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Sufficient Statistics

To understand the information carried by statistics on 6, we need to understand
how they partition the sample space V".

0 Y:(Yl,...,Y)”d Fo and T(Y) a statistic. é\ \
—

,

@ [ he level sets or contours of T are the sets TUJ? 2\‘ =

. (A
O TLUEC

(all potential samples that could have given us the value t for T)

— Clearly, T is constant when restricted to a level set.

—
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Sufficient Statistics

To understand the information carried by statistics on 6, we need to understand
how they partition the sample space V".

oY =(Yi,....Y,) " Fy and T(Y) a statistic.

@ [he level sets or contours of T are the sets
Ar={y eY": T(y)=t}.

(all potential samples that could have given us the value t for T)

— Clearly, T is constant when restricted to a level set.

@ Any realization of Y that falls in a given level set is equivalent as far as T is
concerned, as T reduces all these values to the same output.

@ Any inference drawn through T will be the same within a given level set.

@ So let's look at the distribution of Y conditional on a given level set A; of T,
FY|T:t(y)"'
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@ Suppose Fy|7—; changes depending on ¢:: we are losing information.

@ Suppose Fy|7—; is functionally independent of ¢

— Then Y contains no information about 6 on the set A;
—> In other words, Y is ancillary for 6 on A;

NN
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@ Suppose Fy|7—; changes depending on ¢:: we are losing information.

@ Suppose Fy|7—; is functionally independent of ¢

— Then Y contains no information about 6 on the set A;
—> In other words, Y is ancillary for 6 on A;

@ If this is true for each t € Range(T) then T(Y) contains the same
information about 6 as Y itself does.

— It does not matter whether we observe Y = (Y1,..., Y,) or just T(Y).
— Knowing the exact value Y in addition to knowing T(Y') does not give us any
additional information - Y is irrelevant if we already know T(Y).

—
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@ Suppose Fy|7—; changes depending on ¢:: we are losing information.

@ Suppose Fy|7—; is functionally independent of ¢

— Then Y contains no information about 6 on the set A;
—> In other words, Y is ancillary for 6 on A;

@ If this is true for each t € Range(T) then T(Y) contains the same
information about 6 as Y itself does.

> It does not matter whether we observe Y = (Yi1,..., Ys) or just T(Y).
— Knowing the exact value Y in addition to knowing T(Y) does not give us any
additional information - Y is irrelevant if we already know T(Y).

Definition (Sufficient Statistic) ’

A statistic T = T(Y) is said to be sufficient for the parameter 6 if the conditional
probability distribution of the sample given the statistic

FY|T(Y):t(y17 ey Yn) — P[Yl <Vi,..., Yp < yn|T(Y1, ey Yn) = t]

does not depend on 6.
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Let Yi,..., Y, " Bernoulli(6), and T(Y)=S"__Y;. Fory € {0,1}",

SRR Zol¢

By —yjT—g L PE=AT oA P[Y:”uz, P

P[T=¢t "~

6F(1 — 6)"—

— (:)Ht(l—é’)” " X,y =t}

— (n>_11{z, Wi = t}.

~AA—
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Let Yi,..., Y, " Bernoulli(6), and T(Y)=S"__Y;. Fory € {0,1}",

PlY=y, T=1t PlY=y]
P[T=t  P[T =t
_ 927:1}/,'(]_ _ )n Y yi
o (:)Ht(]. . H)n_t {zl 1Yi = t}
Ot (1 — o)t

— (:)6”(1—(9)” " X,y =t}

- (:>_11{z i = t)

@ T is sufficient for & — Given # of tosses that came heads, knowing which
tosses came heads is irrelevant in deciding the probability of heads:

PlY =y|T = t] HYil,yi =t}

0011101 VS 1000111 VS 1010101
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@ Definition hard to verify (especially for continuous variables)

@ Definition does not allow easy identification of sufficient statistics
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@ Definition hard to verify (especially for continuous variables)

@ Definition does not allow easy identification of sufficient statistics

Theorem (Fisher-Neyman Factorization Theorem)

Suppose that Y = (Y1,...,Yns) has a joint density or frequency function f(y;0),
6 € ©. A statistic T = T(Y) is sufficient for 0 if and only if

(v:6) = 8(T (). D) /
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@ Definition hard to verify (especially for continuous variables)

@ Definition does not allow easy identification of sufficient statistics

Theorem (Fisher-Neyman Factorization Theorem)

Suppose that Y = (Y1,...,Y,) has a joint density or frequency function f(y; @),
0 € ©. A statistic T = T(Y') is sufficient for 0 if and only if

fy:0) =g(T(y),0)hly). )

Let Yi,..., Y, ”dU[o 0] with pdf f(y:0) = 1{y € [0,6]} /6. Then,

(y) = 1y € [0.6]" }—@%ﬂm SED)

Therefore T(Y) = Y(,) = max[Y1, ..., Y,] is sufficient for 6. @Cﬂa? B) l"[‘d3
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Proof of Neyman-Fisher Theorem - Discrete Real Statistic.
Suppose first that T is sufficient. Then

