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Conditional Moments

We can calculate the conditional expectation of a random variable X given that
another random variable Y took the value y as

E[X |Y = y ] =

8
><

>:

P
x2X x P[X = x |Y = y ], if X ,Y are discrete,

R +1
�1 x fX |Y (x |y)dx , if X ,Y are continuous.

Precisely the expectation of the conditional distribution.

Note that E[X |Y = y ] = q(y) results in a function of only y .

One can plug Y into q(·) and consider Z = q(Y ) as a random variable itself.

Important property/interpretation:

E[X |Y ] = argmin
g

E kX � g(Y )k2

Among all functions1 of Y , E[X |Y ] best approximates X in mean square.
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Important properties of E[X |Y ]:

1 ‘Tower property’: E
h
E[X |Y ]

i
= E[X ]

2 If X independent of Y , then E[X |Y ] = E[X ].

3 E[g(Y )X |Y ] = g(Y )E[X |Y ] (taking out known factors)

4 Linearity: E[aX1 + X2|Y ] = aE[X1|Y ] + E[X2|Y ].

5 Monotonicity: X1  X2 =) E[X1|Y ]  E[X2|Y ]
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The conditional variance of X given Y is defined as

var[X |Y ] = E
h
(X � E[X |Y ])2

���Y
i
= E[X 2|Y ]�

�
E[X |Y ]

�2

The law of total variance states that

var(X ) = E [var[X |Y ]] + var (E[X |Y ])

Proof:

var(X ) = E[X 2]� E2[X ]

= E
⇥
E[X 2|Y ]

⇤
� E2

⇥
E[X |Y ]

⇤

= E
h
var[X |Y ] + E2[X |Y ]

i
� E2

⇥
E[X |Y ]

⇤

= E
⇥
var[X |Y ]

⇤
+ E

⇥
E2[X |Y ]

⇤
� E2

⇥
E[X |Y ]

⇤

= E [var[X |Y ]] + var (E[X |Y ]) .
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Covariance Matrices

The covariance matrix of a random vector Y = (Y1, . . . ,Yd)>, say ⌦ = {⌦ij}, is
a d ⇥ d symmetric matrix with entries

⌦ij = cov(Yi ,Yj) = E[(Yi � E[Yi ])(Yj � E[Yj ])], 1  i  j  d .

That is, the covariance matrix encodes the variances of the coordinates of Y (on
the diagonal) and the pairwise covariances between any two coordinates of Y (o↵
the diagonal).
If we write

µ = E[Y ] = (E[Y1], . . . ,E[Yd ])
>

for the mean vector of Y , then

E[(Y � µ)(Y � µ)>] = E[YY>]� µµ>.

Similarly to the vector case, the expectation of a matrix with random entries is the
matrix of expectations of the random entries.
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Covariance Matrices and Linear Transformations

Let Y be a random d ⇥ 1 with mean vector µ be the mean vector and covariance
matrix ⌦.

PSD: for any � 2 Rd , we have �>⌦� � 0.

If A is a p ⇥ d deterministic matrix, the mean vector and covariance matrix
of AY are Aµ and A⌦A>, respectively.

If � 2 Rd is a deterministic vector, the variance of �>Y is �>⌦�.

If �,��� 2 Rd are deterministic vectors, the covariance of �>Y with �>Y is
���>⌦�.
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Inequalities Involving Moments

Given X be a non-negative random variable. Then, given any ✏ > 0,

P[X � ✏]  E[X ]

✏
[Markov]

Let X be a random variable with finite mean E[X ] < 1. Then, given any ✏ > 0,

P
h
|X � E[X ]| � ✏

i
 var[X ]

✏2
[Chebyschev]

For any convex2 function ' : R ! R, if E|'(X )|+ E|X | < 1, then one has

'
⇣
E[X ]

⌘
 E['(X )] [Jensen]

Let X be a real random variable with E[X 2] < 1. Let g : R ! R be a non
decreasing function such that E[g2(X )] < 1. Then,

cov[X , g(X )] � 0 [Monotonicity and Covariance]

2Recall that a function ' is convex if '(�x + (1� �)y)  �'(x) + (1� �)'(y) for all x , y ,
and � 2 [0, 1].
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Moment Generating Functions

Let X be a random variable taking values in R. The moment generating function
(MGF) of X is defined as

MX (t) : R ! R [ {1}

MX (t) = E
h
e
tX
i
, t 2 R.

When MX (t),MY (t) exist (are finite) for t 2 I 3 0, then:

E[|X |k ] < 1 and E[X k ] = dkMX
dtk (0), for all k 2 N.

