse notation and write

$$Y_n \xrightarrow{d} Z.$$

- ③ Our aim of approximating the sampling distribution now translates into finding a random variable Z whose distribution is explicitly known and such that

$$T(Y_1, \dots, Y_n) \xrightarrow{d} Z$$

A stronger notion of convergence is **convergence in probability**:

Definition

When a sequence of random variables $\{Y_n\}$ satisfies $\mathbb{P}[|Y_n - Y| > \epsilon] \xrightarrow{n \rightarrow \infty} 0$ for all $\epsilon > 0$ and a given random variable Y , we say that Y_n converges in probability to Y , and write $Y_n \xrightarrow{p} Y$.

A stronger notion of convergence is **convergence in probability**:

Definition

When a sequence of random variables $\{Y_n\}$ satisfies $\mathbb{P}[|Y_n - Y| > \epsilon] \xrightarrow{n \rightarrow \infty} 0$ for all $\epsilon > 0$ and a given random variable Y , we say that Y_n converges in probability to Y , and write $Y_n \xrightarrow{p} Y$.

Example

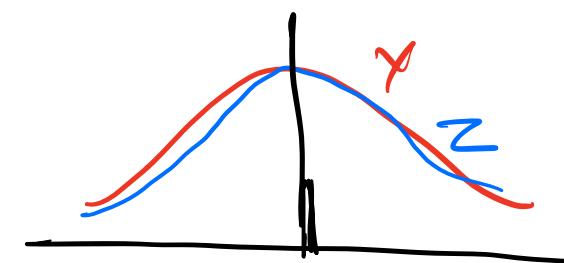
Let $U_1, \dots, U_n \xrightarrow{iid} \mathcal{U}[0, 1]$ and $M_n = \max\{U_1, \dots, U_n\}$. Fix $\epsilon \in (0, 1)$. Then

$$\mathbb{P}[|M_n - 1| > \epsilon] = \mathbb{P}[M_n > 1 + \epsilon] + \mathbb{P}[M_n < 1 - \epsilon] = 0 + (1 - \epsilon)^n \xrightarrow{n \rightarrow \infty} 0.$$

Hence $M_n \xrightarrow{p} 1$ as $n \rightarrow \infty$.

Comments:

$$X \xrightarrow{P} Y \Rightarrow \cancel{X \xrightarrow{d} Y}$$



- Convergence in probability implies convergence in distribution.
- Convergence in distribution **does not** imply convergence in probability
 - ↪ Consider $Z \sim \mathcal{N}(0, 1)$, $-Z + \frac{1}{n} \xrightarrow{d} Z$ but $-Z + \frac{1}{n} \not\xrightarrow{P} Z$.
- " \xrightarrow{d} " relates *distribution functions*. It says the probabilistic behaviour of a sequence Y_n becomes more and more alike to that of the limit Y .
- " \xrightarrow{P} " relates *random variables*. It says that the actual realisations of Y_n can be progressively approximated with high probability by those of Y .
- Both notions of convergence are metrizable
 - ↪ i.e. there exist metrics on the space of all random variables that are compatible with the notion of convergence.
 - ↪ Hence can use things such as the triangle inequality etc.

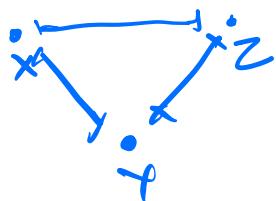
Metric $d(\cdot, \cdot)$ on some space $X = \mathbb{R}^n$

① $d(x, x) = 0$

② $d(x, y) = d(y, x)$

③ $d(x, y) \geq 0$ $d(x, y) = 0 \Leftrightarrow x = y$

④ "triangle inequality" $d(x, z) \leq d(x, y) + d(y, z)$



$$d(x, y) = 0 \text{ iff } x \xrightarrow{d} y$$

Theorem

$$(a) \ Y_n \xrightarrow{p} Y \implies Y_n \xrightarrow{d} Y$$

$$(b) \ Y_n \xrightarrow{d} \underline{c} \implies Y_n \xrightarrow{p} \underline{c}, \ c \in \mathbb{R}.$$

Theorem

$$(a) Y_n \xrightarrow{p} Y \implies Y_n \xrightarrow{d} Y$$

$$(b) Y_n \xrightarrow{d} c \implies Y_n \xrightarrow{p} c, c \in \mathbb{R}.$$

Proof

(a) Let y be a continuity point of F_Y and $\epsilon > 0$. Then,

$$\begin{aligned} F_{Y_n}(y) = \mathbb{P}[Y_n \leq y] &= \mathbb{P}[Y_n \leq y, |Y_n - Y| \leq \epsilon] + \mathbb{P}[Y_n \leq y, |Y_n - Y| > \epsilon] \\ &\leq \mathbb{P}[Y \leq y + \epsilon] + \mathbb{P}[|Y_n - Y| > \epsilon] \end{aligned}$$

since $\{Y \leq y + \epsilon\}$ contains $\{Y_n \leq y, |Y_n - Y| \leq \epsilon\}$. Similarly,

