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Conditional Moments

We can calculate the conditional expectation of a random variable X given that
another random variable Y took the value y as

Yoex XPX =x|Y =y], if X,Y are discrete,
E[X|Y = y] =
f:f: x fx v (x|y)dx, if X, Y are continuous.

Precisely the expectation of the conditional distribution.
Note that E[X|Y = y] = q(y) results in a function of only y.
One can plug Y into g(-) and consider Z = g(Y') as a random variable itself.

Important property/interpretation:
E[X|Y] = argminE[|X — g(¥)|?
g

Among all functions! of Y, E[X|Y] best approximates X in mean square.

Imeasurable
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Important properties of E[X|Y]:

@ ‘Tower property’: E[E[X|Y]} =E[X]

@ If X independent of Y, then E[X|Y] = E[X].

@ E[g(Y)X|Y] = g(Y)E[X]|Y] (taking out known factors)
Q Linearity: E[aX; + Xz|Y] = aE[X1| Y] + E[Xz]Y].

@ Monotonicity: X1 < Xo = E[X;1|Y] < E[Xz]Y]
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The conditional variance of X given Y is defined as

var[X|Y] = E| (X — E[X|Y])? M — E[X?|Y] — (E[X|Y])?

The law of total variance states that
var(X) = E [var[X| Y]] 4+ var (E[X]|Y])
Proof:
var(X) = E[X?] - E?[X]
= E[EP|Y] - B2[E[X|Y]]
= E [var[X\ Y] + E2[X| Y]} — B2[E[X|Y]]

E[var[X|Y]] + E[E[X| Y]] — E*[E[X]| Y]]
E [var[X]| Y]] + var (E[X]|Y]).
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Covariance Matrices

The covariance matrix of a random vector Y = (Yi,..., Yd)T, say Q@ = {Q;}, is
a d x d symmetric matrix with entries

Q; = cov(Y,, ¥;) = E[(Y; ~ E[Y)(Y; ~ B[V}, 1<i<j<d.

That is, the covariance matrix encodes the variances of the coordinates of Y (on
the diagonal) and the pairwise covariances between any two coordinates of Y (off
the diagonal).

If we write

for the mean vector of Y, then
EI(Y — u)(Y — ) 1= E[YYT] - pp”.

Similarly to the vector case, the expectation of a matrix with random entries is the
matrix of expectations of the random entries.
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Covariance Matrices and Linear Transformations

Let Y be a random d x 1 with mean vector u be the mean vector and covariance
matrix €.

e PSD: for any B € R, we have 3723 > 0.

o If Ais a p x d deterministic matrix, the mean vector and covariance matrix
of AY are A and AQAT, respectively.

o If B € R? is a deterministic vector, the variance of 3T Y is 37 Q0.

o If B, € RY are deterministic vectors, the covariance of 3T Y with v T Y is
T
7' QB.
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Inequalities Involving Moments

Given X be a non-negative random variable. Then, given any € > 0,

E[X]

P[X > ¢ < —= [Markov]
€

Let X be a random variable with finite mean E[X] < co. Then, given any € > 0,

var[X]
2

P[IX ~EIX]| > €] < [Chebyschev]

For any convex? function ¢ : R — R, if E|o(X)| + E|X| < oo, then one has
o (EIX]) <Elp(X)]  [ensen]

Let X be a real random variable with E[X?] < co. Let g : R — R be a non
decreasing function such that E[g?(X)] < co. Then,

cov[X, g(X)] >0 [Monotonicity and Covariance]

2Recall that a function ¢ is convex if p(Ax + (1 — A)y) < Ap(x) + (1 — N)p(y) for all x, y,
and X € [0, 1].
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Moment Generating Functions

Let X be a random variable taking values in R. The moment generating function

(MGF) of X is defined as
Mx(t) : R — RU{o0}

My () = E[efx}, teR.

