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Conditional Moments

We can calculate the conditional expectation of a random variable X given that
another random variable Y took the value y as

KZXEX xP[X =x|Y =y], if X,Y are discrete,
E[X]Y = y] =< -

\ft: X fX|Y(Xb/)dX, if X,Y are continuous.

~

! measurable
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@ Precisely the expectation of the conditional distribution.
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Conditional Moments

We can calculate the conditional expectation of a random variable X given that
another random variable Y took the value y as

(ZXEX xP[X =x|Y =y], if X,Y are discrete,
EX|Y =y]l=< —
\ft:X fxw(ﬂy)& if X,Y are continuous.

@ Precisely the expectation of the conditional distribution.
@ Note that E[X|Y = y] :results in a function of only y.
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Conditional Moments

We can calculate the conditional expectation of a random variable X given that
another random variable Y took the value y as

KZXEX xP[X =x|Y =y], if X,Y are discrete,
E[X]Y =y] =<

\ft: X fX|Y(Xb/)dX, if X,Y are continuous.

@ Precisely the expectation of the conditional distribution.
@ Note that E[X|Y = y| = q(y) results in a function of only y.
@ One can plug Y into g(-) and consider Z = g(Y') as a random variable itself.
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Conditional Moments

We can calculate the conditional expectation of a random variable X given that
another random variable Y took the value y as

KZXEX xP[X =x|Y =y], if X,Y are discrete,
E[X]Y =y] =<

\ft: X fX|Y(Xb/)dX, if X,Y are continuous.

Precisely the expectation of the conditional distribution.
Note that E[X|Y = y] = q(y) results in a function of only y.
One can plug Y into g(-) and consider Z = g(Y') as a random variable itself.
Important property/interpretation: Mgg
E[X|Y] = argminE ||X — g(Y)|°
g

———————

Among all functions! of Y, E[X|Y] best approximates X in mean square.
(_, ———

! measurable
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Important properties of E[X|Y]:
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Important properties of E[X|Y]:

© ‘Tower property': ]E{IE[X|Y]} = E[X]
o)
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Important properties of E[X|Y]:

© 'Tower property': E{E[X|Y]} = E[X] l?()((\(j: v )

—

@ If X independent of Y, then E[X|Y] = E[X]. SY £ " SY‘Qx 0]
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Important properties of E[X|Y]:

© 'Tower property': E[E[X|Y]} = E[X] %QMX‘S <Q %LX:S
@ If X independent of Y, then E[X|Y] = E[X].
Q@ E[g(Y)X|Y] =g(Y)E[X]|Y] (taking out known factors)
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Important properties of E[X|Y]:

© 'Tower property': ]E[IE[X|Y]} = E[X]
@ If X independent of Y, then E[X|Y] = E[X].
Q@ E[g(Y)X|Y] =g(Y)E[X]|Y] (taking out known factors)

Q Linearity: E[aX; + X5|Y] = aE[X1|Y] + E[X3|Y].
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Important properties of E[X|Y]:

© 'Tower property': ]E[IE[X|Y]} = E[X]

@ If X independent of Y, then E[X|Y] = E[X].

Q@ E[g(Y)X|Y] =g(Y)E[X]|Y] (taking out known factors)
Q Linearity: E[aX; + X5|Y] = aE[X1|Y] + E[X3|Y].

© Monotonicity: X; < Xo = E[X1|Y] < E[X2]Y] |, %L\([} & @YX-A
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The conditional variance of X given Y is defined as

varX(V) = B[ (X - EX| V]| ] = E(Y) - (EIX())
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The conditional variance of X given Y is defined as

var[X|Y] = E[(X — E[X]Y])? M = E[X?|Y] - (E[X|Y])"

The law of total variance states that

var(X) = E [var[X|Y]] + var (E[X]|Y])

=
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The conditional variance of X given Y is defined as

varlx|¥1 = E (¢ - BX|v1)* ] =@EC1Y1) (BIXI YD)’

The law of total variance states that

var(X) = E [var[X|Y]] + var (E[X]|Y])

Proof:

def
var(X) = E[X°] — E*[X]
. " - E[E[XY]]