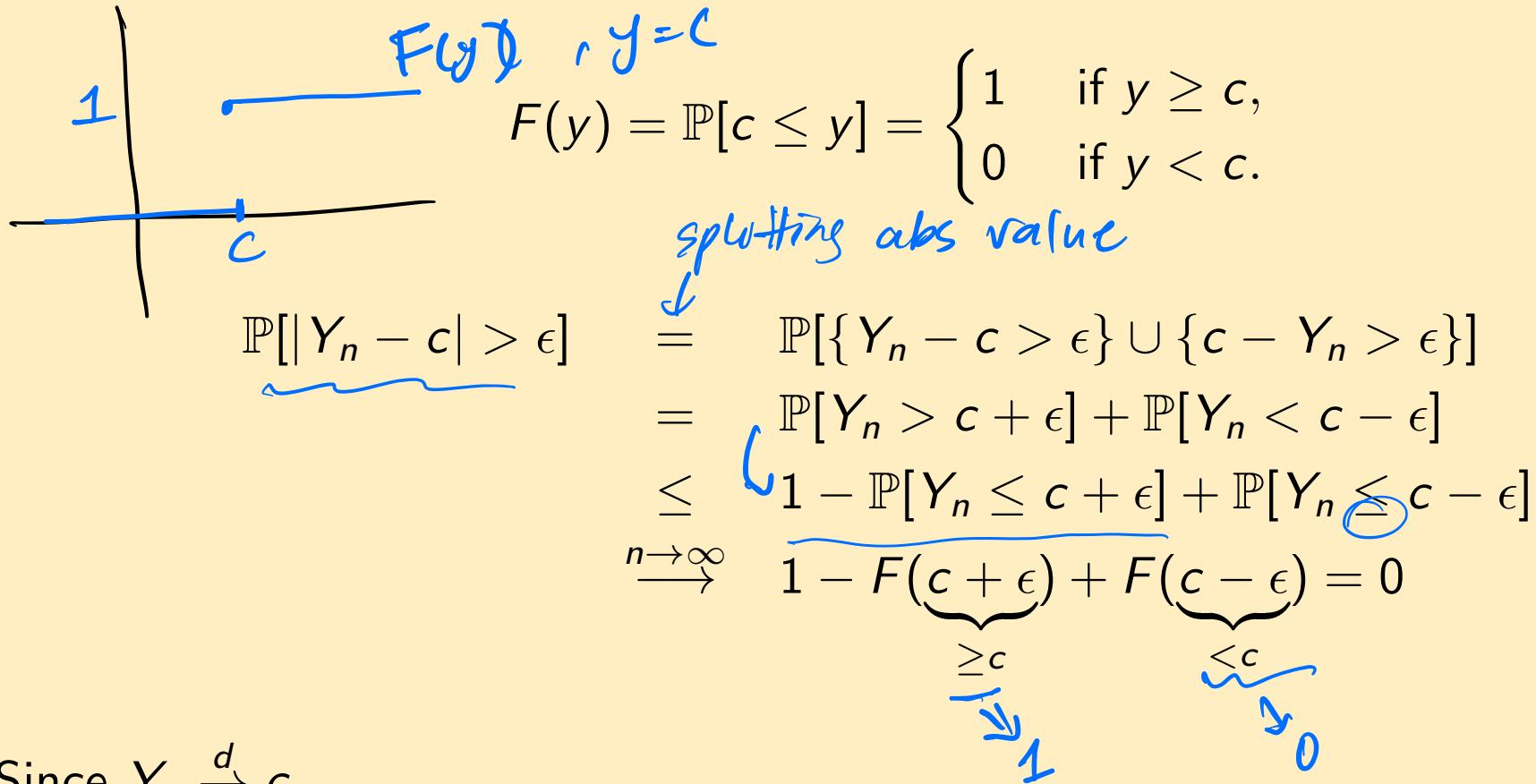
$$\begin{aligned} F_Y(y - \epsilon) &= \mathbb{P}[Y \leq y - \epsilon, |Y_n - Y| \leq \epsilon] + \mathbb{P}[Y \leq y - \epsilon, |Y_n - Y| > \epsilon] \\ &\leq \mathbb{P}[Y_n \leq y] + \mathbb{P}[|Y_n - Y| > \epsilon] \end{aligned}$$

which yields

$$\mathbb{P}[Y \leq y - \epsilon] - \mathbb{P}[|Y_n - Y| > \epsilon] \leq \mathbb{P}[Y_n \leq y].$$

Combining the two inequalities and “sandwiching” yields (a).

(b) Let F be the distribution function of a constant r.v. c ,



Now we explore the **stability of stochastic convergence notions under transformation**.