MX = MY on I if and only if FX = FY

MX+Y = MXMY when X and Y are independent

Similarly, for a random vector X in Rd , the MGF is

MX (u) : Rd ! R [ {1}

MX (u) = E
h
e
u>X

i
, u 2 Rd .

and has analogous properties.
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Elementary Distributions Factsheet
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Bernoulli Distribution

A random variable X is said to follow the Bernoulli distribution with parameter
p 2 (0, 1), denoted X ⇠ Bern(p), if

1 X = {0, 1},
2 f (x ; p) = p1{x = 1}+ (1� p)1{x = 0}.

The mean, variance and moment generating function of X ⇠ Bern(p) are given by

E[X ] = p, var[X ] = p(1� p), M(t) = 1� p + pe
t .
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Binomial Distribution

A random variable X is said to follow the Binomial distribution with parameters
p 2 (0, 1) and n 2 N, denoted X ⇠ Binom(n, p), if

1 X = {0, 1, 2, ..., n},

2 f (x ; n, p) =

✓
n

x

◆
p
x(1� p)n�x .

The mean, variance and moment generating function of X ⇠ Binom(n, p) are
given by

E[X ] = np, var[X ] = np(1� p), M(t) = (1� p + pe
t)n.

If X =
Pn

i=1 Yi where Yi
iid⇠ Bern(p), then X ⇠ Binom(n, p).
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Geometric Distribution

A random variable X is said to follow the Geometric distribution with parameter
p 2 (0, 1), denoted X ⇠ Geom(p), if

1 X = {0} [ N,
2 f (x ; p) = (1� p)xp.

The mean, variance and moment generating function of X ⇠ Geom(p) are given
by

E[X ] =
1� p

p
, var[X ] =

(1� p)

p2
, M(t) =

p

1� (1� p)et
,

the latter for t < � log(1� p).

Let {Yi}i�1 be an infinite collection of random variables, where

Yi
iid⇠ Bern(p). Let T = min{k 2 N : Yk = 1}� 1. Then T ⇠ Geom(p).
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Negative Binomial Distribution

A random variable X is said to follow the Negative Binomial distribution with
parameters p 2 (0, 1) and r > 0, denoted X ⇠ NegBin(r , p), if

1 X = {0} [ N,

2 f (x ; p, r) =

✓
x + r � 1

x

◆
(1� p)xpr .

The mean, variance and moment generating function of X ⇠ NegBin(r , p) are
given by

E[X ] = r
1� p

p
, var[X ] = r

(1� p)

p2
, M(t) =

p
r

[1� (1� p)et ]r
,

the latter for t < � log(1� p).

If X =
Pr

i=1 Yi where Yi
iid⇠ Geom(p), then X ⇠ NegBin(r , p).
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Poisson Distribution

A random variable X is said to follow the Poisson distribution with parameters
� > 0, denoted X ⇠ Poisson(�), if

1 X = {0} [ N,

2 f (x ;�) = e
���

x

x!
.

The mean, variance and moment generating function of X ⇠ Poisson(�) are given
by

E[X ] = �, var[X ] = �, M(t) = exp{�(et � 1)}.

Let {Xn}n�1 be a sequence of Binom(n, pn) random variables, such that

pn = �/n, for some constant � > 0. Then fXn

n!1�! fY , where
Y ⇠ Poisson(�).

Let X⇠Poisson(�) and Y⇠Poisson(µ) be independent. The conditional
distribution of X given X + Y = k is Binom(k ,�/(�+ µ)) (useful in
contingency tables).
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Multinomial Distribution

A random vector X in Rk said to follow the Multinomial distribution with
parameters n 2 N and p = (p1, . . . , pk) 2 (0, 1)k , such that

Pk
i=1 pi = 1, denoted

X ⇠ Multi(n; p1, . . . , pk), if
1 the sample space is {0, 1, . . . , n}k , and

2 f (x1, . . . , xk ; n, {pi}ki=1) =
n!

x1! . . . xk !
p
x1
1 . . . pxkk 1

(
kX

i=1

xi = n

)
.

The mean, variance covariance and moment generating function are

E[Xi ] = npi , Var[Xi ] = npi (1� pi ), cov(Xi ,Xj) = �npipj

M(u1, . . . , uk) =

 
kX

i=1

pie
ui

!n

.

Generalises binomial: n independent trials, with k possible outcomes.

