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Conditional Moments

We can calculate the conditional expectation of a random variable X given that
another random variable Y took the value y as

E[X |Y = y ] =


∑

x∈X x P[X = x |Y = y ], if X ,Y are discrete,

∫ +∞
−∞ x fX |Y (x |y)dx , if X ,Y are continuous.

Precisely the expectation of the conditional distribution.

Note that E[X |Y = y ] = q(y) results in a function of only y .

One can plug Y into q(·) and consider Z = q(Y ) as a random variable itself.

Important property/interpretation:

E[X |Y ] = argmin
g

E ∥X − g(Y )∥2

Among all functions1 of Y , E[X |Y ] best approximates X in mean square.

1measurable
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Important properties of E[X |Y ]:

1 ‘Tower property’: E
[
E[X |Y ]

]
= E[X ]

2 If X independent of Y , then E[X |Y ] = E[X ].

3 E[g(Y )X |Y ] = g(Y )E[X |Y ] (taking out known factors)

4 Linearity: E[aX1 + X2|Y ] = aE[X1|Y ] + E[X2|Y ].

5 Monotonicity: X1 ≤ X2 =⇒ E[X1|Y ] ≤ E[X2|Y ]
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The conditional variance of X given Y is defined as

var[X |Y ] = E
[
(X − E[X |Y ])2

∣∣∣Y ] = E[X 2|Y ]−
(
E[X |Y ]

)2
The law of total variance states that

var(X ) = E [var[X |Y ]] + var (E[X |Y ])

Proof:

var(X ) = E[X 2]− E2[X ]

= E
[
E[X 2|Y ]

]
− E2

[
E[X |Y ]

]
= E

[
var[X |Y ] + E2[X |Y ]

]
− E2

[
E[X |Y ]

]
= E

[
var[X |Y ]

]
+ E

[
E2[X |Y ]

]
− E2

[
E[X |Y ]

]
= E [var[X |Y ]] + var (E[X |Y ]) .
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Covariance Matrices

The covariance matrix of a random vector Y = (Y1, . . . ,Yd)
⊤, say Ω = {Ωij}, is

a d × d symmetric matrix with entries

Ωij = cov(Yi ,Yj) = E[(Yi − E[Yi ])(Yj − E[Yj ])], 1 ≤ i ≤ j ≤ d .

That is, the covariance matrix encodes the variances of the coordinates of Y (on
the diagonal) and the pairwise covariances between any two coordinates of Y (off
the diagonal).
If we write

µ = E[Y ] = (E[Y1], . . . ,E[Yd ])
⊤

for the mean vector of Y , then

E[(Y − µ)(Y − µ)⊤] = E[YY⊤]− µµ⊤.

Similarly to the vector case, the expectation of a matrix with random entries is the
matrix of expectations of the random entries.
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Covariance Matrices and Linear Transformations

Let Y be a random d × 1 with mean vector µ be the mean vector and covariance
matrix Ω.

PSD: for any β ∈ Rd , we have β⊤Ωβ ≥ 0.

If A is a p × d deterministic matrix, the mean vector and covariance matrix
of AY are Aµ and AΩA⊤, respectively.

If β ∈ Rd is a deterministic vector, the variance of β⊤Y is β⊤Ωβ.

If β, γγγ ∈ Rd are deterministic vectors, the covariance of β⊤Y with γ⊤Y is
γγγ⊤Ωβ.
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Inequalities Involving Moments

Given X be a non-negative random variable. Then, given any ϵ > 0,

P[X ≥ ϵ] ≤ E[X ]

ϵ
[Markov]

Let X be a random variable with finite mean E[X ] < ∞. Then, given any ϵ > 0,

P
[
|X − E[X ]| ≥ ϵ

]
≤ var[X ]

ϵ2
[Chebyschev]

For any convex2 function φ : R → R, if E|φ(X )|+ E|X | < ∞, then one has

φ
(
E[X ]

)
≤ E[φ(X )] [Jensen]