= E|var[X|Y] + E2[X|Y]| - E2[E[X|Y
\(V\L”‘ﬂw/: il 2 v | 2
op oft Efvar[X|Y]] + E[E[X| Y]] — E°[E[X]|Y]]

= E[var[X|Y]] + var (E[X|Y]).7 def of s
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Covariance Matrices

~

The covariance matrix of a random vector Y = (Yq,..., Yq)', say@: {Qji}, is
a d x d symmetric matrix with entries

Q; = cov(V;, ¥}) = E[(Y; — E[Y)(Y; ~E[V])], 1<i<j<d.
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Covariance Matrices

The covariance matrix of a random vector Y = (Y1,..., Yy)', say Q@ = {Q;}, is
a d x d symmetric matrix with entries

Q= cov(¥,, ¥;) = EI(Y, —E[V])(Y, ~E[Y)], 1<i<j<d

That is, the covariance matrix encodes the variances of the coordinates of Y (on
the diagonal) and the pairwise covariances between any two coordinates of Y (off
the diagonal).
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Covariance Matrices

The covariance matrix of a random vector Y = (Y1,..., Yy)', say Q@ = {Q;}, is
a d x d symmetric matrix with entries

Q= cov(¥,, ¥;) = EI(Y, —E[V])(Y, ~E[Y)], 1<i<j<d

That is, the covariance matrix encodes the variances of the coordinates of Y (on
the diagonal) and the pairwise covariances between any two coordinates of Y (off
the diagonal). 2l

If we write ¢
(- ELY] = (ELi].... B[} ;
1

for the mean vector of Y, then

B(Y — u)(Y — ] = EIYY A — a7

Similarly to the vector case, the expectation of a matrix with random entries is the
matrix of expectations of the random entries.
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Covariance Matrices and Linear Transformations

Let Y be a random d x 1 with mean vector ; be the mean vector and covariance
matrix 2. z_
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Covariance Matrices and Linear Transformations

Let Y be a random d x 1 with mean vector ; be the mean vector and covariance
matrix €2.

e PSD: for any B € RY, we have BTQﬁ fosiHue semi -defimie
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Covariance Matrices and Linear Transformations

Let Y be a random d x 1 with mean vector ; be the mean vector and covariance
matrix €2.

e PSD: for any B € RY, we have 37 Q3 > 0.

@ If Ais a p X d deterministic matrix, the mean vector and covariance matrix
o@ are A and , respectively.

Cov (AY, KY)
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Covariance Matrices and Linear Transformations

g (- €S 20

Let Y be a random d x 1 with mean vector ; be the mean vector and covariance
matrix €2.

e PSD: for any B € RY, we have 37 Q3 > 0.

@ If Ais a p x d deterministic matrix, the mean vector and covariance matrix
of AY are Ap and AQAT, respectively.

o If 3 € RY is a deterministic vector, the variance of 3'Y i 20
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Covariance Matrices and Linear Transformations

Let Y be a random d x 1 with mean vector ; be the mean vector and covariance
matrix €2.

e PSD: for any B € RY, we have 37 Q3 > 0.

@ If Ais a p x d deterministic matrix, the mean vector and covariance matrix
of AY are Ap and AQAT, respectively.

o If B € RY is a deterministic vector, the variance of 3'Y is 3' Q2.

o If 3,v € RY are deterministic vectors, the covariance of B3' Y with v Y is

LI N P
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Inequalities Involving Moments

Given X be a non-negative random variable. Then, given an@

]P’[X > ] < E[EX] [Markov] X7 0
?(OOP Z [ &@w iL%XweZ, + )ML%:L%@
l X7¢
ﬂ?)( 7/£;¢ ij’a OWW:CC

> gy 4oxz el < EIxd7<e?)