Lemma (Poisson and Multinomial)

If Xi ⇠ Poiss(�i ), i = 1, ..., k are independent, then the conditional distribution of

X = (X1, ...,Xk)> given
Pk

i=1 Xi = n is Multi(n; p1, . . . , pk), with

pi =
�i

�1+...+�k
.
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Uniform Distribution

A random variable X is said to follow the uniform distribution with parameters
�1 < ✓1 < ✓2 < 1, denoted X ⇠ Unif(✓1, ✓2), if

fX (x ; ✓) =

(
(✓2 � ✓1)�1 if x 2 (✓1, ✓2),

0 otherwise.

The mean, variance and moment generating function of X ⇠ Unif(✓1, ✓2) are
given by

E[X ] = (✓1 + ✓2)/2, var[X ] = (✓2 � ✓1)
2/12, M(t) =

e
t✓2 � e

t✓1

t(✓2 � ✓1)
, t 6= 0

M(0) = 1.
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Exponential Distribution

A random variable X is said to follow the exponential distribution with parameter
� > 0, denoted X ⇠ Exp(�), if

fX (x ;�) =

(
�e��x , if x � 0

0 if x < 0.

The mean, variance and moment generating function of X ⇠ Exp(�) are given by

E[X ] = ��1, var[X ] = ��2, M(t) =
�

�� t
, t < �.

If X ,Y are independent exponential random variables with rates �1 and �2, then
Z = min{X ,Y } is also exponential with rate �1 + �2.

Memorylessness property:
1 Let X ⇠ Exp(�). Then P[X � x + t|X � t] = P[X � x ].
2 Conversely: if X is a random variable such that P(X > 0) > 0 and

P(X > t + s|X > t) = P(X > s), 8t, s � 0,

then there exits a � > 0 such that X ⇠ Exp(�).
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Gamma Distribution

A random variable X is said to follow the gamma distribution with parameters
r > 0 and � > 0 (the shape and rate parameters, respectively), denoted
X ⇠ Gamma(r ,�), if

fX (x ; r ,�) =

(
�r

�(r)x
r�1

e
��x , if x � 0

0 if x < 0.

The mean, variance and moment generating function of X ⇠ Gamma(r ,�) are
given by

E[X ] = r/�, var[X ] = r/�2, M(t) =

✓
�

�� t

◆r

, t < �.

If Y1, . . . ,Yr
iid⇠ Exp(�), then Y =

Pr
i=1 Yi ⇠ Gamma(r ,�) (special case is

called Erlang distribution).

The special case of Gamma(k/2, 1/2) is called the chi-square distribution
with k degrees of freedom and denoted by �2

k . We will soon see its
importance.
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Normal (Gaussian) Distribution

A random variable X is said to follow the normal distribution with parameters
µ 2 R and �2 > 0 (the mean and variance parameters, respectively), denoted
X ⇠ N(µ,�2), if

fX (x ;µ,�
2) =

1

�
p
2⇡

exp

(
�1

2

✓
x � µ

�

◆2
)
, x 2 R.

The mean, variance and moment generating function of X ⇠ N(µ,�2) are given by

E[X ] = µ, var[X ] = �2, M(t) = exp{tµ+ t
2�2/2}.

In the special case Z ⇠ N(0, 1), we use the notation '(z) = fZ (z) and
�(z) = FZ (z), and call these the standard normal density and standard normal

CDF, respectively.
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Closure Under Addition for Gaussian Variables

Lemma

Let X ⇠ N(µ,�2), a 6= 0. Then aX + b ⇠ N(aµ+ b, a2�2). Condequently, if
X ⇠ N(µ,�2), then

FX (x) = �

✓
x � µ

�

◆
,

where � is the standard normal CDF, �(u) =
R u
�1(2⇡)�1/2 exp{�z

2/2}dz .

Corollary

Let X1, . . . ,Xn be independent random variables, such that Xi ⇠ N(µi ,�2
i ), and

let Sn =
Pn

i=1 Xi . Then,

Sn ⇠ N

 
nX

i=1

µi ,
nX

i=1

�2
i

!
.
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Entropy
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Entropy

Can one probability model be “more disordered” than another?

The entropy of a random variable X is defined as

H(X ) = �E
h
log fX (X )

i
=

8
>>>><

>>>>:

�
X

x2X
fX (x) log (fX (x)) , if X is discrete,

�
Z +1

�1
fX (x) log (fX (x)) dx , if X is continuous.

A measure of the intrinsic disorder or unpredictability of a random system.

Related to but not equivalent to variance.

When X is discrete:

H(X ) � 0

H(g(X ))  H(X ) for any deterministic function g .
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KL Divergence (Relative Entropy)

Can we use entropy to compare distributions?

Let p(x) and q(x) be two probability density (frequency) functions on R. We
define the Kullback-Leibler divergence or relative entropy of q with respect to p as

KL(qkp) :=
Z +1

�1
p(x) log

✓
p(x)

q(x)

◆
dx .