Let X be a real random variable with E[X 2] < ∞. Let g : R → R be a non
decreasing function such that E[g2(X )] < ∞. Then,

cov[X , g(X )] ≥ 0 [Monotonicity and Covariance]

2Recall that a function φ is convex if φ(λx + (1− λ)y) ≤ λφ(x) + (1− λ)φ(y) for all x , y ,
and λ ∈ [0, 1].
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Moment Generating Functions

Let X be a random variable taking values in R. The moment generating function
(MGF) of X is defined as

MX (t) : R → R ∪ {∞}

MX (t) = E
[
etX
]
, t ∈ R.

When MX (t),MY (t) exist (are finite) for t ∈ I ∋ 0, then:

E[|X |k ] < ∞ and E[X k ] = dkMX

dtk
(0), for all k ∈ N.

MX = MY on I if and only if FX = FY

MX+Y = MXMY when X and Y are independent

Similarly, for a random vector X in Rd , the MGF is

MX (u) : Rd → R ∪ {∞}

MX (u) = E
[
eu⊤X

]
, u ∈ Rd .

and has analogous properties.
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Elementary Distributions Factsheet

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 9 / 37



Bernoulli Distribution

A random variable X is said to follow the Bernoulli distribution with parameter
p ∈ (0, 1), denoted X ∼ Bern(p), if

1 X = {0, 1},
2 f (x ; p) = p1{x = 1}+ (1− p)1{x = 0}.

The mean, variance and moment generating function of X ∼ Bern(p) are given by

E[X ] = p, var[X ] = p(1− p), M(t) = 1− p + pet .
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Binomial Distribution

A random variable X is said to follow the Binomial distribution with parameters
p ∈ (0, 1) and n ∈ N, denoted X ∼ Binom(n, p), if

1 X = {0, 1, 2, ..., n},

2 f (x ; n, p) =

(
n

x

)
px(1− p)n−x .

The mean, variance and moment generating function of X ∼ Binom(n, p) are
given by

E[X ] = np, var[X ] = np(1− p), M(t) = (1− p + pet)n.

If X =
∑n

i=1 Yi where Yi
iid∼ Bern(p), then X ∼ Binom(n, p).
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Geometric Distribution

A random variable X is said to follow the Geometric distribution with parameter
p ∈ (0, 1), denoted X ∼ Geom(p), if

1 X = {0} ∪ N,
2 f (x ; p) = (1− p)xp.

The mean, variance and moment generating function of X ∼ Geom(p) are given
by

E[X ] =
1− p

p
, var[X ] =

(1− p)

p2
, M(t) =

p

1− (1− p)et
,

the latter for t < − log(1− p).

Let {Yi}i≥1 be an infinite collection of random variables, where

Yi
iid∼ Bern(p). Let T = min{k ∈ N : Yk = 1} − 1. Then T ∼ Geom(p).
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Negative Binomial Distribution

A random variable X is said to follow the Negative Binomial distribution with
parameters p ∈ (0, 1) and r > 0, denoted X ∼ NegBin(r , p), if

1 X = {0} ∪ N,

2 f (x ; p, r) =

(
x + r − 1

x

)
(1− p)xpr .

The mean, variance and moment generating function of X ∼ NegBin(r , p) are
given by

E[X ] = r
1− p

p
, var[X ] = r

(1− p)

p2
, M(t) =

pr

[1− (1− p)et ]r
,

the latter for t < − log(1− p).

If X =
∑r

i=1 Yi where Yi
iid∼ Geom(p), then X ∼ NegBin(r , p).
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Poisson Distribution

A random variable X is said to follow the Poisson distribution with parameters
λ > 0, denoted X ∼ Poisson(λ), if

1 X = {0} ∪ N,

2 f (x ;λ) = e−λλ
x

x!
.

The mean, variance and moment generating function of X ∼ Poisson(λ) are given
by

E[X ] = λ, var[X ] = λ, M(t) = exp{λ(et − 1)}.

