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Su�cient Statistics

To understand the information carried by statistics on ✓, we need to understand
how they partition the sample space Yn.

Y = (Y1, . . . ,Yn)
iid⇠ F✓ and T (Y ) a statistic.

The level sets or contours of T are the sets

At = {y 2 Yn : T (y) = t}.

(all potential samples that could have given us the value t for T )

,! Clearly, T is constant when restricted to a level set.

Any realization of Y that falls in a given level set is equivalent as far as T is
concerned, as T reduces all these values to the same output.

Any inference drawn through T will be the same within a given level set.

So let’s look at the distribution of Y conditional on a given level set At of T ,
FY |T=t(y)...
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Suppose FY |T=t changes depending on ✓: we are losing information.

Suppose FY |T=t is functionally independent of ✓
=) Then Y contains no information about ✓ on the set At

=) In other words, Y is ancillary for ✓ on At

If this is true for each t 2 Range(T ) then T (Y ) contains the same
information about ✓ as Y itself does.
,! It does not matter whether we observe Y = (Y1, ...,Yn) or just T (Y ).

,! Knowing the exact value Y in addition to knowing T (Y ) does not give us any

additional information - Y is irrelevant if we already know T (Y ).

Definition (Su�cient Statistic)

A statistic T = T (Y ) is said to be su�cient for the parameter ✓ if the conditional
probability distribution of the sample given the statistic

FY |T (Y )=t(y1, ...,Yn) = P[Y1  y1, . . . ,Yn  yn|T (Y1, ...,Yn) = t]

does not depend on ✓.
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Example (Coin Tossing)

Let Y1, . . . ,Yn
iid⇠ Bernoulli(✓), and T (Y ) =

Pn
i=1 Yi . For y 2 {0, 1}n,

P[Y = y |T = t] =
P[Y = y ,T = t]

P[T = t]
=

P[Y = y ]
P[T = t]

1{⌃n
i=1yi = t}

=
✓⌃

n
i=1yi (1� ✓)n�⌃n

i=1yi
�n
t

�
✓t(1� ✓)n�t

1{⌃n
i=1yi = t}

=
✓t(1� ✓)n�t

�n
t

�
✓t(1� ✓)n�t

1{⌃n
i=1yi = t}

=

✓
n

t

◆�1

1{⌃n
i=1yi = t}.

T is su�cient for ✓ ! Given # of tosses that came heads, knowing which
tosses came heads is irrelevant in deciding the probability of heads:

0 0 1 1 1 0 1 VS 1 0 0 0 1 1 1 VS 1 0 1 0 1 0 1
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Definition hard to verify (especially for continuous variables)

Definition does not allow easy identification of su�cient statistics

Theorem (Fisher-Neyman Factorization Theorem)

Suppose that Y = (Y1, . . . ,Yn) has a joint density or frequency function f (y ; ✓),
✓ 2 ⇥. A statistic T = T (Y ) is su�cient for ✓ if and only if

f (y ; ✓) = g(T (y), ✓)h(y).

Example

Let Y1, ...,Yn
iid⇠ U [0, ✓] with pdf f (y ; ✓) = 1{y 2 [0, ✓]}/✓. Then,

fY (y) =
1

✓n
1{y 2 [0, ✓]n} =

1{max[y1, ..., yn]  ✓}1{min[y1, ..., yn] � 0}
✓n

Therefore T (Y ) = Y(n) = max[Y1, ...,Yn] is su�cient for ✓.
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Proof of Neyman-Fisher Theorem - Discrete Real Statistic.
Suppose first that T is su�cient. Then

f (y ; ✓) = P✓[Y = y ] =
X

t

P✓[Y = y ,T = t]

= P✓[Y = y ,T = T (y)] = P✓[T = T (y)]P[Y = y |T = T (y)]

Since T is su�cient, P[Y = y |T = T (y)] is independent of ✓ and so
f (y ; ✓) = g(T (y); ✓)h(y).

Now suppose that f (y ; ✓) = g(T (y); ✓)h(y). Then if
T (y) = t,

P[Y = y |T = t] =
P[Y = y ,T = t]

P[T = t]
=

P[Y = y ]
P[T = t]

1{T (y) = t}

=
g(T (y); ✓)h(y)1{T (y) = t}P

z :T (z)=t g(T (z); ✓)h(z)
=

h(y)1{T (y) = t}P
T (z)=t h(z)

.

which does not depend on ✓.
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Example (Su�cient statistics for i.i.d. normal samples)

Let Y1, ...,Yn
iid⇠ N(µ,�2). Recall that we can write

f (y ;µ,�2) =
e�

1
2 (

y�µ
� )2

�
p
2⇡

= exp

⇢
� 1

2�2
y2 +

µ

�2
y � 1

2
log(2⇡�2)� µ2

2�2

�

and so

fY1,...,Yn(y1, ..., yn) = exp

(
� 1

2�2

nX

i=1

y2
i +

µ

�2

nX

i=1

yi �
n

2
log(2⇡�2)� nµ2

2�2

)
.