By Jensen’s inequality, for X ⇠ p(·) we have

KL(qkp) = E[log[q(X )/p(X )]] � � log

✓
E

q(X )

p(X )

�◆
= 0

since q integrates to 1.

p = q () KL(qkp) = 0.

KL(qkp) 6= KL(pkq).
Not a metric (lacks symmetry and violates triangle inequality).
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Exponential Families
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Maximum Entropy Under Constraints

Consider the following variational problem:

Determine the probability distribution f supported on X with maximum entropy

H(f ) = �
Z

X
f (x) log f (x)dx

subject to the linear constraints
Z

X
Ti (x)f (x)dx = ↵i , i = 1, ..., k

Philosophy: How to choose a probability model for a given situation?

Maximum entropy approach:

In any given situation, choose the distribution that gives highest uncertainty
while satisfying situation–specific required constraints.
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Proposition.
When a solution to the constrained optimisation problem exists, it is unique and
has the form

f (x) = Q(�1, ...,�k) exp

(
kX

i=1

�iTi (x)

)

Proof.
Let g(x) be a density also satisfying the constraints. Then,

H(g) = �
Z

X
g(x) log g(x)dx = �

Z

X
g(x) log


g(x)
f (x)

f (x)
�
dx

= � KL(gk f )| {z }
�0

�
Z

X
g(x) log f (x)dx

 � logQ

Z

X
g(x)dx

| {z }
=1

�
Z

X
g(x)

 
kX

i=1

�iTi (x)

!
dx
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But g also satisfies the moment constraints, so the last term is

= � logQ �
Z

X
f (x)

 
kX

i=1

�iTi (x)

!
dx = �

Z

X
f (x) log f (x)dx

= H(f )

Uniqueness of the solution follows from the fact that strict equality can only
follow when KL(gk f ) = 0, which happens if and only if g = f .
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Exponential Family of Distributions

A probability distribution is said to be a member of a k-parameter exponential
family, if its density (or frequency) admits the representation

f (y) = exp

(
kX

i=1

�iTi (y)� �(�1, ...,�k) + S(y)

)

where:
1 � = (�1, ...,�k) is a k-dimensional parameter in � ✓ Rk ;
2 Ti : Y ! R, i = 1, ..., k , S : Y ! R, and � : Rk ! R, are real-valued;
3 The support Y of f does not depend on �.

Very rich class of models (sometimes requiring fixing some parameters to satisfy
last condition): Binomial, Negative Binomial, Poisson, Gamma, Gaussian, Pareto,
Weibull, Laplace, logNormal, inverse Gaussian, inverse Gamma, Normal-Gamma,
Beta, Multinomial...

,! Basis for Generalised Linear Models (GLM).

We will gradually see that such models have magnificent properties.
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� = (�1, ...,�k)> is called the natural parameter

But transforming parameter, we can write exponential family in other ways.

“Natural” is from the mathematics point of view – usual parameter
✓ = ⌘�1(�) often di↵erent.

Natural vs Usual Parametrization

exp

(
kX

i=1

�iTi (y)� �(�) + S(y)

)
= exp

(
kX

i=1

⌘i (✓)Ti (y)� d(✓) + S(y)

)
.

where ⌘ : Rk ! Rk is a C
2 map such that

� = ⌘(✓)

and so �(�) = �(⌘(✓)) = d(✓), for d = � � ⌘.

Natural parametrization: great for mathematical manipulation.

Usual parametrization: more intuitive in context of applications.
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Example (Binomial Exponential Family)

Let Y ⇠ Binom(n, p). Observe that:

✓
n

y

◆
p
y (1� p)n�y = exp

⇢
log

✓
p

1� p

◆
y + n log(1� p) + log

✓
n

y

◆�
.

Define

� = log

✓
p

1� p

◆
, T (y) = y ,

S(y) = log

✓
n

y

◆
, �(�) = n log(1 + e

�) = �n log(1� p).

Keeping n fixed and allowing only p to vary, the support of f does not depend on
� and we get a 1-parameter exponential family. Note that:

p =
e
�

1 + e�
& � = log

✓
p

1� p

◆

| {z }
=⌘(p)

.

so the usual parameter is p 2 (0, 1), but the natural one is � 2 R. ⇤
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Example (Gaussian Exponential Family)

Let Y ⇠ N(µ,�2). We can write

f (y ;µ,�2) =
1

�
p
2⇡

exp

(
�1

2

✓
y � µ

�

◆2
)

= exp

⇢
� 1

2�2
y
2 +

µ

�2
y � 1

2
log(2⇡�2)� µ2

2�2

�
.