(=)
i) = BlY=y]= S BlY =y T=@ 7

- t
Y =y|T=T(y

= PyY =y, T =T(y) = Pl T = T(y)
Since T is sufficient, P[Y = y|T = T(y)] is independent of 6 and so Qlﬂ(‘)
fy:0) =g(T(y):0)hly).
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Proof of Neyman-Fisher Theorem - Discrete Real Statistic.
Suppose first that T is sufficient. Then

fy;0) = PolY =y] :ZPQ[Y:}’» T = t]

= PolY =y, T=T(y)]=Po[T =TW)IPLY =y|T = T(y)]

Since T is sufficient, P[Y = y| T = T(y)] is independent of 6 and so

f(y;0) =g(T(y);0)h(y). Now suppose that f(y;0) = g(T(y);0)h(y). Then if
T(y)=1t

S Loyes FC A
PY = y|T = 1 i e wl{m—t}

" Ty OhUT(y) =t} _ h(y)I{T(y) =t}
m( (z);0)h (Z‘)J ZT(Z) . h(2)

L *‘\x
which does not depend on 6. X
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iid

Let Y1,..., Y, ~ N(u,0?). Recall that we can wr|te o, ng):O
2(y u) 1 1 5
: 2 € 2, M 2 v
f(y,ﬂwO')—— o ;?F;q){__202)ﬁ + :Zy-— ElOg(2#0')-— 557{}
1% ¢ 4‘ f ro o ——
and so &2\ T 9, M D)
2
R I = exp{ Zy, + = Zy, @og(%az) @ }
N

Consequently, Fisher-Neyman factorisation |mpI|es that the statistic

S(Y) = (S51(Y), %(Y)) " = ( ZLT = (7, 2. 78"

is sufficient for the parameter (u,0?) and so is the statistic

T J T
T(Y) = (TU(Y), To(Y)) | = (@950, ¥, n 0 (Y — VP2)
\—/'_\___,_

since T and S are 1-1 functions of each other.
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More generally, consider a k-parameter exponential family, with density

r /Z \
fy)=expq > ¢ Ti(y) — (o1, ..., o) + S(y)

(= :

Then an i.i.d. sample (Y1, ..., Y;,) ' has joint distribution

Y
~»

ye.

( K n )
fyl,...,Yn(.yla IR 7.yn) = exXp < Z QSJTI(.yla <o 7)/n) — n7(¢17 X3 an) + Z 5()/:) >
L= é;i J
where .
Tj(yla---,)/n) :Z
s — i=1
So the statistic
-
T(Yl, vy Yn) — (Tl(Yl, ceey Yn), ...,Tk(Yl, vy Yn))
is sufficient for (¢1, ..., k) by Fisher-Neyman factorisation.
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Minimally Sufficient Statistics

@ We have seen that sufficient statistic compresses data without information
loss on parameter of interest.

@ How much info can we throw away? Is there a “necessary’ statistic?

Definition (Minimally Sufficient Statistic) l

A statistic T = T(Y) is said to be minimally sufficient for the parameter 8 if it is
sufficient for @ and for any other sufficient statistic S = S(Y) there exists a

function g(+) with

T(Y) = g(5(Y)).

Lemma |
If T and S are minimally sufficient statistics for a parameter 6, then there exists

injective functions@d@ch that S = g(T) and T = h(S).
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Theorem |

Let Y = (Yi,..., Ya) have joint density or frequ function f(y;0) and
T =T(Y) be a statistic. If)f ,0)/f(z;0) L0 < T(y)=T(z)p Then T is

m/n/ma//y sufficient for 6. = —

Proof.(*)

Assume for simplicity that f(y;0) > 0 for all y € R” and 6 € ©. Let
T ={T(u):uecR"} be the image of R" under T and let A; be the level sets of

mse a representative element w; € A;. Notice that for any y,
WT(y) Is in the same level set as y, so that -

f(y;:0)/f(wr(y): 0)

does not depend on 6 by assumption. Let g(t, ) := f(w;; 8) and notice

- Pt L
y:0) - Q@ (T(y). 0)h(y)
WT(.Y) _LL e,

and sufficiency follows from the Fisher-Neyman factorization theorem.
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[minimality part] Suppose that@is another sufficient statistic. By the
factorization thm: dg’. A’ :  f(y;0) =g'(T'(y);0)h'(y). Let y, z be such that

T'(y) = T'(2). Then dekn. ;/‘/‘

fy:0) & g/ (T'(y):0)W (y) [H(y)

f(z:0) g (T'(2):0)h(z) \W(z) )L g

R
Since ratio does not depend on 6, we have by assumption T(y) = T(z). Hence T
is a function of T’; so is minimal by arbitrary choice of T'. DJ
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[minimality part] Suppose that T’ is another sufficient statistic. By the
factorization thm: dg’. A’ :  f(y;0) =g'(T'(y);0)h'(y). Let y, z be such that
T'(y) = T'(z). Then

fy:0) _ g'(T'(y):0)h'(y) _ h'(y)
f(z;0) g'(T'(2):0)h'(z) H(z)

Since ratio does not depend on 6, we have by assumption T(y) = T(z). Hence T
is a function of T’; so is minimal by arbitrary choice of T'. []

v

Let Y1,..., Y, i Bernoulli(#). Let z,y € {0,1}" be two possible outcomes. Then
dtis1t)
f(z;:0) L 6821 — o)==

fly;0) 629(1—0)2v

which is constant if and only if T(z) =) z =) yi = T(y), so that T is
minimally sufficient.
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An i.i.d. sample (Y1,...,Y,)' from an exponential family has joint distribution