Theorem (Continuous Mapping Theorem)

Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be a continuous on the range of Y . Then,

- (a) $Y_n \xrightarrow{p} Y \implies g(Y_n) \xrightarrow{p} g(Y)$
- (b) $Y_n \xrightarrow{d} Y \implies g(Y_n) \xrightarrow{d} g(Y)$

Now we explore the **stability** of stochastic convergence notions under transformation.

Theorem (Continuous Mapping Theorem)

Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be a *continuous* on the range of Y . Then,

- (a) $Y_n \xrightarrow{p} Y \implies g(Y_n) \xrightarrow{p} g(Y)$
- (b) $Y_n \xrightarrow{d} Y \implies g(Y_n) \xrightarrow{d} g(Y)$

Theorem (Slutsky's Theorem)

Let $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c \in \mathbb{R}$. Then

(a) $X_n + Y_n \xrightarrow{d} X + c$

(b) $X_n Y_n \xrightarrow{d} cX$

$Y_n \xrightarrow{d} Y$
not true : $X_n + Y_n \xrightarrow{d} X + Y$
in general : $X_n Y_n \xrightarrow{d} X Y$

Proof of Slutsky's Theorem.

(a) We may assume $c = 0$. Let \underline{x} be a continuity point of F_X . We have

$$\begin{aligned} \mathbb{P}[X_n + Y_n \leq x] &= \mathbb{P}[X_n + Y_n \leq x, |Y_n| \leq \epsilon] + \mathbb{P}[X_n + Y_n \leq x, |Y_n| > \epsilon] \\ &\stackrel{\text{def}}{\leq} \mathbb{P}[X_n \leq x + \epsilon] + \mathbb{P}[|Y_n| > \epsilon] \end{aligned}$$

Similarly, $\mathbb{P}[X_n \leq x - \epsilon] \leq \mathbb{P}[X_n + Y_n \leq x] + \mathbb{P}[|Y_n| > \epsilon]$, therefore,

$$\mathbb{P}[X_n \leq x - \epsilon] - \mathbb{P}[|Y_n| > \epsilon] \leq \mathbb{P}[X_n + Y_n \leq x] \leq \mathbb{P}[X_n \leq x + \epsilon] + \mathbb{P}[|Y_n| > \epsilon]$$

Since ϵ is arbitrary, this proves (a) by taking $n \rightarrow \infty$.

Proof of Slutsky's Theorem.

(a) We may assume $c = 0$. Let x be a continuity point of F_X . We have

$$\begin{aligned}\mathbb{P}[X_n + Y_n \leq x] &= \mathbb{P}[X_n + Y_n \leq x, |Y_n| \leq \epsilon] + \mathbb{P}[X_n + Y_n \leq x, |Y_n| > \epsilon] \\ &\leq \mathbb{P}[X_n \leq x + \epsilon] + \mathbb{P}[|Y_n| > \epsilon]\end{aligned}$$

Similarly, $\mathbb{P}[X_n \leq x - \epsilon] \leq \mathbb{P}[X_n + Y_n \leq x] + \mathbb{P}[|Y_n| > \epsilon]$, therefore,

$$\mathbb{P}[X_n \leq x - \epsilon] - \mathbb{P}[|Y_n| > \epsilon] \leq \mathbb{P}[X_n + Y_n \leq x] \leq \mathbb{P}[X_n \leq x + \epsilon] + \mathbb{P}[|Y_n| > \epsilon]$$

Since ϵ is arbitrary, this proves (a) by taking $n \rightarrow \infty$.

(b) It suffices to assume $c = 0$ (since $(Y_n + c)X_n = X_n Y_n + X_n c$, so if we can show $\underline{X_n Y_n} \xrightarrow{d} 0$, then (a) gives conclusion). Let $\epsilon, M > 0$:

$$\begin{aligned}\mathbb{P}[|X_n Y_n| > \epsilon] &\leq \mathbb{P}[|X_n Y_n| > \epsilon, |Y_n| \leq 1/M] + \mathbb{P}[|Y_n| \geq 1/M] \\ &\leq \mathbb{P}[|X_n| > \epsilon M] + \mathbb{P}[|Y_n| \geq 1/M] \\ &\xrightarrow{n \rightarrow \infty} \mathbb{P}[|X| > \epsilon M] + 0\end{aligned}$$

The first term can be made arbitrarily small by letting $M \rightarrow \infty$. □

Theorem (General Version of Slutsky's Theorem)

Let $g : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous and suppose that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c \in \mathbb{R}$.
Then, $\underline{\underline{g(X_n, Y_n) \xrightarrow{d} g(X, c)}}$ as $n \rightarrow \infty$.

Theorem (General Version of Slutsky's Theorem)

Let $g : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous and suppose that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c \in \mathbb{R}$. Then, $g(X_n, Y_n) \rightarrow g(X, c)$ as $n \rightarrow \infty$.