Consequently, Fisher-Neyman factorisation implies that the statistic

S(Y ) =
�
S1(Y ), S2(Y )

�>
=
�Pn

i=1 Yi ,
Pn

i=1 Y
2
i

�>
=
�
Ȳ ,

Pn
i=1 Y

2
i

�>

is su�cient for the parameter (µ,�2) and so is the statistic

T (Y ) =
�
T1(Y ),T2(Y )

�>
=
�
n�1

Pn
i=1 Yi , n�1

Pn
i=1(Yi � Ȳ )2

�>

since T and S are 1-1 functions of each other.
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Example (Su�cient statistics for k-parameter exponential families)

More generally, consider a k-parameter exponential family, with density

f (y) = exp

8
<

:

kX

j=1

�jTj(y)� �(�1, ...,�k) + S(y)

9
=

; , y 2 Y.

Then an i.i.d. sample (Y1, ...,Yn)> has joint distribution

fY1,...,Yn(y1, . . . , yn) = exp

8
<

:

kX

j=1

�j⌧j(y1, . . . , yn)� n�(�1, ...,�n) +
nX

i=1

S(yi )

9
=

;

where

⌧j(y1, . . . , yn) =
nX

i=1

Tj(yi ).

So the statistic

⌧(Y1, ...,Yn) =
�
⌧1(Y1, ...,Yn), ..., ⌧k(Y1, ...,Yn)

�>

is su�cient for (�1, ...,�k) by Fisher-Neyman factorisation.
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Minimally Su�cient Statistics

We have seen that su�cient statistic compresses data without information
loss on parameter of interest.

How much info can we throw away? Is there a “necessary” statistic?

Definition (Minimally Su�cient Statistic)

A statistic T = T (Y ) is said to be minimally su�cient for the parameter ✓ if it is
su�cient for ✓ and for any other su�cient statistic S = S(Y ) there exists a
function g(·) with

T (Y ) = g(S(Y )).

Lemma
If T and S are minimally su�cient statistics for a parameter ✓, then there exists
injective functions g and h such that S = g(T ) and T = h(S).
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Theorem
Let Y = (Y1, ...,Yn) have joint density or frequency function f (y ; ✓) and
T = T (Y ) be a statistic. If f (y ; ✓)/f (z ; ✓) ? ✓ () T (y) = T (z). Then T is
minimally su�cient for ✓.

Proof.(*)

Assume for simplicity that f (y ; ✓) > 0 for all y 2 Rn and ✓ 2 ⇥. Let
T = {T (u) : u 2 Rn} be the image of Rn under T and let At be the level sets of
T . For each t, choose a representative element wt 2 At . Notice that for any y ,
wT (y) is in the same level set as y , so that

f (y ; ✓)/f (wT (y); ✓)

does not depend on ✓ by assumption. Let g(t, ✓) := f (wt ; ✓) and notice

f (y ; ✓) =
f (wT (y); ✓)f (y ; ✓)

f (wT (y); ✓)
= g(T (y), ✓)h(y)

and su�ciency follows from the Fisher-Neyman factorization theorem.
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[minimality part] Suppose that T 0 is another su�cient statistic. By the
factorization thm: 9g 0, h0 : f (y ; ✓) = g 0(T 0(y); ✓)h0(y). Let y , z be such that
T 0(y) = T 0(z). Then

f (y ; ✓)
f (z ; ✓)

=
g 0(T 0(y); ✓)h0(y)
g 0(T 0(z); ✓)h0(z)

=
h0(y)
h0(z)

.

Since ratio does not depend on ✓, we have by assumption T (y) = T (z). Hence T
is a function of T 0; so is minimal by arbitrary choice of T 0.