When Mx(t), My (t) exist (are finite) for t € | 5 0, then:

o E[|X|] < oo and E[X¥] = £Mx(0), for all k € N,
@ Mx = My on [ if and only if Fx = Fy

o Mx,y = MxMy when X and Y are independent

Similarly, for a random vector X in R?, the MGF is

Mx (u) : RY = RU {o0}

Mx (u) = E{e"TX}, ucR?

and has analogous properties.
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Elementary Distributions Factsheet
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Bernoulli Distribution

A random variable X is said to follow the Bernoulli distribution with parameter
p € (0,1), denoted X ~ Bern(p), if

Q x ={0,1},
Q f(x;p) =pl{x =1} + (1 - p)l{x =0}
The mean, variance and moment generating function of X ~ Bern(p) are given by

EX]=p, var[X]=p(1-p), M(t)=1-p+pe".
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Binomial Distribution

A random variable X is said to follow the Binomial distribution with parameters
p € (0,1) and n € N, denoted X ~ Binom(n, p), if

Q0 ¥ =1{01,2.n}
Q f(x;n,p)= (Z) p(1—p)"

The mean, variance and moment generating function of X ~ Binom(n, p) are
given by

EX]=np,  varlX]=np(1—p),  M(t)=(1—p+pe")".

o If X =3"",Y: where Y; " Bern(p), then X ~ Binom(n, p).
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Geometric Distribution

A random variable X is said to follow the Geometric distribution with parameter
p € (0,1), denoted X ~ Geom(p), if

Q@ ¥ ={0}UN,
Q f(x;p)=(1—-p)p.

The mean, variance and moment generating function of X ~ Geom(p) are given
by

E[X]:]-_Tp’ var[X] = (1;2p)7 M(t):ﬁ’

the latter for t < —log(1 — p).

o Let {Y;};>1 be an infinite collection of random variables, where
v, X Bern(p). Let T =min{k € N: Yy, =1} — 1. Then T ~ Geom(p).
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Negative Binomial Distribution

A random variable X is said to follow the Negative Binomial distribution with
parameters p € (0,1) and r > 0, denoted X ~ NegBin(r, p), if

O X —{0}UN,
® ()= ("L

The mean, variance and moment generating function of X ~ NegBin(r, p) are
given by

r

1-p (1-p) p
EX]=r ) var[X] =r , M(t) = —F———.,
XI=r=, == R R

the latter for t < —log(1 — p).

o If X =37_. Y; where Y; % Geom(p), then X ~ NegBin(r, p).
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Poisson Distribution

A random variable X is said to follow the Poisson distribution with parameters
A > 0, denoted X ~ Poisson(}), if

Q@ X ={0}UN,
A"
Q f(x;\)=¢e ’\;.
The mean, variance and moment generating function of X ~ Poisson() are given
by
EX]=A,  var[X]=X,  M(t)=exp{A(e' — 1)}.

@ Let {X,},>1 be a sequence of Binom(n, p,) random variables, such that
pn = A/n, for some constant A > 0. Then fx, == fy, where
Y ~ Poisson(\).

e Let X~Poisson(\) and Y ~Poisson(y) be independent. The conditional
distribution of X given X + Y = k is Binom(k, \/(A + 1)) (useful in
contingency tables).
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Multinomial Distribution

A random vector X in R¥ said to follow the Multinomial distribution with

parameters n € N and p = (py, ..., px) € (0,1)¥, such that ZLI pi = 1, denoted
X ~ Multi(n; p1,. .., pk), if
@ the sample space is {0,1,...,n}*, and

k
n!
Flxt, . oxan {pit )= — 5 pa p%l .
Q f(x1, ..., xk;n {pi}isy) PP {;x, n}

The mean, variance covariance and moment generating function are

EIX]=np,  VarlX]=np(1—p).  cov(Xi, X)) = —npip;

k n
M(uy, ... ux) = (Zp;e“’) )
i=1

Generalises binomial: n independent trials, with k possible outcomes.