→ Notice that the general version of Slutsky's theorem **does not follow immediately** from the continuous mapping theorem.

$$\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{d} (X, c)$$

- The continuous mapping theorem would be applicable if (X_n, Y_n) weakly converged jointly (i.e. their joint distribution) to (X, c) .
- But here we assume only marginal convergence (i.e. $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c$ separately, but their joint behaviour is unspecified).
- The key of the proof is that in the special case where $Y_n \xrightarrow{d} c$ where c is a constant, then marginal convergence \iff joint convergence.
- However if $X_n \xrightarrow{d} X$ where X is non-degenerate, and $Y_n \xrightarrow{d} Y$ where Y is non-degenerate, then the theorem **fails**.
$$Y_n \xrightarrow{d} c$$
- Notice that even the special cases (addition and multiplication) of Slutsky's theorem fail if both X and Y are non-degenerate.

We will later consider **joint stochastic convergence**.

Continuous mappings and Slutsky's lemma allow us to get new approximations from old ones.

→ But how do we get limit theorems in the first place?

Continuous mappings and Slutsky's lemma allow us to get new approximations from old ones.

→ But how do we get limit theorems in the first place?

Typically these stem from a clever use of the following two fundamental theorems:

Theorem (Law of Large Numbers)

Let $\{Y_n\}$ be independent random variables with $\mathbb{E}[Y_k] = \mu$ and $\mathbb{E}|Y_k| < \infty$, for all $k \geq 1$. Then, $n^{-1}(Y_1 + \dots + Y_n) \xrightarrow{P} \mu$.

$$= \frac{1}{n} \sum_{i=1}^n Y_i \xrightarrow{P} \mu$$

Continuous mappings and Slutsky's lemma allow us to get new approximations from old ones.

→ But how do we get limit theorems in the first place?

Typically these stem from a clever use of the following two fundamental theorems:

Theorem (Law of Large Numbers)

Let $\{Y_n\}$ be independent random variables with $\mathbb{E}[Y_k] = \mu$ and $\mathbb{E}|Y_k| < \infty$, for all $k \geq 1$. Then, $n^{-1}(Y_1 + \dots + Y_n) \xrightarrow{P} \mu$.

Theorem (Central Limit Theorem)

Let $\{Y_n\}$ be an i.i.d sequence with mean μ and variance $\sigma^2 < \infty$. Then,

$$\sqrt{n} \left(\overline{Y_n} - \mu \right) \xrightarrow{d} N(0, \sigma^2)$$

where $\overline{Y_n} = \frac{1}{n} \sum_{i=1}^n Y_i$

Said differently, for large n , $\overline{Y} \approx N(\mu, \sigma^2/n)$ or $Y_1 + \dots + Y_n \approx N(n\mu, n\sigma^2)$.

The following theorem combines Slutksy's lemma and the continuous mapping theorem in order to allow us to **transform** central limit theorems:

Theorem (The Delta Method)

Let $Z_n := \underbrace{a_n(X_n - \theta)}_{\xrightarrow{d} N(0, \sigma^2)} \xrightarrow{d} Z$ where $a_n, \theta \in \mathbb{R}$ for all n and $a_n \uparrow \infty$. Let $g(\cdot)$ be continuously differentiable at θ . Then, $\underbrace{a_n(g(X_n) - g(\theta))}_{\xrightarrow{d} g'(\theta)Z}$.

$g'(\theta)$ is cts.

$\neq g(a_n(x_n - \theta))$

The following theorem combines Slutsky's lemma and the continuous mapping theorem in order to allow us to **transform** central limit theorems:

Theorem (The Delta Method)

Let $Z_n := a_n(X_n - \theta) \xrightarrow{d} Z$ where $a_n, \theta \in \mathbb{R}$ for all n and $a_n \uparrow \infty$. Let $g(\cdot)$ be continuously differentiable at θ . Then, $a_n(g(X_n) - g(\theta)) \xrightarrow{d} g'(\theta)Z$.

Proof

↙ Taylor expanding around θ gives:

↙ **first-order**

$$g(X_n) = g(\theta) + g'(\theta^*) (X_n - \theta), \quad \theta^* \text{ between } X_n, \theta.$$

multiply & divide by a_n

$$\text{Thus } |\theta^* - \theta| < |X_n - \theta| = a_n^{-1} \cdot |a_n(X_n - \theta)| = a_n^{-1} Z_n \xrightarrow{p} 0 \quad [\text{by Slutsky}]$$

Therefore, $\theta^* \xrightarrow{p} \theta$. By the continuous mapping theorem $g'(\theta^*) \xrightarrow{p} g'(\theta)$.

$$\begin{aligned} \text{Thus } a_n(g(X_n) - g(\theta)) &= a_n(g(\theta) + g'(\theta^*)(X_n - \theta) - g(\theta)) \\ &= g'(\theta^*) a_n(X_n - \theta) \xrightarrow{d} g'(\theta)Z. \end{aligned}$$

The delta method also applies even when $g'(\theta)$ is not continuous (proof harder).