Example (Bernoulli Trials)

Let Y1, ...,Yn
iid⇠ Bernoulli(✓). Let z , y 2 {0, 1}n be two possible outcomes. Then

f (z ; ✓)
f (y ; ✓)

=
✓⌃zi (1� ✓)n�⌃zi

✓⌃yi (1� ✓)n�⌃yi

which is constant if and only if T (z) =
P

zi =
P

yi = T (y), so that T is
minimally su�cient.
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Example (Minimal su�ciency for k-parameter exponential families)

An i.i.d. sample (Y1, ...,Yn)> from an exponential family has joint distribution

fY1,...,Yn(y1, . . . , yn) = exp

8
<

:

kX

j=1

�j⌧j(y1, . . . , yn)� n�(�1, ...,�n) +
nX

i=1

S(yi )

9
=

;

where ⌧j(y1, . . . , yn) =
Pn

i=1 Tj(yi ), as before. If the {Tj}kj=1 are non-trivial, the
ratio f (y)/f (z) will be constant with respect to (�1, . . . ,�k) if and only if as
(�1, . . . ,�k) varies, the quantity below remains constant.

kX

j=1

�j

�
⌧j(y1, . . . , yn)� ⌧j(z1, . . . , zn)

�

So if (�1, ...,�k) range over an open parameter space of dimension k , this must
imply that

⌧j(y1, . . . , yn) = ⌧j(z1, . . . , zn).

Conversely, when the latter is true, the density ratio is clearly independent of the
parameters, and so the statistic ⌧(y) = (⌧1(y), ..., ⌧k(y)) is minimally su�cient
for (�1, ...,�k).
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Back to Sampling Distributions

Anything we do will be a function T (Y1, . . . ,Yn) of the sample

Sampling theory aims to understand:
1 X What information do di↵erent forms of functions T : Yn ! Rp carry on

the parameter ✓? X
2 ? What is the probability distribution of T (Y1, ...,Yn) and how does it relate

to F (y1, ..., yn; ✓) ?

We will now:

(2a) Review important special cases where sampling distributions can be exactly
determined, focussing on the iid sampling case.
,! focussing on su�cient statistics of Gaussian and exponential families.

(2b) Study ways of getting approximations to the sampling behaviour when the
precise form is not explicitly available or is tedious (stochastic convergence).
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Gaussian Sampling and Related Distributions

Theorem (Sampling Distribution of Gaussian Su�cient Statistics)

Let Y1, ...,Yn
iid⇠ N(µ,�2), and define

Ȳ = 1
n

Pn
i=1 Yi & S2 = 1

n�1

Pn
i=1(Yi � Ȳ )2.

The pair (Ȳ , S2) is minimally su�cient for (µ,�2) and:
1 The sample mean is distributed as Ȳ ⇠ N(µ,�2/n).
2 The random variables Ȳ and S2 are independent.

3 The random variable S2 satisfies
n � 1

�2
S2 ⇠ �2

n�1.

Corollary (Moments of Su�cient Statistics)

If Y1, . . . ,Yn
iid⇠ N(µ,�2), then

E[Ȳ ] = µ, var(Ȳ ) = �2

n , E
⇥
S2
⇤
= �2, var(S2) = 2�4

n�1 .

(which is why we typically prefer factor of (n � 1)�1 instead of n�1 in S2)
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Theorem (Sums of Gaussian Squares)

Let {Z1, ...,Zk} be i.i.d. N(0, 1) random variables. Then,

Z 2
1 + . . .+ Z 2

k ⇠ �2
k .

Recall that a random variable X is said to follow the chi-square distribution with
parameter k 2 N (called the number of degrees of freedom), denoted X ⇠ �2

k , if it
holds that X ⇠ Gamma(k/2, 1/2). In other words,

fX (x ; k) =

(
1

2k/2�( k
2 )
x

k
2�1e�

x
2 , if x � 0

0 if x < 0.

The mean, variance and moment generating function of X ⇠ �2
k are given by

E[X ] = k , var[X ] = 2k , M(t) = (1� 2t)�k/2, t <
1

2
.
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Theorem (Student’s Statistic and its Sampling Distribution)

Let Y1, ...,Yn
iid⇠ N(µ,�2). Then, the empirically standardised mean satisfies

Ȳ � µ

S/
p
n

⇠ tn�1.

Recall that a random variable X is said to follow Student’s t distribution with
parameter k 2 N (called the number of degrees of freedom), denoted X ⇠ tk , if,

fX (x ; k) =
�
�
k+1
2

�

�
�
k
2

�p
k⇡

✓
1 +

x2

k

◆� k+1
2

,

Assuming k > 2, the mean and variance of X ⇠ tk are given by

E[X ] = 0, var[X ] =
k

k � 2
.