Define

�1 =
µ

�2
, �2 = � 1

2�2
,

T1(y) = y , T2(y) = y
2, S(y) = 0, �(�1,�2) = � �2

1

4�2
+

1

2
log

✓
� ⇡

�2

◆
,

and observe that the support of f is always R. Thus N(µ,�2) is a two-parameter
exponential family. ⇤
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Sampling Theory and Stochastic
Convergence
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Sampling

1 Model phenomenon by distribution F (y1, ..., yn; ✓) on Yn, some n � 1.

2 Distributional form is known but ✓ 2 ⇥ is unknown.

3 Observe realisation of (Y1, ...,Yn)> 2 Yn from this distribution. Call this a
sample.

4 Use sample {Y1, . . . ,Yn} in order to make assertions concerning the true
value of ✓, and quantify the uncertainty associated with these assertions.

Anything we do will be a function T (Y1, . . . ,Yn) of the sample

Sampling theory aims to understand:
1 What information do di↵erent forms of functions T : Yn ! Rp carry on the

parameter ✓?
2 What is the probability distribution of T (Y1, ...,Yn) and how does it relate to

F (y1, ..., yn; ✓)?

These two questions are closely related.
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Statistics

Definition (Statistic)

A statistic is any function T whose domain is the sample space Yn but does not
depend on unknown parameters.

,! Intuitively, any function that can be evaluated on the basis of the sample alone
is a statistic.
,! Any statistic is clearly itself a random variable with its own distribution.

Example

T (Y ) = n
�1

Pn
i=1 Yi is a statistic (since n, the sample size, is known).

Example

T (Y ) = (Y(1), . . . ,Y(n)) where Y(1)  Y(2)  . . . ,Y(n) are the order statistics of
Y . Since T depends only on the values of Y , T is a statistic.

Example

Let T (Y ) = c , where c is a known constant. Then T is a statistic
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Definition (Sampling Distribution)

Let (Y1, . . . ,Yn)>⇠F (y1, ..., yn; ✓) and T : Yn ! Rq be a statistic,

T (Y1, ...,Yn) = (T1(Y1, . . . ,Yn), . . . ,Tq(Y1, . . . ,Yn)).

The sampling distribution of T under F (y1, ..., yn; ✓) is the distribution

FT (t1, . . . , tp) = P[T1(Y1, . . . ,Yn)  t1, . . . ,Tq(Y1, . . . ,Yn)  tq].

Comments:

We will typically simply write T instead of the cumbersome T (Y1, ...,Yn).

Very often T : Yn ! R (i.e. q = 1), in which case the notation simplifies
considerably:

FT (t) = P[T (Y1, ...,Yn)  t], t 2 R.

Key observation:

The sampling distribution of T depends on the unknown ✓

The extent and form of this dependence is essential for inference.
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Evident from previous examples: some statistics are more informative and
others are less informative regarding the true value of ✓

Any T (Y1, ...,Yn) that is not “1-1” carries less information about ✓ than the
original sample (Y1, ...,Yn) itself.

Which are “good” and which are “bad” statistics?

Definition (Ancillary Statistic)

A statistic T is an ancillary statistic (for ✓) if its distribution does not functionally
depend ✓

,! So an ancillary statistic has the same distribution 8 ✓ 2 ⇥.

Example

Suppose that Y1, ...,Yn
iid⇠ N (µ,�2) (where µ unknown but �2 known). Let

T (Y1, ...,Yn) = Y1 � Y2; then T has a Normal distribution with mean 0 and
variance 2�2. Thus T is ancillary for the unknown parameter µ. If both µ and �2

were unknown, T would not be ancillary for ✓ = (µ,�2).
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If T is ancillary for ✓ then T carries no information about ✓

In order to carry any useful information about ✓, the sampling distribution FT

must depend explicitly on ✓.

Intuitively, the amount of information T carries on ✓ increases as the
dependence of its sampling distribution FT on ✓ increases

Example

Let Y1, ...,Yn
iid⇠ U [0, ✓], S = min(Y1, . . . ,Yn) and T = max(Y1, . . . ,Yn).

fS(y ; ✓) =
n
✓

�
1� y

✓

�n�1
, 0  y  ✓

fT (y ; ✓) =
n
✓

� y
✓

�n�1
, 0  y  ✓

,! Neither S nor T are ancillary for ✓

,! As n " 1, fS becomes concentrated around 0

,! As n " 1, fT becomes concentrated around ✓ while

,! Indicates that T provides more information about ✓ than does S .
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