We can apply this machinery to get the following result for the sampling distribution of a sufficient statistic in a 1-parameter exponential family:

Corollary

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} f$, where

$$f(x) = \exp \{ \phi T(x) - \gamma(\phi) + S(x) \}, \quad x \in \mathcal{X}$$

with $\phi \in \Phi \subseteq \mathbb{R}$ and

$$\overline{T}_n = \frac{1}{n} \sum_{i=1}^n T(X_i) = n^{-1} \tau(X_1, \dots, X_n).$$

If Φ is open, then γ is infinitely differentiable, and so

$$\sqrt{n}(\overline{T}_n - \gamma'(\phi)) \xrightarrow{d} N(0, \gamma''(\phi)).$$

The following more general CLT is often useful:

Theorem (Weighted Sum CLT)

Let $\{W_n\}$ be an i.i.d sequence of real random variables, with common mean 0 and variance 1. Let $\{\gamma_n\}$ be a sequence of real constants. Then, if

$$\sup_{1 \leq j \leq n} \frac{\gamma_j^2}{\sum_{i=1}^n \gamma_i^2} \xrightarrow{n \rightarrow \infty} 0 \Rightarrow \frac{1}{\sqrt{\sum_{i=1}^n \gamma_i^2}} \sum_{i=1}^n \gamma_i W_i \xrightarrow{d} N(0, 1).$$

Handwritten annotations: 'weight' with an arrow pointing to γ_i , μ and σ^2 with arrows pointing to 0 and 1 respectively.

The following more general CLT is often useful:

Theorem (Weighted Sum CLT)

Let $\{W_n\}$ be an i.i.d sequence of real random variables, with common mean 0 and variance 1. Let $\{\gamma_n\}$ be a sequence of real constants. Then, if

$$\sup_{1 \leq j \leq n} \frac{\gamma_j^2}{\sum_{i=1}^n \gamma_i^2} \xrightarrow{n \rightarrow \infty} 0 \implies \frac{1}{\sqrt{\sum_{i=1}^n \gamma_i^2}} \sum_{i=1}^n \gamma_i W_i \xrightarrow{d} N(0, 1).$$

- Supremum condition amounts to saying that, in the limit, any single component contributes a negligible proportion of the total variance.
- Coefficient sequence $\{\gamma_n\}$ might very well diverge, without contradicting the negligibility condition.

To have **joint convergence**, we need to consider random vectors:

Definition

Let $\{\mathbf{Y}_n\}$ be a sequence of random vectors of \mathbb{R}^d , and \mathbf{Y} a random vector of \mathbb{R}^d with $\mathbf{Y}_n = (Y_n^{(1)}, \dots, Y_n^{(d)})^T$ and $\mathbf{Y} = (Y^{(1)}, \dots, Y^{(d)})^T$. Define the distribution functions $F_{\mathbf{Y}_n}(\mathbf{y}) = \mathbb{P}[Y_n^{(1)} \leq y^{(1)}, \dots, Y_n^{(d)} \leq y^{(d)}]$ and **joint CDF** $F_{\mathbf{Y}}(\mathbf{y}) = \mathbb{P}[Y^{(1)} \leq y^{(1)}, \dots, Y^{(d)} \leq y^{(d)}]$, for $\mathbf{y} = (y^{(1)}, \dots, y^{(d)})^T \in \mathbb{R}^d$. We say that \mathbf{Y}_n converges in distribution to \mathbf{Y} as $n \rightarrow \infty$ (and write $\mathbf{Y}_n \xrightarrow{d} \mathbf{Y}$) if for every continuity point of $F_{\mathbf{Y}}$ we have

$$\underbrace{F_{\mathbf{Y}_n}(\mathbf{y})}_{\substack{n \rightarrow \infty}} \xrightarrow{n \rightarrow \infty} F_{\mathbf{Y}}(\mathbf{y}).$$

There is a link between univariate and multivariate weak convergence:

Theorem (Cramér-Wold Device)

Let $\{\mathbf{Y}_n\}$ be a sequence of random vectors of \mathbb{R}^d , and \mathbf{Y} a random vector of \mathbb{R}^d . Then,

$$\mathbf{Y}_n \xrightarrow{d} \mathbf{Y} \iff \underbrace{\mathbf{u}^T \mathbf{Y}_n}_{\substack{\text{cont. vector}}} \xrightarrow{d} \mathbf{u}^T \mathbf{Y}, \quad \forall \mathbf{u} \in \mathbb{R}^d.$$

- Continuous mapping theorem and Slutsky's lemma generalise to vector case.
- In either case, continuity is understood in the **multidimensional sense**:

- ① **Continuous mapping:** If $g : \mathbb{R}^p \rightarrow \mathbb{R}^d$ is continuous on the range of \mathbf{U} , and if $\mathbf{U}_n \xrightarrow{d} \mathbf{U}$ in \mathbb{R}^p , then $g(\mathbf{U}_n) \xrightarrow{d} g(\mathbf{U})$ in \mathbb{R}^d .
- ② **Slutsky:** If $g : \mathbb{R}^p \times \mathbb{R}^q \rightarrow \mathbb{R}^d$ is continuous, and if $\mathbf{U}_n \xrightarrow{d} \mathbf{U}$ in \mathbb{R}^p and $\mathbf{W}_n \xrightarrow{d} \mathbf{u}$ in \mathbb{R}^q , for some deterministic \mathbf{u} , then $g(\mathbf{U}_n, \mathbf{W}_n) \xrightarrow{d} g(\mathbf{U}, \mathbf{u})$.