Lemma (Poisson and Multinomial)

If Xi ~ Poiss()\;), i =1, ..., k are independent, then the conditional distribution of
X = (X1,...,Xk) " given Zﬁ;l Xi = n is Multi(n; py, ..., pk), with

_ Ai
Pi= X+
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Uniform Distribution

A random variable X is said to follow the uniform distribution with parameters
—00 < 61 < 0 < 00, denoted X ~ Unif(61,6,), if

(92—91)71 if x € (91,92),
0 otherwise.

fx(X; 9) = {

The mean, variance and moment generating function of X ~ Unif(6y,6,) are
given by

th, th,

e — €

E[X] = (01 +62)/2,  var[X] = (62 — 61)%/12, M(t) = FCEE t#0

M(0) = 1.
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Exponential Distribution

A random variable X is said to follow the exponential distribution with parameter
A > 0, denoted X ~ Exp(A), if
e ™™ ifx>0

A A) = {0 if x <0

The mean, variance and moment generating function of X ~ Exp(\) are given by

EX] =A% var[X] = \72, M(t) = ——, t<A

If X, Y are independent exponential random variables with rates A\; and \,, then
Z = min{X, Y} is also exponential with rate A; + ;.

Memorylessness property:
Q Let X ~ Exp(A). Then P[X > x + t|X > t] = P[X > x].
@ Conversely: if X is a random variable such that P(X > 0) > 0 and

P(X >t+s|X>t)=P(X >s), Vt,s > 0,

then there exits a A > 0 such that X ~ Exp(\).
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Gamma Distribution

A random variable X is said to follow the gamma distribution with parameters
r >0 and A > 0 (the shape and rate parameters, respectively), denoted
X ~ Gamma(r, A), if

A oor—1_—Xx ifx>0
fe(xirA) = T € s
x(xir,A) {0 if x < 0.

The mean, variance and moment generating function of X ~ Gamma(r, \) are
given by

E[X] = r/\, var[X] = r/\?, M(t)z( A )r, t< A\

o lf Yy,...,Y, i Exp(A), then Y =37 Y; ~ Gamma(r, ) (special case is
called Erlang distribution).
@ The special case of Gamma(k/2,1/2) is called the chi-square distribution

with k degrees of freedom and denoted by X%(- We will soon see its
importance.
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Normal (Gaussian) Distribution

A random variable X is said to follow the normal distribution with parameters

1 € R and 02 > 0 (the mean and variance parameters, respectively), denoted
X ~ N(u,o?), if

1 1/ x—p 2
fx (x; p, 0%) = exps —= , xeR.
X( 1% ) oo P{ 2( o > }

The mean, variance and moment generating function of X ~ N(u, 0?) are given by

E[X] = u, var[X] = o2, M(t) = exp{tu + t*a*/2}.

In the special case Z ~ N(0,1), we use the notation ¢(z) = fz(z) and
®(z) = Fz(z), and call these the standard normal density and standard normal
CDF, respectively.
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Closure Under Addition for Gaussian Variables

Lemma
Let X ~ N(u,02), a# 0. Then aX + b ~ N(au + b, a’0?). Condequently, if

X ~ N(u,0?), then
Fx(x) = & <X_“> :

g

where ® is the standard normal CDF, ®(u) = [“_(2m)~/? exp{—2z?/2}dz.

Corollary |

Let Xi,..., X, be independent random variables, such that X; ~ N(u;,0?), and
let Sy =371 X;. Then,

S, ~ N <Zn:u;,zn:a,-2> .
i=1 i=1

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 20/37



Entropy
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Entropy

Can one probability model be “more disordered” than another?

The entropy of a random variable X is defined as

=) fx(x)log (fx(x)), if X is discrete,
H(X) = —]E[Iog fX(X)} =

- /+OO fx(x)log (fx(x)) dx, if X is continuous.
@ A measure of the intrinsic disorder or unpredictability of a random system.
@ Related to but not equivalent to variance.

When X is discrete:
e H(X)>0
e H(g(X)) < H(X) for any deterministic function g.
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KL Divergence (Relative Entropy)

Can we use entropy to compare distributions?