P(x7 ) ELX| ¥z 2] -
LSMX'M] Wfﬁx 7: S s] 7 (R B
7 >0
P J&(f)f’” Z@ﬁ’(xz z)J

2Recall that a function ¢ is convex if (Ax + (1 — A)y) < Ap(x) + (1 — X)p(y) for all x, vy,
and A € [0, 1].
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Inequalities Involving Moments

Given X be a non-negative random variable. Then, given any ¢ > 0,

~—

E[X]

€

P[X > €] <

[Markov]

Let X be a random variable with finite mean E[X] < co. Then, given any € > 0,

—

var|[X]

P[|x _E[X]| > e} < [Chebyschev]

€

{root

> €)= ?.“4 - LX “ 7 )
P FO) 7 2 ¢ glix- B

2Recall that a function ¢ is convex if (Ax + (1 — A)y) < Ap(x) + (1 — X)p(y) for all x, vy,
and A € [0, 1].
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Inequalities Involving Moments

Given X be a non-negative random variable. Then, given any ¢ > 0,

E[X]

€

P[X > €] <

[Markov]

Let X be a random variable with finite mean E[X]| < co. Then, given any € > 0,

var|[X]

P[\x _E[X]| > e} < [Chebyschev]

€

For any convex? function ¢ : R — R, if E|p(X)| + E|X]| < oo, then one has

aS—

o(E[X]) <E[p(X)]  [Jensen]

2Recall that a function ¢ is convex if (Ax + (1 — A)y) < Ap(x) + (1 — X)p(y) for all x, y,
and )\ € [0, 1]_ ——
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Inequalities Involving Moments

Given X be a non-negative random variable. Then, given any ¢ > 0,

P[X > €] < [Markov]

Let X be a random variable with finite mean E[X]| < co. Then, given any € > 0,

var|[X]

€

P[\x _E[X]| > e} < [Chebyschev]

For any convex? function ¢ : R — R, if E|p(X)| + E|X]| < oo, then one has

s —

o(E[X]) <E[p(X)]  [Jensen]

Let X be a real random variable with IE[X2! < 00. Let g: R — R be a non
decreasing function such that E[g?(X)] < co. Then, ~ 7(/‘\ > 5&3&)

cov[X @ >0 [Monotonicity and Covariance]

2Recall that a function ¢ is convex if p(Ax + (1 — N)y) < Ap(x) + (1 — N)(y) for all x, y,

and A € [0, 1].
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Moment Generating Functions

Let X be a random variable taking values in R. The moment generating function

(MGF) of X is defined as

Mx(t) : R—)RU{OO}

<~

Mx(t)ZI-Ei@, t € R.

When Mx(t), My (t) exist (are finite) for t € I 5 0, then:

dtk
@ Mx =My on [ ifandonly if Fx = Fy

o E[|X|“] < oo and E[XK] = ¢Mx(0), for all k € N.

@ Mx.y = MxMy when X and Y are independent
Similarly, for a random vector X in RY, the MGF is

Mx(u) : RY — RU {0}

Mx (u) ZE[@, uecRY

and has analogous properties.
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Elementary Distributions Factsheet
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Bernoulli Distribution

A random variable X is said to follow the Bernoulli distribution with parameter
p€(0,1), denoted X ~ Bern(p), if

QO &= {_0_71_} = Q- ’
—@ f(x;p) = plix =1} + (1 - p)lix =0}. Wf’“‘)

The mean, variance and moment generating function of X ~ Bern(p) are given by

E[X] = p, var[X] = p(1 — p), M(t): 1—P—|-pet.:)
g Lot - By $9xAL « Up) dgx- 03]

2 i-F + O’(W)}(
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Binomial Distribution

A random variable X is said to follow the Binomial distribution With parameters
pc (0,1) and n € N, denoted X ~ Binom(n, p),

@ x=1{0,1,2,.. ., n}, -
Q f(x; n:) — ()’:) (1 — p)"*.

/r_’—-

(K> (n- x)‘ x'

The mean, variancé and moment generating function of X ~ Binom(n, p) are
given by

E[X] = np, var|[X] :M M(t) = (1— p+ pe’)".
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Binomial Distribution

A random variable X is said to follow the Binomial distribution with parameters
p €(0,1) and n € N, denoted X ~ Binom(n, p), if

Q@ ¥=1{0,1,2,..,n},
Q@ f(x;n,p) = ()’Z) p*(1 — p)"*.

The mean, variance and moment generating function of X ~ Binom(n, p) are
given by

E[X]=np,  var[X]=np(l—p),  M(t)=(1-p+ pe)"

o If X =5"",Y: where Y; "< Bern(p), then X ~ Binom(n, p).

e
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Geometric Distribution

A random variable X is said to follow the Geometric distribution with parameter
p € (0,1), denoted X ~ Geom(p), if

@ x-{ojuN,
Q@ (x;p)=(1-p)p.

e———
The mean, variance and moment generating function of X ~ Geom(p) are given

by

Ex = 1P vax]= B2 ) = P

P p? AT pe =0

Moo=
the latter for t < —log(1 — p).