Convergence in probability easily generalises to the vector case:

Definition

When a sequence of random vectors $\{\mathbf{Y}_n\}$ in \mathbb{R}^d satisfies $\mathbb{P}[\|\mathbf{Y}_n - \mathbf{Y}\|_{\infty} > \epsilon] \xrightarrow{n \rightarrow \infty} 0$ for all $\epsilon > 0$ and a given random d -vector \mathbf{Y} , we say that \mathbf{Y}_n converges in probability to \mathbf{Y} , and write $\mathbf{Y}_n \xrightarrow{p} \mathbf{Y}$.

Theorem (Multivariate Law of Large Numbers)

Let $\{\mathbf{Y}_n\}$ be iid random vectors with $\mathbb{E}[\mathbf{Y}_k] = \underline{\mu}$ and $\mathbb{E}\|\mathbf{Y}_k\| < \infty$, for all $k \geq 1$. Then,

$$\frac{1}{n} \sum_{k=1}^n \mathbf{Y}_k \xrightarrow{p} \underline{\mu}$$

Theorem (Multivariate CLT)

Let $\{\mathbf{X}_n\}$ be an iid sequence of random vectors in \mathbb{R}^d with mean μ and covariance Ω and define $\bar{\mathbf{X}}_n := \sum_{m=1}^n \mathbf{X}_m / n$. Then, $\sqrt{n}(\bar{\mathbf{X}}_n - \mu) \xrightarrow{d} \mathbf{Z} \sim \mathcal{N}_d(0, \Omega)$ where $\mathbf{Y}_n \xrightarrow{d} \mathbf{Y}$ means $F_{\mathbf{Y}_n}(u) \rightarrow F_{\mathbf{Y}}(u)$ for any continuity point $u \in \mathbb{R}^d$ of $F_{\mathbf{Y}}$.

PSD

$$\mathbf{Z} = \begin{bmatrix} z_1 \\ \vdots \\ z_d \end{bmatrix}$$

Theorem (Multivariate Law of Large Numbers)

Let $\{\mathbf{Y}_n\}$ be iid random vectors with $\mathbb{E}[\mathbf{Y}_k] = \mu$ and $\mathbb{E}\|\mathbf{Y}_k\| < \infty$, for all $k \geq 1$. Then,

$$\frac{1}{n} \sum_{k=1}^n \mathbf{Y}_k \xrightarrow{p} \mu$$

Theorem (Multivariate CLT)

Let $\{\mathbf{X}_n\}$ be an iid sequence of random vectors in \mathbb{R}^d with mean μ and covariance Ω and define $\bar{\mathbf{X}}_n := \sum_{m=1}^n \mathbf{X}_m / n$. Then, $\sqrt{n}(\bar{\mathbf{X}}_n - \mu) \xrightarrow{d} \mathbf{Z} \sim \mathcal{N}_d(0, \Omega)$ where $\mathbf{Y}_n \xrightarrow{d} \mathbf{Y}$ means $F_{\mathbf{Y}_n}(u) \rightarrow F_{\mathbf{Y}}(u)$ for any continuity point $u \in \mathbb{R}^d$ of $F_{\mathbf{Y}}$.

OK, but how fast?

$$\mathbf{I}_d = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \quad \sqrt{n} \left(\frac{1}{n} \sum \mathbf{Y}_i - \mu \right)$$

Theorem (Berry-Essen)

In the same setting as the previous theorem, take $\mu = 0$ and $\Omega = I_d$, then

$$\sup_{\mathbf{u} \in \mathbb{R}^d} \left| F_{\sqrt{n}\bar{\mathbf{Y}}}(\mathbf{u}) - F_{\mathbf{Z}}(\mathbf{u}) \right| \leq C n^{-1/2} d^{1/4} \mathbb{E} \|\mathbf{Y}_i\|^3.$$

$\frac{\mathbb{E}[\|\mathbf{Y}_i\|^3]}{\sqrt{n}}$
rate of convergence

We also have a vector version of the Delta Method:

Theorem (Delta Method – vector case)