\

Vs

k n
le,...,Yn(yla s 7yn) — €Xp < Z ¢j7ji(y17 s 7yn) — n7(¢17 L) ¢n) + Z S(yi)

¥ Jj=1 =1 )

wher@r S Yn) = &ms before. If the {T}k , are non-trivial, the

ratio (y)/f(z) will be constant with respect to (¢1, W only if as
(¢1,- . @) varies, the quantity below remains constant.

k

Z(bJ(TJ(YIw--a)/n)—Tj(zl,...,z,,)) = Q/JL@)’,JI)D

=L )

So if (¢1,---, 9k) range over an open parameter space of dimension k, this must
imply that

i1y s ¥n) = Tj(21, ..., Zn).

Conversely, when the latter is true, the density ratio is clearly independent of the
parameters, and so the statistic 7(y) = (71(y), ..., 7k(y)) is minimally sufficient

for (¢1, ..., dk).
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Back to Sampling Distributions

Anything we do will be a function T(Y,...,Y,) of the sample

Sampling theory aims to understand:
© v What information do different forms of functions T : " — RP carry on
the parameter 67
@ ? What is the probability distribution of T(Y4,..., Y,) and how does it relate

to F(y1, ..oy ¥Yn; 0) 7
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Back to Sampling Distributions

l-m2Y ‘ET

Anything we do will be a function T(Y,...,Y,) of the sample

Sampling theory aims to understand:
© v What information do different forms of functions T : " — RP carry on

the parameter 67
@ ? What is the probability distribution of T(Y4,..., Y,) and how does it relate

to F(y1, ..oy ¥Yn; 0) 7

We will now:
(2a) Review important special cases where sampling distributions can be exactly
determined, focussing on the iid sampling case.
— focussing on sufficient statistics of Gaussian and exponential families.

ar———

(2b) Study ways of getting approximations to the sampling behaviour when the
precise form is not explicitly available or is tedious (stochastic convergence).
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Gaussian Sampling and Related Distributions

Theorem (Sampling Distribution of Gaussian Sufficient Statistics)

Let Yi,..., Y, /S /\/(,y 02), and define

VoI & S =y (- V)
W
The pair (Y, S?) is minimally sufficient for (i, 0?) and:

Q@ The sample mean is distributed as Y ~ N(,u,@)

@ The random variables Y and S? are /ndependent oq eﬂﬂg@s 08/
-1 HMDM

© The random variable S? satisfies 5 ~ X2
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Gaussian Sampling and Related Distributions

Theorem (Sampling Distribution of Gaussian Sufficient Statistics) \

Let Yi,..., Yo S N(u,02), and define

V=1YT Y & S AT (Y- V)
1 @ 1

The pair (Y, S?) is minimally sufficient for (i, c?) and:
© The sample mean is distributed as Y ~ N(u,o2/n).

@ The random variables Y and S? are independent.

© The random variable S? satisfies — 5%~ X1

O

Corollary (Moments of Sufficient Statistics)

IFYe,. .., Yo i N(u,0?), then

E[Y]@ var(Y) = <, E|[S?

(which is why we typically prefer factor of Q_L_/l):l instead of n™! in §?)

S~— —
Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 14 /38

4

o2, var(S?) = 2%




Let {Z,...,Zx} be iid. N(O,1) random variables. Then,

(Z)s ..+ @~ e




Theorem (Sums of Gaussian Squares)
Let {Z1, ..., Zx} be i.id. N(0,1) random variables. Then,

ZF+...+ZF ~ X3

Recall that a random variable X is said to follow the chi-square distribution with

parameter k € N (called the number of degrees of freedom), denoted X ~ X%@ if it
holds that X ~ Gamma(k/2,1/2). In other words,

fox
1 k_1 _—_x .
——~x2 e 2, ifx>0
fx(x; k) = 26/21(3)
0 if x <O.

The mean, variance and moment generating function of X ~ % are given by

E[X] =k,  var[X]= 2k, M(t) = (1 —2t)" /2, @< %

N
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Theorem (Student's Statistic and its Sampling Distribution)

Let Yi,..., Y, i N(u,0?). Then, the empirically standardised mean satisfies
L WAoo~ qummh‘{y

N - p > V£
alS o
0;‘ CNDRE

%mda(wzcg( Snhow e
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Theorem (Student's Statistic and its Sampling Distribution)
Let Yi,..., Y, i N(u,0?). Then, the empirically standardised mean satisfies
h T

Y —
a ~ th-1.
n

5/v/n

Recall that a random variable X is said to follow Student’s t distribution with
parameter k € N (called the number of degrees of freedom), denoted X ~ t, if,

(_'/\_——
=t 2\ T2
fx(x; k) = /Ez) (1—|—X—> :
B

r(3) Vkr

(.
Assuming@ the mean and variance of X ~ t, are given by

E[X] =0, var[X]= k—EZ

-

The mean is undefined for k = 1 and the variance is undefined for kK < 2. The
moment generating function is undefined for any k € N.
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Let Y1 ~ x5 and Y, ~ x2 be independent random variables. Then,