Let {Xn}n≥1 be a sequence of Binom(n, pn) random variables, such that

pn = λ/n, for some constant λ > 0. Then fXn

n→∞−→ fY , where
Y ∼ Poisson(λ).

Let X∼Poisson(λ) and Y∼Poisson(µ) be independent. The conditional
distribution of X given X + Y = k is Binom(k , λ/(λ+ µ)) (useful in
contingency tables).
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Multinomial Distribution

A random vector X in Rk said to follow the Multinomial distribution with
parameters n ∈ N and p = (p1, . . . , pk) ∈ (0, 1)k , such that

∑k
i=1 pi = 1, denoted

X ∼ Multi(n; p1, . . . , pk), if
1 the sample space is {0, 1, . . . , n}k , and

2 f (x1, . . . , xk ; n, {pi}ki=1) =
n!

x1! . . . xk !
px11 . . . pxkk 1

{
k∑

i=1

xi = n

}
.

The mean, variance covariance and moment generating function are

E[Xi ] = npi , Var[Xi ] = npi (1− pi ), cov(Xi ,Xj) = −npipj

M(u1, . . . , uk) =

(
k∑

i=1

pie
ui

)n

.

Generalises binomial: n independent trials, with k possible outcomes.

Lemma (Poisson and Multinomial)

If Xi ∼ Poiss(λi ), i = 1, ..., k are independent, then the conditional distribution of

X = (X1, ...,Xk)
⊤ given

∑k
i=1 Xi = n is Multi(n; p1, . . . , pk), with

pi =
λi

λ1+...+λk
.
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Uniform Distribution

A random variable X is said to follow the uniform distribution with parameters
−∞ < θ1 < θ2 < ∞, denoted X ∼ Unif(θ1, θ2), if

fX (x ; θ) =

{
(θ2 − θ1)

−1 if x ∈ (θ1, θ2),

0 otherwise.

The mean, variance and moment generating function of X ∼ Unif(θ1, θ2) are
given by

E[X ] = (θ1 + θ2)/2, var[X ] = (θ2 − θ1)
2/12, M(t) =

etθ2 − etθ1

t(θ2 − θ1)
, t ̸= 0

M(0) = 1.
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Exponential Distribution

A random variable X is said to follow the exponential distribution with parameter
λ > 0, denoted X ∼ Exp(λ), if

fX (x ;λ) =

{
λe−λx , if x ≥ 0

0 if x < 0.

The mean, variance and moment generating function of X ∼ Exp(λ) are given by

E[X ] = λ−1, var[X ] = λ−2, M(t) =
λ

λ− t
, t < λ.

If X ,Y are independent exponential random variables with rates λ1 and λ2, then
Z = min{X ,Y } is also exponential with rate λ1 + λ2.

Memorylessness property:
1 Let X ∼ Exp(λ). Then P[X ≥ x + t|X ≥ t] = P[X ≥ x ].
2 Conversely: if X is a random variable such that P(X > 0) > 0 and

P(X > t + s|X > t) = P(X > s), ∀t, s ≥ 0,

then there exits a λ > 0 such that X ∼ Exp(λ).
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Gamma Distribution

A random variable X is said to follow the gamma distribution with parameters
r > 0 and λ > 0 (the shape and rate parameters, respectively), denoted
X ∼ Gamma(r , λ), if

fX (x ; r , λ) =

{
λr

Γ(r)x
r−1e−λx , if x ≥ 0

0 if x < 0.

The mean, variance and moment generating function of X ∼ Gamma(r , λ) are
given by

E[X ] = r/λ, var[X ] = r/λ2, M(t) =

(
λ

λ− t

)r

, t < λ.

If Y1, . . . ,Yr
iid∼ Exp(λ), then Y =

∑r
i=1 Yi ∼ Gamma(r , λ) (special case is

called Erlang distribution).