The mean is undefined for k = 1 and the variance is undefined for k  2. The
moment generating function is undefined for any k 2 N.
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Theorem (Ratios of Gaussian Sums of Squares and F-Statistic)

Let Y1 ⇠ �2
d1

and Y2 ⇠ �2
d2

be independent random variables. Then,

Y1/d1
Y2/d2

⇠ Fd1,d2 .

A random variable X is said to follow the Snedecor-Fisher F distribution with
parameters d1 2 N and d2 2 N, denoted X ⇠ Fd1,d2 , if

fX (x ; d1, d2) =

8
<

:
1

B( d1
2 ,

d2
2 )

⇣
d1
d2

⌘d1/2
x

d1
2 �1

⇣
1 + d1

d2
x
⌘� d1+d2

2
, if x � 0

0 if x < 0.

The mean, variance of X ⇠ Fd1,d2 are given by

E[X ] =
d2

d2 � 2
, provided d2 > 2, var[X ] =

2d2
2 (d1 + d2 � 2)

d1(d2 � 4)(d2 � 2)2
provided d2 > 4.

The moment generating function does not exist.
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Some remarks:

Notice that in all cases we considered sampling distributions when the sample
is iid Normal.

It’s possible to consider samples that are jointly Normally distributed but not
iid. This we postpone till later, when we bring in covariates and study
regression.

It’s not particularly productive to insist on the formulae for the densities of
�2, t and F distributions.

,! Much better to think of them as being implicitly defined via their relation to

iid Gaussian sampling (sums of squares and their normalised ratios, etc).

,! This is what is crucial to remember, along with the relation of their

parameters (degrees of freedom) to the setting at hand.
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Theorem (Sampling from an Exponential Family)

Let Y1, ...,Yn
iid⇠ f , where

f (y) = exp

(
kX

i=1

�iTi (y)� �(�1, ...,�k) + S(y)

)
, � = (�1, ...,�k)

> 2 � ✓ Rk

be a density of a k-parameter exponential family form.

If � is open, then:
1 The minimally su�cient statistic for � is ⌧ = (⌧1, ..., ⌧k) where

⌧j(y1, ..., yn) =
Pn

i=1 Tj(yi ).

2 The function � is infinitely di↵erentiable in all k of its variables, and

E[⌧ ] = nr��(�) and cov[⌧ ] = nr2
��(�),

that is,

E[⌧j ] = n @
@�j

�(�1, ...,�k) and cov{⌧m, ⌧j} = n @2

@�m@�j
�(�1, ...,�k).

(recall that minimal su�ciency was already shown in an example)
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Proof. (*)

Focus on case k = 1, so that ⌧j = ⌧ =
Pn

i=1 T (Yi ). Let �0 2 �. Since � is open,
there exists s su�ciently small so that �0 + s 2 �. Now note that the MGF
MT (Y1)(u) = E[exp(uT (Y1))] evaluated at s is

Z

R
esT (y)e�0T (y)��(�0)+S(y)dy = e�(�0+s)��(�0)

Z

R
e(�0+s)T (y)��(�0+s)+S(y)dy

| {z }
=1

1 Therefore MT (Y1)(s) < 1 for s su�ciently small, and thus:
all moments of T (Y1) exist,

and MT (Y1)(s) is infinitely di↵erentiable on an open neighbourhood of 0.

2 Furthermore, �(s + �0) is infinitely di↵erentiable for s small enough, i.e. � is
infinitely di↵erentiable in an open neighbourhood of �0. But �0 is arbitrary
so � is infinitely di↵erentiable everywhere on �.

Now we we may di↵erentiate w.r.t. s,and, setting s = 0, we get

E[T (Y1)] = �0(�) and var[T (Y1)] = �00(�).

The conclusion follows by the fact that ⌧ =
Pn

i=1 T (Yi ).
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Approximate Sampling Behaviour and Stochastic Convergence

Unfortunately, the sampling distribution of a statistic T (Y1, . . . ,Yn) isn’t always
obtainable in a closed/convenient form

,! Even when T is the su�cient statistic in an exponential family, we may not
have a nice workable form for the sampling distribution.

,! In this case we know that the sampling distribution is again a k-parameter
exponential family, but its form may be tedious to work with.

General strategy:

Approximate the sampling distribution FT (Y1,...,Yn) by a simpler distribution G

Of course we must make sense of what it means that “the distribution FT (Y1,...,Yn)

is approximated by the distribution G”.