Let p(x) and g(x) be two probability density (frequency) functions on R. We
define the Kullback-Leibler divergence or relative entropy of g with respect to p as

KL(qllp) := /:O p(x) log <28> dx.

@ By Jensen's inequality, for X ~ p(-) we have

KL(qlp) = B[~ logla(X)/p(X)]] > — log (E [Z(X )D 0

since g integrates to 1.
° p=gq <= KL(qllp) =0.
o KL(qllp) # KL(pllq)-
@ Not a metric (lacks symmetry and violates triangle inequality).
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Exponential Families
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Maximum Entropy Under Constraints

Consider the following variational problem:

Determine the probability distribution f supported on X with maximum entropy

H(f)=— /X f(x) log f(x)dx

subject to the linear constraints

/ T:(x)f(x)dx = «;, i=1,..,k
X

Philosophy: How to choose a probability model for a given situation?
Maximum entropy approach:

@ In any given situation, choose the distribution that gives highest uncertainty
while satisfying situation—specific required constraints.
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Proposition.

When a solution to the constrained optimisation problem exists, it is unique and

has the form )
f(X) = Q((b]m ...,¢k)eXp {Z Qﬁ,t(x)}

i=1

Proof.
Let g(x) be a density also satisfying the constraints. Then,

HE) = - [ etioga(dx—— [ g(x)iog| 10| ax

— KL(g| f) —/anmanw
\H/—’ JX

log Q / b — / 73 (Zk:qsm(x)> i

i=1

IN
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But g also satisfies the moment constraints, so the last term is

k
—log @ — /X f(x) (Z(;S,-T,-(X)) dx = —/X f(x)log f(x)dx

= H(F)

Uniqueness of the solution follows from the fact that strict equality can only
follow when KL(g|| f) = 0, which happens if and only if g = . O
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Exponential Family of Distributions

A probability distribution is said to be a member of a k-parameter exponential
family, if its density (or frequency) admits the representation

_exp{Z(b, i ¢17~~7¢k)+5(}/)}

where:
Q@ ¢ = (é1,..., k) is a k-dimensional parameter in ® C R;
@7 : YR i=1..,k S:Y—=R, andvy:RK = R, are real-valued;
© The support YV of f does not depend on ¢.

Very rich class of models (sometimes requiring fixing some parameters to satisfy
last condition): Binomial, Negative Binomial, Poisson, Gamma, Gaussian, Pareto,
Weibull, Laplace, logNormal, inverse Gaussian, inverse Gamma, Normal-Gamma,
Beta, Multinomial...

< Basis for Generalised Linear Models (GLM).

We will gradually see that such models have magnificent properties.
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@ ¢ =(¢1,...,0k) " is called the natural parameter

@ But transforming parameter, we can write exponential family in other ways.

@ “Natural” is from the mathematics point of view — usual parameter
0 = n~1(¢) often different.

Natural vs Usual Parametrization

k
eXP{Zqﬁ, )+5(y)} —eXP{Zm 0)Ti(y) - (9)+5(y)}-

i=1

where 1 : R — R¥ is a C2 map such that
¢ =n(0)

and s0 7(¢) = 7(1(6)) = d(8), for d =y o,

o Natural parametrization: great for mathematical manipulation.

@ Usual parametrization: more intuitive in context of applications.
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Let Y ~ Binom(n, p). Observe that:

(;>py(1 - p)"Y :exp{log (1 Pp) y + nlog(1 — p) + log <;>}

Define
_ p _
¢—log<1_p>, Ty) =y,

S(y) = log <;> v(¢) = nlog(1+ ) = —nlog(1 — p).