Let $Z_n := a_n(\mathbf{X}_n - \mathbf{u}) \xrightarrow{d} \mathbf{Z}$ in \mathbb{R}^d where $a_n \in \mathbb{R}$, $\mathbf{u} \in \mathbb{R}^d$ and $a_n \uparrow \infty$. Let $g : \mathbb{R}^d \rightarrow \mathbb{R}^p$ be continuously differentiable at \mathbf{u} . Then,

$$a_n(g(\mathbf{X}_n) - g(\mathbf{u})) \xrightarrow{d} J_g(\mathbf{u})\mathbf{Z},$$

where $J_g(\mathbf{y})$ is the $p \times d$ Jacobian matrix of g ,

$$J_g(\mathbf{y}) = \begin{bmatrix} \frac{\partial}{\partial x_1} g_1(\mathbf{y}) & \dots & \frac{\partial}{\partial x_d} g_1(\mathbf{y}) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} g_p(\mathbf{y}) & \dots & \frac{\partial}{\partial x_d} g_p(\mathbf{y}) \end{bmatrix}.$$

Point Estimation

- ① Model phenomenon by distribution $F(y_1, \dots, y_n; \theta)$ on \mathcal{Y}^n , some $n \geq 1$.
- ② Distributional form is known but $\theta \in \Theta$ is unknown.
- ③ Observe realisation of $(Y_1, \dots, Y_n)^\top \in \mathcal{Y}^n$ from this distribution.
- ④ Use the realisation $\{Y_1, \dots, Y_n\}$ in order to make assertions concerning the true value of θ , and quantify the uncertainty associated with these assertions.

- ① Model phenomenon by distribution $F(y_1, \dots, y_n; \theta)$ on \mathcal{Y}^n , some $n \geq 1$.
- ② Distributional form is known but $\theta \in \Theta$ is unknown.
- ③ Observe realisation of $(Y_1, \dots, Y_n)^\top \in \mathcal{Y}^n$ from this distribution.
- ④ Use the realisation $\{Y_1, \dots, Y_n\}$ in order to make assertions concerning the true value of θ , and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:

- ① **Point Estimation.** Given realisation $(Y_1, \dots, Y_n)^\top$ from $F(y_1, \dots, y_n; \theta)$, how can we produce an educated guess for the unknown true parameter θ ?

$$T(Y) = \hat{\theta} \xrightarrow{P} \theta$$

- ① Model phenomenon by distribution $F(y_1, \dots, y_n; \theta)$ on \mathcal{Y}^n , some $n \geq 1$.
- ② Distributional form is known but $\theta \in \Theta$ is unknown.
- ③ Observe realisation of $(Y_1, \dots, Y_n)^\top \in \mathcal{Y}^n$ from this distribution.
- ④ Use the realisation $\{Y_1, \dots, Y_n\}$ in order to make assertions concerning the true value of θ , and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:

- ① **Point Estimation.** Given realisation $(Y_1, \dots, Y_n)^\top$ from $F(y_1, \dots, y_n; \theta)$, how can we produce an educated guess for the unknown true parameter θ ?

How? With a **point estimator**!

$$\hat{\theta}$$

Definition (Point Estimator)

$$\hat{\theta} \in \Theta$$

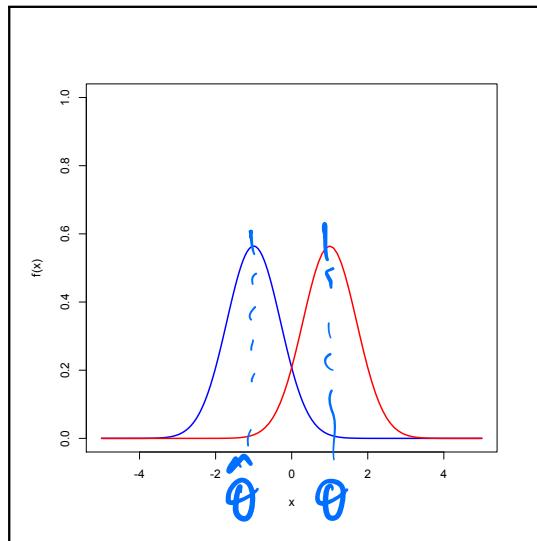
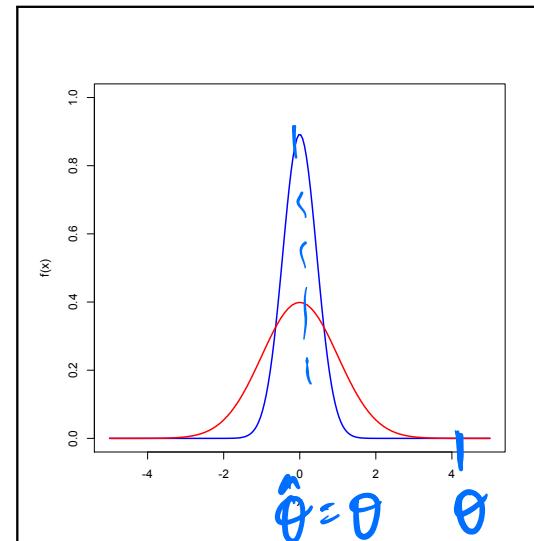
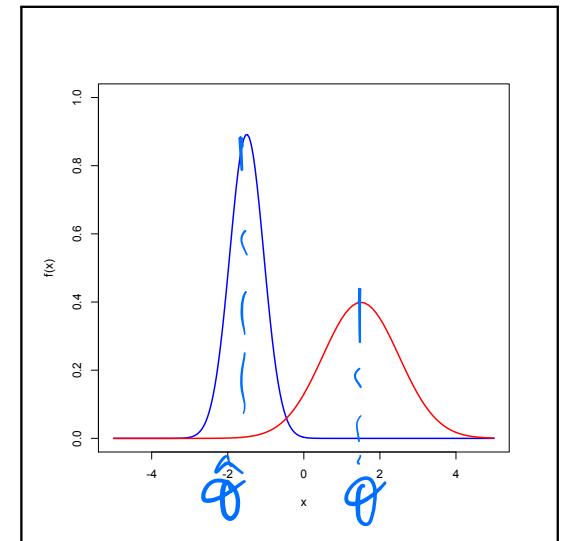
A statistic with codomain Θ is called a *point estimator*, i.e. a point estimator is a statistic $T : \mathcal{Y}^n \rightarrow \Theta \rightarrow \mathbb{R}^+$