1 We will view FT (Y1,...,Yn) as a sequence of functions indexed by sample size n.

2 Thus, “approximation by G” will be understood as a form of convergence of
Fn to G as n ! 1.

3 En route, we will also discover a stronger form of convergence.
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Convergence in Distribution (Weak Convergence)

Definition (Convergence in Distribution (Weak Convergence))

Let {Fn}n�1 be a sequence of distribution functions and G be a distribution
function on R. We say that Fn converges in distribution (or weakly) to G , and

write Fn
d�! G , whenever

Fn(y)
n!1�! G (y),

for all y constituting continuity points of G (i.e. all y such that
lim"!0 G (y + ") = G (y)).

Example

Let Y1, . . . ,Yn
iid⇠ U [0, 1], Mn = max{Y1, ...,Yn}, and Qn = n(1�Mn).

P[Qn  y ] = P[Mn � 1� y/n] = 1�
⇣
1� y

n

⌘n n!1�! 1� e�y

for all y � 0. Hence Qn
d! Q, with Q ⇠ exp(1).
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Comments:
1 Convergence in distribution ⌘ pointwise convergence of distribution function,

with the exception that it is not necessary to have convergence at
discontinuity points of the limit.

2 When Fn(y) = P[Yn  y ] for a sequence of random variables {Yn}n�1 and
G (y) = P[Z  y ] for another random variable Z , we will abuse notation and
write

Yn
d�! Z .

3 Our aim of approximating the sampling distribution now translates into
finding a random variable Z whose distribution is explicitly known and such
that

T (Y1, ...,Yn)
d�! Z

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 23 / 38



Comments:
1 Convergence in distribution ⌘ pointwise convergence of distribution function,

with the exception that it is not necessary to have convergence at
discontinuity points of the limit.

2 When Fn(y) = P[Yn  y ] for a sequence of random variables {Yn}n�1 and
G (y) = P[Z  y ] for another random variable Z , we will abuse notation and
write

Yn
d�! Z .

3 Our aim of approximating the sampling distribution now translates into
finding a random variable Z whose distribution is explicitly known and such
that

T (Y1, ...,Yn)
d�! Z

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 23 / 38

d



Comments:
1 Convergence in distribution ⌘ pointwise convergence of distribution function,

with the exception that it is not necessary to have convergence at
discontinuity points of the limit.

2 When Fn(y) = P[Yn  y ] for a sequence of random variables {Yn}n�1 and
G (y) = P[Z  y ] for another random variable Z , we will abuse notation and
write

Yn
d�! Z .

3 Our aim of approximating the sampling distribution now translates into
finding a random variable Z whose distribution is explicitly known and such
that

T (Y1, ...,Yn)
d�! Z

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 23 / 38



Convergence in Probability

A stronger notion of convergence is convergence in probability:

Definition

When a sequence of random variables {Yn} satisfies P[|Yn � Y | > ✏]
n!1�! 0 for all

✏ > 0 and a given random variable Y , we say that Yn converges in probability to
Y , and write Yn

p�! Y .

Example

Let U1, . . . ,Un
iid⇠ U [0, 1] and Mn = max{U1, ...,Un}. Fix ✏ 2 (0, 1). Then

P[|Mn � 1| > ✏] = P[Mn > 1 + ✏] + P[Mn < 1� ✏] = 0 + (1� ✏)n
n!1! 0 .

Hence Mn
p! 1 as n ! 1.
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Comments:

Convergence in probability implies convergence in distribution.

Convergence in distribution does not imply convergence in probability

,! Consider Z ⇠ N (0, 1), �Z +
1
n

d! Z but �Z +
1
n

p! Z .

“
d!” relates distribution functions. It says the probabilistic behaviour of a

sequence Yn becomes more and more alike to that of the limit Y .

“
p!” relates random variables. It says that the actual realisations of Yn can

be progressively approximated with high probability by those of Y .

Both notions of convergence are metrizable

,! i.e. there exist metrics on the space of all random variables that are

compatible with the notion of convergence.

,! Hence can use things such as the triangle inequality etc.
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Theorem

(a) Yn
p! Y =) Yn

d! Y

(b) Yn
d! c =) Yn

p! c , c 2 R.

Proof
(a)Let y be a continuity point of FY and ✏ > 0. Then,

P[Yn  y ] = P[Yn  y , |Yn � Y |  ✏] + P[Yn  y , |Yn � Y | > ✏]

 P[Y  y + ✏] + P[|Yn � Y | > ✏]

since {Y  y + ✏} contains {Yn  y , |Yn � Y |  ✏}. Similarly,

P[Y  y � ✏] = P[Y  y � ✏, |Yn � Y |  ✏] + P[Y  y � ✏, |Yn � Y | > ✏]

 P[Yn  y ] + P[|Yn � Y | > ✏]

which yields

P[Y  y � ✏]� P[|Yn � Y | > ✏]  P[Yn  y ].