- - 8

Ys )

~ F:Gﬁ,db'
—
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Theorem (Ratios of Gaussian Sums of Squares and F-Statistic)

Let Y1 ~ Xf,l and Y, ~ be be independent random variables. Then,

"/ ~ Fg g
Y2/d2 1,42°

A random variable X is said to follow the Snedecor-Fisher F distribution with
parameters d; € N and d» € N, denoted X ~ Fgq, 4,, If

( d d1/2 d d _M
_ 1 (a L di 2 : >
iy s () (18 e
0 if x <O0.
The mean, variance of X ~ Fg4, 4, are given by
% 2d3(dy + dp — 2)

E[X] =

> provided d> > 4.

ided dr > 2 X] =
, Provi eq/g/l,var[ ] 01 (dy — D)(dy — 2) h > 4.

dy — 2

The moment generating function does not exist.
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Some remarks:

@ Notice that in all cases we considered sampling distributions when the sample
is iid Normal.

@ It's possible to consider samples that are jointly Normally distributed but not
iid. This we postpone till later, when we bring in covariates and study

regression.

@ It's not particularly productive to insist on the formulae for the densities of
x?2, t and F distributions.

— Much better to think of them as being implicitly defined via their relation to
iid Gaussian sampling (sums of squares and their normalised ratios, etc).

— This is what is crucial to remember, along with the relation of their
parameters (degrees of freedom) to the setting at hand.
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Theorem (Sampling from an Exponential Family)
i . s open wn I & ¥xe
Let Yy, ..., Y, = f, where Ofen s¢ c[),:[z??a st al y lgrxgiz
k yed
f(y) =exp {Z ¢i Ti(y) = (o1, .. 0) + 5()/)} . @ =(P1,-0k)' €D CR

———

=1__ —— J
be a density of a k-parameter exponential family form. ©e l—@"
If ® is open, then:

© The minimally sufficient stati ) @: (71, ..., Tk) where

(Y1, s ¥n) = 2oima Ti(i).

N~

Q@ The functior@ is infinitely differentiable in all k of its variables, and
E[r] = @((ﬁ) and  cov[r] = nV2y(9),

that is, - T
2
El7;] = ”3%1.7@17 .y @k) and  cov{Tm,Tj} = ”WV(%, ooy Dk ).
— o A— 4

(recall that minimal sufficiency was already shown in an example)

<
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Proof. (*)

Focus on case k = 1, so that 7j = 7 = S T(Y)). Let po € ®. Since ® is open,
there exists s sufficiently small so that &y s € ®. Now note that the MGF
Mt (v,)(u) = E[exp(gT(Y1))] evaluatedat s is iz ( /fj

tn | eTW e T =160+ gy, — fldots)=(lé0) [ o(d0t5)T(r)=7(do+5)+S(y
defs |, Al e e
- 1
= Jfepay

Q Therefore Mr(y,)(s) < oo for s sufficiently small, and thus:

o all moments of T(Y1) exist,
o and My (y,)(s) is infinitely differentiable on an open neighbourhood of 0.

@ Furthermore, ¥(s + ¢g) is infinitely differentiable for s small enough, i.e. v is
infinitely differentiable in an open neighbourhood of ¢g. But ¢q is arbitrary
so 7 is infinitely differentiable everywhere on &.

Now we we may differentiate w.r.t. s,and, setting s = 0, we get

E[T(Y1)] = 7'(¢) and var[T (Y1)] = 7" (9).

M ~

The conclusion follows by the fact that 7= > ", T(Y}). 1|
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Approximate Sampling Behaviour and Stochastic Convergence

Unfortunately, the sampling distribution of a statistic T(Y1,...,Y,) isn't always
obtainable in a closed/convenient form

— Even when T is the sufficient statistic in an exponential family, we may not
have a nice workable form for the sampling distribution.

— In this case we know that the sampling distribution is again a k-parameter
exponential family, but its form may be tedious to work with.
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Approximate Sampling Behaviour and Stochastic Convergence

Unfortunately, the sampling distribution of a statistic T(Y1,...,Y,) isn't always
obtainable in a closed/convenient form

— Even when T is the sufficient statistic in an exponential family, we may not
have a nice workable form for the sampling distribution.

— In this case we know that the sampling distribution is again a k-parameter
exponential family, but its form may be tedious to work with.

General strategy:

Approximate the sampling distribution Fr(y, . v,) by a simpler distribution G

Of course we must make sense of what it means that “the distribution Fr(y, vy,
is approximated by the distribution G".

Q@ We will view Fr(y, . v,) as a sequence of functions indexed by sample size n.