Since the objective of an estimator is to estimate the θ that generated the data, we typically denote it by $\hat{\theta}(Y_1, \dots, Y_n)$, or just $\hat{\theta}$. Note that θ is a deterministic parameter, whereas $\hat{\theta}$ is a random variable.

But **which** estimator?

$$\hat{\theta} = \frac{1}{n} \sum Y_i$$

- Any statistic taking values in Θ could be used!
- Simpler yet, if we are given some $\hat{\theta}$, how do we judge its quality?
- Since estimators are *random variables*, every different realisation of the sample (Y_1, \dots, Y_n) will produce a different realised value for $\hat{\theta}$.
- A good estimator should be such that it typically manifests realisations that fall near the true θ .
$$\|\hat{\theta} - \theta\| < \varepsilon$$
- More precisely, the sampling distribution of an estimator should be concentrated around the true parameter value θ .



There is a multitude of criteria one can use, but a typical choice is to focus on two basic notions of location and spread for $\hat{\theta}$: its **mean** and **variance**

Why?

- ➊ **Ease of interpretation.** The expectation $\mathbb{E}[\hat{\theta}]$ informs us whether the sampling distribution is located near the truth, whereas the variance $\text{var}[\hat{\theta}]$ quantifies the degree of concentration around the expectation.
- ➋ **Central limit theory.** Using our theory of stochastic convergence, we can often approximate the sampling distribution of $\hat{\theta}$ by a normal distribution. The latter is fully described by its mean and variance.
- ➌ **Concentration inequalities.** We can often bound quantities such as $\mathbb{P}\{\|\hat{\theta} - \theta\| > \epsilon\}$ by means of moments.

A measure of precision that captures both mean and variance simultaneously is the **mean squared error**.

$$F_x, F_y$$

$$N(\mu, \sigma^2) = F_{(\mu, \sigma^2)}$$

Definition (Mean Squared Error)

Let $\hat{\theta}$ be an estimator of a parameter θ corresponding to a model $\{F_\theta : \theta \in \Theta\}$, $\Theta \subseteq \mathbb{R}^d$. The mean squared error of $\hat{\theta}$ is defined as

$$\text{MSE}(\hat{\theta}, \theta) = \mathbb{E} \left[\left\| \hat{\theta} - \theta \right\|^2 \right].$$

$$\text{Var}(X) = \mathbb{E}[\|X - \mathbb{E}[X]\|^2]$$

Definition (Mean Squared Error)

Let $\hat{\theta}$ be an estimator of a parameter θ corresponding to a model $\{F_\theta : \theta \in \Theta\}$, $\Theta \subseteq \mathbb{R}^d$. The mean squared error of $\hat{\theta}$ is defined as

$$\text{MSE}(\hat{\theta}, \theta) = \mathbb{E} \left[\left\| \hat{\theta} - \theta \right\|^2 \right].$$

And here's the relation to means and variances:

Lemma (Bias-Variance Decomposition)

The MSE admits the decomposition

$$\text{MSE}(\hat{\theta}, \theta) = \underbrace{\left\| \mathbb{E}[\hat{\theta}] - \theta \right\|^2}_{\text{bias}^2} + \underbrace{\mathbb{E} \left[\left\| \hat{\theta} - \mathbb{E}(\hat{\theta}) \right\|^2 \right]}_{\text{variance}} \text{Var}(\hat{\theta}).$$

mean $\hat{\theta}$
bias² variance $\text{Var}(\hat{\theta})$