The special case of Gamma(k/2, 1/2) is called the chi-square distribution
with k degrees of freedom and denoted by χ2

k . We will soon see its
importance.
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Normal (Gaussian) Distribution

A random variable X is said to follow the normal distribution with parameters
µ ∈ R and σ2 > 0 (the mean and variance parameters, respectively), denoted
X ∼ N(µ, σ2), if

fX (x ;µ, σ
2) =

1

σ
√
2π

exp

{
−1

2

(
x − µ

σ

)2
}
, x ∈ R.

The mean, variance and moment generating function of X ∼ N(µ, σ2) are given by

E[X ] = µ, var[X ] = σ2, M(t) = exp{tµ+ t2σ2/2}.

In the special case Z ∼ N(0, 1), we use the notation φ(z) = fZ (z) and
Φ(z) = FZ (z), and call these the standard normal density and standard normal
CDF, respectively.
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Closure Under Addition for Gaussian Variables

Lemma

Let X ∼ N(µ, σ2), a ̸= 0. Then aX + b ∼ N(aµ+ b, a2σ2). Condequently, if
X ∼ N(µ, σ2), then

FX (x) = Φ

(
x − µ

σ

)
,

where Φ is the standard normal CDF, Φ(u) =
∫ u

−∞(2π)−1/2 exp{−z2/2}dz.

Corollary

Let X1, . . . ,Xn be independent random variables, such that Xi ∼ N(µi , σ
2
i ), and

let Sn =
∑n

i=1 Xi . Then,

Sn ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
.
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Entropy
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Entropy

Can one probability model be “more disordered” than another?

The entropy of a random variable X is defined as

H(X ) = −E
[
log fX (X )

]
=


−
∑
x∈X

fX (x) log (fX (x)) , if X is discrete,

−
∫ +∞

−∞
fX (x) log (fX (x)) dx , if X is continuous.

A measure of the intrinsic disorder or unpredictability of a random system.

Related to but not equivalent to variance.

When X is discrete:

H(X ) ≥ 0

H(g(X )) ≤ H(X ) for any deterministic function g .
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KL Divergence (Relative Entropy)

Can we use entropy to compare distributions?

Let p(x) and q(x) be two probability density (frequency) functions on R. We
define the Kullback-Leibler divergence or relative entropy of q with respect to p as

KL(q∥p) :=
∫ +∞

−∞
p(x) log

(
p(x)

q(x)

)
dx .

By Jensen’s inequality, for X ∼ p(·) we have

KL(q∥p) = E[− log[q(X )/p(X )]] ≥ − log

(
E
[
q(X )

p(X )

])
= 0

since q integrates to 1.

p = q ⇐⇒ KL(q∥p) = 0.

KL(q∥p) ̸= KL(p∥q).
Not a metric (lacks symmetry and violates triangle inequality).
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Exponential Families
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Maximum Entropy Under Constraints

Consider the following variational problem:

Determine the probability distribution f supported on X with maximum entropy

H(f ) = −
∫
X
f (x) log f (x)dx

subject to the linear constraints∫
X
Ti (x)f (x)dx = αi , i = 1, ..., k

Philosophy: How to choose a probability model for a given situation?

Maximum entropy approach:

In any given situation, choose the distribution that gives highest uncertainty
while satisfying situation–specific required constraints.
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Proposition.

When a solution to the constrained optimisation problem exists, it is unique and
has the form

f (x) = Q(ϕ1, ..., ϕk) exp

{
k∑

i=1

ϕiTi (x)

}

Proof.