© Thus, “approximation by G" will be understood as a form of convergence of
F,to G as n — . 7’/,,,-’9@,(;50

© En route, we will also discover a stronger form of convergence.
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Convergence in Distribution (Weak Convergence)

Definition (Convergence in Distribution (Weak Convergence))

Let {F,}n>1 be a sequence of distribution functions and G be a distribution
function on R. We say that F, convPerges in )distribution (or weakly) to G, and
write F, LN G, whenever /L (T % d(p P (G sd)
n— oo
Faly) — G(y),

for all y constituting continuity points of G (i.e. all y such that

lim.o Gy +¢) = G(y))~ )
A
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Convergence in Distribution (Weak Convergence)

Definition (Convergence in Distribution (Weak Convergence))

Let {F,}n>1 be a sequence of distribution functions and G be a distribution
function on R. We say that F, converges in distribution (or weakly) to G, and

write F, -5 G, whenever £, — F
n—- o0

for all y constituting continuity points of G (i.e. all y such that
lim._0 G(y +¢) = G(y)). )

- J
Let Y1,..., Y, 'r'\CJlZ/{[O, 1],@: max{Y1,..., Yo}, and Q, = n(1 — Mn‘).)
/L_/L/\/ — /\L/’f
( y ¢ =
PIQn < y] = BIM, = 1—y/n] = 1— (1= L) =25 1 — e
for all y > 0. Hence Q, % Q, with @ ~ exp(1).
— = 'k‘

e
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Comments:

© Convergence in distribution = pointwise convergence of distribution function,
with the exception that it is not necessary to have convergence at
discontinuity points of the limit.
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Comments:

© Convergence in distribution = pointwise convergence of distribution function,
with the exception that it is not necessary to have convergence at
discontinuity points of the limit.

@ When Fn(y) = P[Y, < y] for a sequence of random variables { ¥, },>1 and
G(y) = P[Z < y] for another random variable Z, we will abuse notation and

write

y, 4. 7.
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Comments:

© Convergence in distribution = pointwise convergence of distribution function,
with the exception that it is not necessary to have convergence at
discontinuity points of the limit.

@ When F,(y) =P[Y, < y] for a sequence of random variables { Y, },>1 and
G(y) = P[Z < y]| for another random variable Z, we will abuse notation and

write .
Yn H Z.

© Our aim of approximating the sampling distribution now translates into
finding a random variable Z whose distribution is explicitly known and such
that

T(Y1,...Y,) -5 Z
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Convergence in Probability

A stronger notion of convergence is convergence in probability:
Definition

When a sequence of random variables {Y,} satisfies IP’“ Yn — Yl >(¢ nifp_for all
e > 0 and a given random variable Y, we say that Y, converges in probability to

Y, and write Y, Y.
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Convergence in Probability

A stronger notion of convergence is convergence in probability:

Definition

When a sequence of random variables {Y,} satisfies e] == 0 for all
e > 0 and a given random variable Y, we say that Y, converges in probability to

Y and write Y, =5 Y.

v

o d

Let Uy, ..., U, ~U[0,1] and M, = max{Uy, ..., U,}. Fix € € (0,1). Then
¢
P[M, —1| > ¢l =P[M, > 14+ €] +P[M,<1—¢=0+(1-¢)""=°0.
s) " -
Hence M, P 1asn— 0.
e — o
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e d
Comments: X —3Y = X— Y &

@ Convergence in probability implies convergence in distribution.

@ Convergence in distribution does not imply convergence in probability

s Consider Z ~ N(0,1), = Z + 1 % Z but —Z + %)’(z.
—_— — v -

Hd”

@ "—" relates distribution functions. It says the probabilistic behaviour of a
sequence Y, becomes more and more alike to that of the limit Y.

o "2 relates random variables. It says that the actual realisations of Y/, can
be progressively approximated with high probability by those of Y.

@ Both notions of convergence are metrizable

—

< i.e. there exist metrics on the space of all random variables that are
compatible with the notion of convergence.

— Hence can use things such as the triangle inequality etc.
S~

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 25 /38



Mekri
(C d()
I') OV oy
s«)mcc/ ()()
o

g dx,x) =0
& =
rU) 7/ |
O d(ﬁ,ﬂ)‘o
—O & XK=
=J

@\‘('/n.
hn
angie Mmequalily”
d o
= d
(.3(]1'05 *d
(§r2)






Theorem
a) V,2Y = Vv, 3v

b) Yo Sec = Y,B¢c ceRr

Proof
(a)lLet Wt of Fy and € > 0. Then,
4
W)LY, < = PlIY, < v, |Ys =Y <€ +PlY, <y, |Y,— Y| >c¢€
PP <yl = BlYa <y |Yo= YIS+ PIYa<y.|Ya= Y] >
PlY <y+¢+P[|Y,— Y| > ¢
N— — R
since {Y <y + ¢} contains {Y, <y, |Y,— Y| <e}. Similarly,
—€)
iE’ PlY <y—¢ = PIY<y—¢|Yo=Y|<+P[Y<y—c¢]|Ys—Y|>
Cr——— S\ |
< JP[Y, <y]+P[|Y,—Y|>¢€
J\/—_J
which yields 7

PlY <y—¢ —=P[|Ys—Y]|>¢ <P[Y, <yl
B tn=~
Combining the two inequalities and “sandwiching” yields (a).
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(b) Let F be the distribution function of a constant r.v. c,

FyY) r9=¢

1 — B ]l ify>c,
Fly)=Ble<yl=3, fy<c
\ C - j/w—z‘/ﬁgu%v?z(u(/
Pl|Y,—c|>€¢] = PH{Y,—c>e}tU{c—Y, > ¢€}]

W

= P[Y,>c+¢€¢]+PlY, <c—¢€
< Ll—IP’[YnSC—i—e]—I—IP’[YnéDC—e]

n—o0
— 1—F(c+e)+F(c—¢€)=0
~—~— ~—~—
>c Se
e
d = '&0
Since Y, — c. 1 []
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Now we explore the stability of stochastic convergence notions under
transformation.