Combining the two inequalities and “sandwiching” yields (a).
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(b) Let F be the distribution function of a constant r.v. c ,

F (y) = P[c  y ] =

(
1 if y � c ,

0 if y < c .

P[|Yn � c | > ✏] = P[{Yn � c > ✏} [ {c � Yn > ✏}]
= P[Yn > c + ✏] + P[Yn < c � ✏]

 1� P[Yn  c + ✏] + P[Yn  c � ✏]
n!1�! 1� F (c + ✏| {z }

�c

) + F (c � ✏| {z }
<c

) = 0

Since Yn
d! c .
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Now we explore the stability of stochastic convergence notions under
transformation.

Theorem (Continuous Mapping Theorem)

Let g : R ! R be a continuous on the range of Y . Then,

(a) Yn
p! Y =) g(Yn)

p! g(Y )

(b) Yn
d! Y =) g(Yn)

d! g(Y )

Theorem (Slutsky’s Theorem)

Let Xn
d! X and Yn

d! c 2 R. Then
(a) Xn + Yn

d! X + c

(b) XnYn
d! cX
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Proof of Slutsky’s Theorem.

(a) We may assume c = 0. Let x be a continuity point of FX . We have

P[Xn + Yn  x ] = P[Xn + Yn  x , |Yn|  ✏] + P[Xn + Yn  x , |Yn| > ✏]

 P[Xn  x + ✏] + P[|Yn| > ✏]

Similarly, P[Xn  x � ✏]  P[Xn + Yn  x ] + P[|Yn| > ✏], therefore,

P[Xn  x � ✏]� P[|Yn| > ✏]  P[Xn + Yn  x ]  P[Xn  x + ✏] + P[|Yn| > ✏]
Since ✏ is arbitrary, this proves (a) by taking n ! 1.

(b) It su�ces to assume c = 0 (since (Yn + c)Xn = XnYn + Xnc , so if we can

show XnYn

d
! 0, then (a) gives conclusion). Let ✏,M > 0:

P[|XnYn| > ✏]  P[|XnYn| > ✏, |Yn|  1/M] + P[|Yn| � 1/M]

 P[|Xn| > ✏M] + P[|Yn| � 1/M]
n!1�! P[|X | > ✏M] + 0

The first term can be made arbitrarily small by letting M ! 1.
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Theorem (General Version of Slutsky’s Theorem)

Let g : R⇥ R ! R be continuous and suppose that Xn
d! X and Yn

d! c 2 R.
Then, g(Xn,Yn) ! g(X , c) as n ! 1.

,!Notice that the general version of Slutsky’s theorem does not follow
immediately from the continuous mapping theorem.

The continuous mapping theorem would be applicable if (Xn,Yn) weakly
converged jointly (i.e. their joint distribution) to (X , c).

But here we assume only marginal convergence (i.e. Xn
d! X and Yn

d! c
separately, but their joint behaviour is unspecified).

The key of the proof is that in the special case where Yn
d! c where c is a

constant, then marginal convergence () joint convergence.

However if Xn
d! X where X is non-degenerate, and Yn

d! Y where Y is
non-degenerate, then the theorem fails.

Notice that even the special cases (addition and multiplication) of Slutsky’s
theorem fail of both X and Y are non-degenerate.

We will later consider joint stochastic convergence.
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Law of Large Numbers and Central Limit Theorem

Continuous mappings and Slutsky’s lemma allow us to get new approximations
from old ones.

,! But how do we get limit theorems in the first place?

Typically these stem from a clever use of the following two fundamental theorems:

Theorem (Law of Large Numbers)

Let {Yn} be independent random variables with E[Yk ] = µ and E|Yk | < 1, for all

k � 1. Then, n�1(Y1 + . . .+ Yn)
p�! µ.

Theorem (Central Limit Theorem)

Let {Yn} be an i.i.d sequence with mean µ and variance �2 < 1. Then,

p
n

 
1

n

nX

i=1

Yi � µ

!
d! N(0,�2).

Said di↵erently, for large n, Ȳ ⇡ N(µ,�2/n) or Y1 + . . .+ Yn ⇡ N(nµ, n�2).
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from old ones.

,! But how do we get limit theorems in the first place?
Typically these stem from a clever use of the following two fundamental theorems:
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The following theorem combines Slutksy’s lemma and the continuous mapping
theorem in order to allow us to transform central limit theorems:

Theorem (The Delta Method)

Let Zn := an(Xn � ✓)
d! Z where an, ✓ 2 R for all n and an " 1. Let g(·) be

continuously di↵erentiable at ✓. Then, an(g(Xn)� g(✓))
d! g 0(✓)Z .