Let g(x) be a density also satisfying the constraints. Then,

H(g) = −
∫
X
g(x) log g(x)dx = −

∫
X
g(x) log

[
g(x)
f (x)

f (x)
]
dx

= − KL(g∥ f )︸ ︷︷ ︸
≥0

−
∫
X
g(x) log f (x)dx

≤ − logQ

∫
X
g(x)dx︸ ︷︷ ︸
=1

−
∫
X
g(x)

(
k∑

i=1

ϕiTi (x)

)
dx
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But g also satisfies the moment constraints, so the last term is

= − logQ −
∫
X
f (x)

(
k∑

i=1

ϕiTi (x)

)
dx = −

∫
X
f (x) log f (x)dx

= H(f )

Uniqueness of the solution follows from the fact that strict equality can only
follow when KL(g∥ f ) = 0, which happens if and only if g = f .
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Exponential Family of Distributions

A probability distribution is said to be a member of a k-parameter exponential
family, if its density (or frequency) admits the representation

f (y) = exp

{
k∑

i=1

ϕiTi (y)− γ(ϕ1, ..., ϕk) + S(y)

}

where:

1 ϕ = (ϕ1, ..., ϕk) is a k-dimensional parameter in Φ ⊆ Rk ;

2 Ti : Y → R, i = 1, ..., k , S : Y → R, and γ : Rk → R, are real-valued;

3 The support Y of f does not depend on ϕ.

Very rich class of models (sometimes requiring fixing some parameters to satisfy
last condition): Binomial, Negative Binomial, Poisson, Gamma, Gaussian, Pareto,
Weibull, Laplace, logNormal, inverse Gaussian, inverse Gamma, Normal-Gamma,
Beta, Multinomial...

↪→ Basis for Generalised Linear Models (GLM).

We will gradually see that such models have magnificent properties.
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ϕ = (ϕ1, ..., ϕk)
⊤ is called the natural parameter

But transforming parameter, we can write exponential family in other ways.

“Natural” is from the mathematics point of view – usual parameter
θ = η−1(ϕ) often different.

Natural vs Usual Parametrization

exp

{
k∑

i=1

ϕiTi (y)− γ(ϕ) + S(y)

}
= exp

{
k∑

i=1

ηi (θ)Ti (y)− d(θ) + S(y)

}
.

where η : Rk → Rk is a C 2 map such that

ϕ = η(θ)

and so γ(ϕ) = γ(η(θ)) = d(θ), for d = γ ◦ η.

Natural parametrization: great for mathematical manipulation.

Usual parametrization: more intuitive in context of applications.
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Example (Binomial Exponential Family)

Let Y ∼ Binom(n, p). Observe that:(
n

y

)
py (1− p)n−y = exp

{
log

(
p

1− p

)
y + n log(1− p) + log

(
n

y

)}
.

Define

ϕ = log

(
p

1− p

)
, T (y) = y ,

S(y) = log

(
n

y

)
, γ(ϕ) = n log(1 + eϕ) = −n log(1− p).

Keeping n fixed and allowing only p to vary, the support of f does not depend on
ϕ and we get a 1-parameter exponential family. Note that:

p =
eϕ

1 + eϕ
& ϕ = log

(
p

1− p

)
︸ ︷︷ ︸

=η(p)

.

so the usual parameter is p ∈ (0, 1), but the natural one is ϕ ∈ R. □
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Example (Gaussian Exponential Family)

Let Y ∼ N(µ, σ2). We can write

f (y ;µ, σ2) =
1

σ
√
2π

exp

{
−1

2

(
y − µ

σ

)2
}

= exp

{
− 1

2σ2
y2 +

µ

σ2
y − 1

2
log(2πσ2)− µ2

2σ2

}
.

Define

ϕ1 =
µ

σ2
, ϕ2 = − 1

2σ2
,

T1(y) = y , T2(y) = y2, S(y) = 0, γ(ϕ1, ϕ2) = − ϕ2
1

4ϕ2
+

1

2
log

(
− π

ϕ2

)
,

and observe that the support of f is always R. Thus N(µ, σ2) is a two-parameter
exponential family. □
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Sampling Theory and Stochastic
Convergence
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Sampling

1 Model phenomenon by distribution F (y1, ..., yn; θ) on Yn, some n ≥ 1.

2 Distributional form is known but θ ∈ Θ is unknown.

3 Observe realisation of (Y1, ...,Yn)
⊤ ∈ Yn from this distribution. Call this a

sample.