Theorem (Continuous Mapping Theorem)
Let g : R — R be a continuous on the range of Y. Then,
(@) Yo=Y = g(Ya) = g(Y)

2
(b) YadY — g(Ya) S g(Y)
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Now we explore the stability of stochastic convergence notions under
transformation.

Theorem (Continuous Mapping Theorem)
Let g : R — R be a continuous on the range of Y. Then,
(@) Yo=Y = g(Ya) = g(Y)

2
(b) YadY — g(Ya) S g(Y)

Theorem (Slutsky's Theorem)

o
Letx,,ixgmdyn@cel&. Then n— o 25 %Y
O R ACS ot ryue = Xat o

- 4
(b) X,Yn 2 X " genelo Mt
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Proof of Slutsky's Theorem.

(a) We may assume ¢ = 0. Let x be a continuity point of Fx. We have

v
PXo+ Y, <x] = PXo+Y,<x,|Yo <€l +P[Xs+ Y, < X, | Vo] > €]
ZQ? (1 = P[X, < x + €] + P[| Y| > €]
74«\+\(w
Similarly, PX, < x—¢] <P[X,+ Y, < x|+ P[|Ya] > €], therefore,

P[X, < xE €] = P[|Y,| > ] <P[X, + Y, < x] <P[X, < x+ €] +P[|Yy] > €
Since ¢ is arbitrary, this proves (a) by taking n — oco.
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Proof of Slutsky's Theorem. |

(a) We may assume ¢ = 0. Let x be a continuity point of Fx. We have

PXo+ Y, <x] = PX,+Y,<x,|Ya <e€e]+P[X,+ Ya <x,|Y, > ¢
< P[X, < x+¢€]+P[|Y,] > €

Similarly, PX, < x—¢] <P[X,+ Y, < x|+ P[|Ya] > €], therefore,

PXy < x—€ =P[|Ya] > €] <P[X,+ Y <x] <P[X, <x+¢€+P[|Ya] > €
Since € is arbitrary, this proves (a) by taking n — oc.
(b) It suffices to assumec;@ (since (Y, + ¢c)X, = X, Y, + X,c, so if we can

d
show X,Y,, — 0, then (a) gives conclusion). Let ¢, M > 0:

P[IX, Yol >¢ < PX.Ya > Y <1/ +IP>
T < P Xa] > eM] 4+ DY, > 1/M]
/\_/\/_\/

X P[X|>eM]+0

The first term can be made arbitrarily small by letting M — oc.
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Llet g :R xR — R be continuous and suppose that X, % X and Yn 4 ceR.
Then, g(X,, Yn) d, g(X,c) as n — oo.




Theorem (General Version of Slutsky's Theorem)

Let g : R x R — R be continuous and suppose that X, % X and Yn 4 ceR
Then, g(X,, Ya) — g(X,c) as n — oo.

y
Ol
— Notice that the general version of Slutsky’s theorem does not follow \ f_ C

immediately from the continuous mapping theorem.

@ The continuous mapping theorem would be applicable if (X,, Y,) weakly
converged jointly (i.e. their joint distribution) to (X, c).

. . d d
@ But here we assume only marginal convergence (i.e. X, = X and Y,, — ¢

separately, but their joint behaviour is unspecified).

@ The key of the proof is that in the special case where Y/, % ¢ where c is a

. = - AA——
constant, then marginal convergence <= joint conveéergence.

@ However if X, % X where X is non-degenerate, and Y, %Y where Y is

e

non-degenerate, then the theorem fails. \fm-&—)C

@ Notice that even the special cases (addition and multiplication) of Slutsky's

theorem fail of both X and Y are non-degenerate.

We will later consider joint stochastic convergence.
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Law of Large Numbers and Central Limit Theorem

Continuous mappings and Slutsky's lemma allow us to get new approximations
from old ones.

— But how do we get limit theorems in the first place?
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Law of Large Numbers and Central Limit Theorem

Continuous mappings and Slutsky's lemma allow us to get new approximations
from old ones.

— But how do we get limit theorems in the first place?
Typically these stem from a clever use of the following two fundamental theorems:

Theorem (Law of Large Numbers)

Let {Yn} be independent random variables with E[Yx] = pn and E| Y| < oo, for all
k>1. Then, Y (Yi+...+Y,) = | |

R 4

N

N
-:'T(',’]Z\(t—"/’(

=

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 31/38



Law of Large Numbers and Central Limit Theorem

Continuous mappings and Slutsky's lemma allow us to get new approximations
from old ones.