Keeping n fixed and allowing only p to vary, the support of f does not depend on
¢ and we get a 1-parameter exponential family. Note that:

e? p
_ |
P=iye & = °g<1— >
%,_/

=n(p)

so the usual parameter is p € (0, 1), but the natural one is ¢ € R. O
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Let Y ~ N(u,0?). We can write

1 1(y—p\?
fyip o) = o 27Texp{—§< o )}

Il
(¢}
X
©
—N
|
<
)
_l’_
N
<
|
N =
o
o
—
N
3
9
)
N—
|
|t
——

Define

W)=y, Tely)=y% S)=0, v(¢1,¢2):—¢7§+-| (—%)

and observe that the support of f is always R. Thus N(u,o?) is a two-parameter
exponential family. O

v
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Sampling Theory and Stochastic
Convergence
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Sampling

@ Model phenomenon by distribution F(y1, ..., yn; 6) on V", some n > 1.
@ Distributional form is known but 6 € © is unknown.

© Observe realisation of (Y1, ..., ¥,)" € V" from this distribution. Call this a
sample.

@ Use sample {Y1,..., Y,} in order to make assertions concerning the true
value of #, and quantify the uncertainty associated with these assertions.

‘Anything we do will be a function T(Y3,...,Y,) of the sample

Sampling theory aims to understand:

© What information do different forms of functions T : " — RP carry on the
parameter 67

@ What is the probability distribution of T(Y1,...,Y,) and how does it relate to
F(yi,...,yn: 0)?
These two questions are closely related.
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Statistics

Definition (Statistic)

A statistic is any function T whose domain is the sample space V" but does not
depend on unknown parameters.

< Intuitively, any function that can be evaluated on the basis of the sample alone
is a statistic.

— Any statistic is clearly itself a random variable with its own distribution.

T(Y)=n"1>",Y;is a statistic (since n, the sample size, is known).

T(Y)=(Ya),---, Yn)) where Y1) < Y(3) < ..., ¥() are the order statistics of
Y. Since T depends only on the values of Y, T is a statistic.

Let T(Y) = c, where c is a known constant. Then T is a statistic
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Definition (Sampling Distribution)
Let (Y1,...,Yn) " ~F(y1,...,¥n;0) and T : Y" — RY be a statistic,

T(Y1,., Yo) = (Ta(Ye, .-, Ya), ooy Tg(Ya, ..o, Ya)).

The sampling distribution of T under F(yi, ..., y,; 6) is the distribution

Fr(te, . tg) = B[Ts(Yas o, Ya) <ty Ty(Yaro o, Ya) < tl.

Comments:
o We will typically simply write T instead of the cumbersome T(Y3, ..., Y3).

@ Very often T : " — R (i.e. ¢ =1), in which case the notation simplifies

considerably:
Fr(t)=P[T(Y1,....,Ys) <t], teR.

Key observation:

The sampling distribution of T depends on the unknown 6

The extent and form of this dependence is essential for inference.
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e Evident from previous examples: some statistics are more informative and
others are less informative regarding the true value of 6

@ Any T(Yi,...,Y,) that is not “1-1" carries less information about 6 than the
original sample (Y7, ..., Y,) itself.

@ Which are “good” and which are "bad” statistics?

Definition (Ancillary Statistic)

A statistic T is an ancillary statistic (for ) if its distribution does not functionally
depend 6

< So an ancillary statistic has the same distribution V 6 € ©.

Suppose that Yi,..., Y, &
T(Y1,..., Yn) = Y1 — Yo; then T has a Normal distribution with mean 0 and
variance 202. Thus T is ancillary for the unknown parameter 4. If both y and ¢

were unknown, T would not be ancillary for 6 = (u, 02).

(i, 02) (where u unknown but o known). Let
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o If T is ancillary for 6 then T carries no information about 6

@ In order to carry any useful information about 6, the sampling distribution Ft
must depend explicitly on 6.

@ Intuitively, the amount of information T carries on 6 increases as the
dependence of its sampling distribution F on 6 increases

Let Yi,..., Y, 2 240,6], S = min(Yi,...,Y,) and T = max(Ys,..., Y,).

1-%"" o0<y<#
1

< Neither S nor T are ancillary for 6
< As n T oo, fs becomes concentrated around 0
< As n T oo, fr becomes concentrated around 6 while

< Indicates that T provides more information about # than does S.
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