Proof
Taylor expanding around ✓ gives:

g(Xn) = g(✓) + g 0(✓⇤n)(Xn � ✓), ✓⇤n between Xn, ✓.

Thus |✓⇤n � ✓| < |Xn � ✓| = a�1
n · |an(Xn � ✓)| = a�1

n Zn
p! 0 [by Slutsky]

Therefore, ✓⇤n
p! ✓. By the continuous mapping theorem g 0(✓⇤n)

p! g 0(✓).

Thus an(g(Xn)� g(✓)) = an(g(✓) + g 0(✓⇤n)(Xn � ✓)� g(✓))

= g 0(✓⇤n)an(X � ✓)
d! g 0(✓)Z .

The delta method also applies even when g 0(✓) is not continuous (proof harder).
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We can apply this machinery to get the following result for the sampling
distribution of a su�cient statistic in a 1-parameter exponential family:

Corollary

Let Y1, . . . ,Yn
iid⇠ f , where

f (x) = exp {�T (x)� �(�) + S(x)} , x 2 X

with � 2 � ✓ R and

T n =
1

n

nX

i=1

T (Xi ) = n�1⌧(X1, . . . ,Xn).

If � is open, then � is infinitely di↵erentiable, and so

p
n(T n � �0(�))

d�! N(0, �00(�)).

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 33 / 38

I defn

O



The following more general CLT is often useful:

Theorem (Weighted Sum CLT)

Let {Wn} be an i.i.d sequence of real random variables, with common mean 0 and
variance 1. Let {�n} be a sequence of real constants. Then, if

sup
1jn

�2
jPn

i=1 �
2
i

n!1�! 0 =) 1qPn
i=1 �

2
i

nX

i=1

�iWi
d! N(0, 1).

Supremum condition amounts to saying that, in the limit, any single
component contributes a negligible proportion of the total variance.

Coe�cient sequence {�n} might very well diverge, without contradicting the
negligibility condition.
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Convergence of Random Vectors

To have joint convergence, we need to consider random vectors:

Definition

Let {Yn} be a sequence of random vectors of Rd , and Y a random vector of Rd

with Yn = (Y (1)
n , ...,Y (d)

n )T and Y = (Y (1), ...,Y (d))T. Define the distribution

functions FYn(y) = P[Y (1)
n  y (1), ...,Y (d)

n  y (d)] and
FY (y) = P[Y (1)  y (1), ...,Y (d)  y (d)], for y = (y (1), ..., y (d))T 2 Rd . We say

that Yn converges in distribution to Y as n ! 1 (and write Yn
d! Y ) if for every

continuity point of FY we have

FYn(y)
n!1�! FY (y).

There is a link between univariate and multivariate weak convergence:

Theorem (Cramér-Wold Device)

Let {Yn} be a sequence of random vectors of Rd , and Y a random vector of Rd .
Then,

Yn
d! Y () uTYn

d! uTY , 8u 2 Rd .
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Continuous mapping theorem and Slustky’s lemma generalise to vector case.

In either case, continuity is understood in the multidimensional sense:
1 Continuous mapping: If g : Rp ! Rd

is continuous on the range of U , and if

Un
d! U in Rp

, then g(Un)
d! g(U) in Rd

.

2 Slutsky: If g : Rp ⇥ Rq ! Rd
is continuous, and if Un

d! U in Rp
and

Wn
d! u in Rq

, for some deterministic u, then g(Un,Wn)
d! g(U , u).

Convergence in probability easily generalises to the vector case:

Definition

When a sequence of random vectors {Yn} in Rd satisfies P[kYn � Y k > ✏]
n!1�! 0

for all ✏ > 0 and a given random d-vector Y , we say that Yn converges in
probability to Y , and write Yn

p�! Y .
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Theorem (Multivariate Law of Large Numbers)

Let {Yn} be iid random vectors with E[Yk ] = µ and EkYkk < 1, for all k � 1.
Then,

1

n

nX

k=1

Yk
p�! µ

Theorem (Multivariate CLT)

Let {Xn} be an iid sequence of random vectors in Rd with mean µ and covariance

⌦ and define X̄ n :=
Pn

m=1 Xm/n. Then,
p
n(X̄ � µ)

d! Z ⇠ Nd(0,⌦) where

Yn
d! Y means FYn(u) ! FY (u) for any continuity point u 2 Rd of FY .