— But how do we get limit theorems in the first place?
Typically these stem from a clever use of the following two fundamental theorems:

Theorem (Law of Large Numbers) |

Let {Y,} be independent random variables with E[Y)] = u and E|Y\| < oo, for all
k>1. Then, Y (Yi+...+Y,) =

Theorem (Central Limit Theorem) »
l
Let {Y,} be an i.i.d sequence with mean p and variance@< oo. Then,
v

or
Said differently, for large n, Y ~ N(u,0°/n) or Y1 + ...+ Y, ~ N(nu, no?).
AN
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The following theorem combines Slutksy's lemma and the continuous mapping
theorem in order to allow us to transform central limit theorems:

Theorem (The Delta Method)
d A NC(?, (5_2)
Let Z, := a,(X, — 0) = Z where a,,0 € R for all n and &, 1 o) Let g(-) be

continuously differentiable @ Then, a,(g(X,) — g(0)) — g'(0)Z.
== : =
9le)'> U7 - 7 9 (2 G-
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The following theorem combines Slutksy's lemma and the continuous mapping
theorem in order to allow us to transform central limit theorems:

Theorem (The Delta Method)

Let Z, := a,(X, — 0) Z where a,,0 € R for all n and a, T co. Let g(-) be
continuously differentiable at 6. Then, a,(g(X,) — g(0)) < g'(0)Z.

4
Proof
- : . (/ 2
\’Taylor expanding around 0 gives: +_@ ég_) C:Xn' 9)
Ltk - ordes -

g(X,) = g(0) + g’(@(Xn —0), 6 betweenz)%,,, 6.
maltiply CAAAE by %n

Thus |05 — 0] < |X, — 0] = 2,1 - [@)Xn — 0)] = 2, "€ 5 0 [by Slutsky]
Therefore, 8% = 6. By the continuous mapping thegiecrgpg’(ﬁﬁ) @ g'(0).
of ¢

Thus an(g(Xn) —g(0)) = an(gld) +g'(0;)( X, —6) _3(6{))
) = (&'(0;)dn(X —0) > g'(0)Z.

The delta method also applies even when g’(#) is not continuous (proof harder).
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We can apply this machinery to get the following result for the sampling
distribution of a sufficient statistic in a 1-parameter exponential family:

Corollary

jid
Let Yi,...,Y, ~ f, where
' J&{eﬁlf

f(x) =exp{dT(x) —v(¢) +S(x)}, xeX
with ¢ € & C R and

\

n

— 1
Ty=— T(Xi) = -1 X,...,Xn.
) 2700 = X

If then -~y is infinitely differentiable, and so
PR

V(T o —+'(8)) —Z+ N(O,7"(9)).
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The following more general CLT is often useful:

Theorem (Weighted Sum CLT)

Let {W,} be an i.i.d sequence of real random variables, with common mean 0 and
variance 1. Let {~,} be a sequence of real constants. Then, if

1
— M &
. " W“W oy

p ,, 20 fy,W A N(O, 1)
D i 17: Q;DI 1 —
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The following more general CLT is often useful:

Theorem (Weighted Sum CLT)

Let {W,} be an i.i.d sequence of real random variables, with common mean 0 and
variance 1. Let {~,} be a sequence of real constants. Then, if

2 n

[ n o 1 J
sup n% > =30 = ) YiW; % N(0,1).
1<j<n Zi:]. ,yl' \/27:1 7,2 =1

@ Supremum condition amounts to saying that, in the limit, any single
component contributes a negligible proportion of the total variance.

e Coefficient sequence {~,} might very well diverge, without contradicting the
negligibility condition.
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Convergence of Random Vectors

To have joint convergence, we need to consider random vectors:

Definition |
Let {Y,} be a sequence of random vectors of R?, and(Y /a random vector of R?
with ¥, = (Y, ., Y )T and ¥ = (YD, ..., Y(@)T. Define the distribution
functions Fy (y) = IP’[Yn(l) <y .., yi¥ < y(] and o1 CDF

Fy(y) =PIYW <yW L v@ <y for y = (yI), ., y(D)T € R, We say

e . d .
that Y, converges in distribution to Y as n — oo (and write Y, — Y) if for every
continuity point of Fy we have

Fy,(y) = Fy(y).

e~

There is a link between univariate and multivariate weak convergence:

Theorem (Cramér-Wold Device) \

Let {Y,} be a sequence of random vectors of R?, and Y a random vector of R?.
Then, Covx. veckorr

@ — %TY,,&uTY, Vu € RY.
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@ Continuous mapping theorem and Slustky's lemma generalise to vector case.

@ In either case, continuity is understood in the multidimensional sense:
© Continuous mapping: If g : R G is continuous on the range of U, and if
U, % U in R”, then g(U») 2 g(U) in R

@ Slutsky: If g: R” X R — R is continuous, and if U, % U in R” and
W, % u in R, for some deterministic u, then g(Un, W,) LN g(U, u).

—

Convergence in probability easily generalises to the vector case:

Definition
n— oo

When a sequence of random vectors {Y,} in RY satisfies P[|| Y, — Y||@g e] — 0
for all e > 0 and a given rando—vector Y, we say that Y, converges in

probability to Y, and write Y, Y.
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Theorem (Multivariate Law of Large Numbers)

Let {Y,} be iid random vectors with E

 iid [Yz] = uandEHYkH < oo, for all k > 1.
Then,

Y;

Theorem (Multivariate CLT)

Let {X,} be an iid sequence of random vectors in R? W/th mear@and covariance

and define X, := > _ m/n Then, /n(X — p) % Z Nwhere

Y, % Y means Fy, (u) — Fy( ) for any continuity point u € RY of Fvw

Ty z-|"

S

(

21

L
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Theorem (Multivariate Law of Large Numbers)
Let {Y,} be iid random vectors with E[Yy]| = p and E||Y|| < oo, for all k > 1.