4 Use sample {Y1, . . . ,Yn} in order to make assertions concerning the true
value of θ, and quantify the uncertainty associated with these assertions.

Anything we do will be a function T (Y1, . . . ,Yn) of the sample

Sampling theory aims to understand:

1 What information do different forms of functions T : Yn → Rp carry on the
parameter θ?

2 What is the probability distribution of T (Y1, ...,Yn) and how does it relate to
F (y1, ..., yn; θ)?

These two questions are closely related.
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Statistics

Definition (Statistic)

A statistic is any function T whose domain is the sample space Yn but does not
depend on unknown parameters.

↪→ Intuitively, any function that can be evaluated on the basis of the sample alone
is a statistic.
↪→ Any statistic is clearly itself a random variable with its own distribution.

Example

T (Y ) = n−1
∑n

i=1 Yi is a statistic (since n, the sample size, is known).

Example

T (Y ) = (Y(1), . . . ,Y(n)) where Y(1) ≤ Y(2) ≤ . . . ,Y(n) are the order statistics of
Y . Since T depends only on the values of Y , T is a statistic.

Example

Let T (Y ) = c , where c is a known constant. Then T is a statistic

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 34 / 37



Definition (Sampling Distribution)

Let (Y1, . . . ,Yn)
⊤∼F (y1, ..., yn; θ) and T : Yn → Rq be a statistic,

T (Y1, ...,Yn) = (T1(Y1, . . . ,Yn), . . . ,Tq(Y1, . . . ,Yn)).

The sampling distribution of T under F (y1, ..., yn; θ) is the distribution

FT (t1, . . . , tq) = P[T1(Y1, . . . ,Yn) ≤ t1, . . . ,Tq(Y1, . . . ,Yn) ≤ tq].

Comments:

We will typically simply write T instead of the cumbersome T (Y1, ...,Yn).

Very often T : Yn → R (i.e. q = 1), in which case the notation simplifies
considerably:

FT (t) = P[T (Y1, ...,Yn) ≤ t], t ∈ R.

Key observation:

The sampling distribution of T depends on the unknown θ

The extent and form of this dependence is essential for inference.
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Evident from previous examples: some statistics are more informative and
others are less informative regarding the true value of θ

Any T (Y1, ...,Yn) that is not “1-1” carries less information about θ than the
original sample (Y1, ...,Yn) itself.

Which are “good” and which are “bad” statistics?

Definition (Ancillary Statistic)

A statistic T is an ancillary statistic (for θ) if its distribution does not functionally
depend θ

↪→ So an ancillary statistic has the same distribution ∀ θ ∈ Θ.

Example

Suppose that Y1, ...,Yn
iid∼ N (µ, σ2) (where µ unknown but σ2 known). Let

T (Y1, ...,Yn) = Y1 − Y2; then T has a Normal distribution with mean 0 and
variance 2σ2. Thus T is ancillary for the unknown parameter µ. If both µ and σ2

were unknown, T would not be ancillary for θ = (µ, σ2).
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If T is ancillary for θ then T carries no information about θ

In order to carry any useful information about θ, the sampling distribution FT

must depend explicitly on θ.

Intuitively, the amount of information T carries on θ increases as the
dependence of its sampling distribution FT on θ increases

Example

Let Y1, ...,Yn
iid∼ U [0, θ], S = min(Y1, . . . ,Yn) and T = max(Y1, . . . ,Yn).

fS(y ; θ) =
n
θ

(
1− y

θ

)n−1
, 0 ≤ y ≤ θ

fT (y ; θ) =
n
θ

(
y
θ

)n−1
, 0 ≤ y ≤ θ

↪→ Neither S nor T are ancillary for θ

↪→ As n ↑ ∞, fS becomes concentrated around 0

↪→ As n ↑ ∞, fT becomes concentrated around θ while

↪→ Indicates that T provides more information about θ than does S .
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