OK, but how fast?

Theorem (Berry-Essen)

In the same setting as the previous theorem, take µ = 0 and ⌦ = I , then

sup
u2Rd

���Fp
nȲ (u)� FZ (u)

���  Cn�1/2d1/4EkYik3.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 37 / 38

0 Fi

YPSD
2 f



Theorem (Multivariate Law of Large Numbers)

Let {Yn} be iid random vectors with E[Yk ] = µ and EkYkk < 1, for all k � 1.
Then,

1

n

nX

k=1

Yk
p�! µ

Theorem (Multivariate CLT)

Let {Xn} be an iid sequence of random vectors in Rd with mean µ and covariance

⌦ and define X̄ n :=
Pn

m=1 Xm/n. Then,
p
n(X̄ � µ)

d! Z ⇠ Nd(0,⌦) where

Yn
d! Y means FYn(u) ! FY (u) for any continuity point u 2 Rd of FY .

OK, but how fast?

Theorem (Berry-Essen)

In the same setting as the previous theorem, take µ = 0 and ⌦ = I , then

sup
u2Rd

���Fp
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We also have a vector version of the Delta Method:

Theorem (Delta Method – vector case)

Let Zn := an(Xn � u) d! Z in Rd where an 2 R, u 2 Rd and an " 1. Let
g : Rd ! Rp be continuously di↵erentiable at u. Then,

an(g(Xn)� g(u)) d! Jg (u)Z ,

where Jg (y) is the p ⇥ d Jacobian matrix of g ,

Jg (y) =

2

64

@
@x1

g1(y) . . . @
@xd

g1(y)
...

. . .
...

@
@x1

gp(y) . . . @
@xd

gp(y)

3

75 .
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Point Estimation
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Point Estimation

1 Model phenomenon by distribution F (y1, ..., yn; ✓) on Yn, some n � 1.

2 Distributional form is known but ✓ 2 ⇥ is unknown.

3 Observe realisation of (Y1, ...,Yn)> 2 Yn from this distribution.

4 Use the realisation {Y1, . . . ,Yn} in order to make assertions concerning the
true value of ✓, and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:
1 Point Estimation. Given realisation (Y1, . . . ,Yn)> from F (y1, ..., yn; ✓), how

can we produce an educated guess for the unknown true parameter ✓?

How? With a point estimator!

Definition (Point Estimator)

A statistic with codomain ⇥ is called a point estimator, i.e. a point estimator is a
statistic T : Yn ! ⇥.

Since the objective of an estimator is to estimate the ✓ that generated the data,
we typically denote it by ✓̂(Y1, ...,Yn), or just ✓̂. Note that ✓ is a deterministic
parameter, whereas ✓̂ is a random variable.
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But which estimator?

Any statistic taking values in ⇥ could be used!

Simpler yet, if we are given some ✓̂, how do we judge its quality?

Since estimators are random variables, every di↵erent realisation of the
sample (Y1, . . . ,Yn) will produce a di↵erent realised value for ✓̂ .

A good estimator should be such that it typically manifests realisations that
fall near the true ✓.

More precisely, the sampling distribution of an estimator should be
concentrated around the true parameter value ✓.
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There is a multitude of criteria one can use, but a typical choice is to focus on
two basic notions of location and spread for ✓̂: its mean and variance

Why?

1 Ease of interpretation. The expectation E[✓̂] informs us whether the sampling
distribution is located near the truth, whereas the variance var[✓̂] quantifies
the degree of concentration around the expectation.

2 Central limit theory. Using our theory of stochastic convergence, we can
often approximate the sampling distribution of ✓̂ by a normal distribution.
The latter is fully described by its mean and variance.

3 Concentration inequalities. We can often bound quantities such as
P{k✓̂ � ✓k > ✏} by means of moments.

A measure of precision that captures both mean and variance
simultaneously is the mean squared error.
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Mean Squared Error

Definition (Mean Squared Error)

Let ✓̂ be an estimator of a parameter ✓ corresponding to a model {F✓ : ✓ 2 ⇥},
⇥ ✓ Rd . The mean squared error of ✓̂ is defined as

MSE(✓̂, ✓) = E
���✓̂ � ✓

���
2
�
.

And here’s the relation to means and variances:

Lemma (Bias-Variance Decomposition)

The MSE admits the decomposition

MSE(✓̂, ✓) =
���E[✓̂]� ✓

���
2

| {z }
bias2

+ E
h��✓̂ � E(✓̂)

��2
i

| {z }
variance

.
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