Then,
1 & b
=) Vi p
k=1

Theorem (Multivariate CLT)

Let {X,} be an iid sequence of random vectors in RY with mean p and covariance
Q and define X, := > _ Xm/n. Then, \/n(X — p) %4 Z~ Nq(0, ©2) where
Y, % Y means Fy (u) — Fy(u) for any continuity point u € RY of Fy.

Y,
OK, but how fast? 14 - (O‘ ' \3 {n (’sz\(&'f;)

Theorem (Berry-Essen) 0 ’

4

In the same setting as the previous theorem, take p=0a 0 and _&_\‘l{ then gj
AN

F@u) - Fz(u)| < cn,vl/ﬁauv 2. Cn

Late, of ch\\IZfO’@V\CL y
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We also have a vector version of the Delta Method:

Theorem (Delta Method — vector case)

Let Z
g: IR%@

an(g(Xn) —

where Jz(y) is the p x d Jacobian matrix of g,

Jg(y)

a%lgl(}’)

%gp()’)

aixdgl(y)

aixdgp()’) ]

= a,(X, — )%Zlan where a, € R, u € RY and a, 1 co. Let
— R be continuously differentiable at u. Then,

g(u)) 2 Up(u)Z

e —
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Point Estimation
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Point Estimation

© Model phenomenon by distribution F(y1, ..., y,;0) on )", some n > 1.
@ Distributional form is known but 6 € © is unknown.
© Observe realisation of (Y1,...,Y,)' € V" from this distribution.

© Use the realisation {Y7,..., Y,} in order to make assertions concerning the
true value of 6, and quantify the uncertainty associated with these assertions.

—
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Point Estimation

© Model phenomenon by distribution F(y1, ..., y,;0) on )", some n > 1.

@ Distributional form is known but 6 € © is unknown.

© Observe realisation of (Y1, ..., Y,a,)T c V" from this distribution.

© Use the realisation {Y1,..., Y,} in order to make assertions concerning the

true value of 6, and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:
@ Point Estimation. Given realisation (Y1,...,Y,)' from F(y1, ..., yn: 0), how
can we produce an educated guess for the unknown true parameter 67

(=89
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Point Estimation

© Model phenomenon by distribution F(y1, ..., y,;0) on )", some n > 1.

@ Distributional form is known but 6 € © is unknown.

© Observe realisation of (Y1,...,Y,)' € V" from this distribution.

© Use the realisation {Y1,..., Y,} in order to make assertions concerning the

true value of 6, and quantify the uncertainty associated with these assertions.

The first sort of assertion we wish to make is:

@ Point Estimation. Given realisation (Y1,...,Y,)' from F(y1, ..., yn: 0), how
can we produce an educated guess for the unknown true parameter 67
I
How? With a point estimator! Y
Definition (Point Estimator) B e o

A statistic with codomain © is called a point estimator, i.e. a point estimator is a

o o +
statistic T: )" — ©.— [~ )

Since the objective of an estimator is to estimate the 6 that generated the data,
we typically denote it by (Y1, ..., Y,), or just 6. Note that 6 is a deterministic
parameter, whereas 6 is a random variable.
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But which estimator? é j "’2\(
@ Any statistic taking values in © could be used! " '

o Simpler vet, if we are given some 6, how do we judge its quality?

@ Since estimators are random variables, every different realisation of the

sample (Y1,...,Y,) will produce a different realised value for 0 .
gk

@ A good estimator should be such that it typically manifests realisations that

fall near the true 6. 1 fe -pli<g

@ More precisely, the sampling distribution of an estimator should be
concentrated around the true parameter value 6.

\

P

] I p—
R

T T 24.2,‘023
9 - -@ 92@ 7]
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There is a multitude of criteria one can use, but a typical choice is to focus on
two basic notions of location and spread for 6: its mean and variance

Why?

© Ease of interpretation. The expectation IE|9A] informs us whether the sampling
distribution is located near the truth, whereas the variance var[f] quantifies
the degree of concentration around the expectation.

© Central limit theory. Using our theory of stochastic convergence, we can
often approximate the sampling distribution of 8 by a normal distribution.
The latter is fully described by its mean and variance.

© Concentration inequalities. We can often bound quantities such as

P{||d — 0|| > ¢} by means of moments.
—_—

A measure of precision that captures both mean and variance
simultaneously is the mean squared error.
mean squared €
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Mean Squared Error ¥ v
K 1

1 N 0 )= ?Lrﬁﬁi)

Definition (Mean Squared Error)

Let  be an estimator of a parameterAO corresponding to a model @ 6 e 0O},
© C R9. The mean squared error of § is defined as

MSE(4, 6) mzl .

S ()= ELIA- BT
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Mean Squared Error

Definition (Mean Squared Error)

Let 6 be an estimator of a parameter 6 corresponding to a model {Fp : 6 € O},
© C R9. The mean squared error of § is defined as

R 2
e—eM.

And here’s the relation to means and variances:

MSE(4,0) = E [

Lemma (Bias-Variance Decomposition)

. .. N
The MSE admits the decomposition e 0

MSE(d, §) = HE[@] _ QHiﬂE{Hé ~E@)|*

V.

bias? VEg’n% \’a\( LAQ‘\
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