@ Let {Y;}i>1 be an infinite collection of random variables, where
Y, & Bern(p). Let T =min{k € N: Yy =1} —1. Then T ~ Geom(p).
— )

———
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Negative Binomial Distribution

A random variable X is said to follow the Negative Binomial distribution with
parameters@ (0,1) and r > 0, denoted X ~ NegBin, if

——\

Q@ X ={0lUN, gin (V1P

x+r—1 . r

@ f(ip) = (TN per
X /

The mean, variance and moment generating function of X ~ NegBin(r, p) are

given by

r

E[X] = r P vl - r(1;2p) M(t) = = (1”_ T

the latter for t < —log(1 — p).
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Negative Binomial Distribution

A random variable X is said to follow the Negative Binomial distribution with
parameters p € (0,1) and r > 0, denoted X ~ NegBin(r, p), if

@ ¥ ={0}UN,

Q@ f(x;pr)= (X +; B 1)(1 —p)p".

The mean, variance and moment generating function of X ~ NegBin(r, p) are
given by

r

E[X] = r P vl - r(1;2p) M(t) = = (1”_ o

the latter for t < —log(1 — p).

o If X = zgl Y; where Y; /< Geom(p), then X ~ NegBin(r, p).
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Poisson Distribution

A random variable X is said to follow the Poisson distribution with parameters

denoted X ~ Poisson()), if

@ ¥ = {0}UN,

The mean, variance and moment generating function of X ~ Poisson(\) are given

by
EX]=A  varX]=X M(t) = exp{A(ef ~ 1)},

o Let {X,},>1 be a sequence of Binom(n/py) random variables, such that

pn = A/n, for some constant A > 0. Then fx, i fy, where
Y ~ Poisson(}\). — -

o Let X~Poisson(A) and_Y~Poisson(u) be independent. The conditional
distribution of X given X + Y = k is Binom(k, /(A + p)) (useful in

conw tables). -
Pl xey-t
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Multinomial Distribution

parameters n € N and p = (p1,...,px) € (0,1)%, such that
X ~ Multi(n; p1, ..., pk), if —

@ the sample space is {0,1,...,n}*, and

k
n! % X
Q f(xi,...,xi;n{pi}iq) = xl!...xk!pll'”pkkl {ZXI - n}.

~—— \/—41

The mean, variance covariance and moment generating function are
E[X;] = npr) V%LXI] = n@l — i) cov(Xi, Xj) = —npip;

k n
M(uy,...,ux) = Z pie"
i=1

Generalises binomial: n independent trials, with k possible outcomes.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science
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Multinomial Distribution

A random vector X in R said to follow the Multinomial distribution with

parameters n € N and p = (p1,...,px) € (0,1)%, such that fozl p; = 1, denoted
X ~ Multi(n; p1, ..., pk), if

@ the sample space is {0,1,...,n}*, and

k
n! N N
9 f(Xla...,Xk;na{pi f(:]_) — X]_! ...Xk!pll ...pkk]. {ZXI p— n}.
=1

The mean, variance covariance and moment generating function are

E[Xi] = np;, Var[Xj] = npi(1 — p;), cov(Xi, Xj) = —npip;

K n
M(ul,...,uk): (Zp;e””) ‘
=1

Generalises binomial: n independent trials, with k possible outcomes.

Lemma (Poisson and Multinomial)

If X; ~ Poiss(r)\_,-z, i =1, ..., k are independent, then the conditional distribution of
X = (X1,...,Xe) " given Y"1 X; = n is Multi(n; py,. .., pi), with

S
T Aj
I A+
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Uniform Distribution

A random variable X is said to follow the uniform distribution with parameters
—00 < #; < 0y < o0, denoted X ~ Unif(6y,60,), if |

fx(x;0) = {(92 - 91@ if x € (61,062), G, — 6

0 otherwise.

The mean, variance and moment generating function of X ~ Unif(6y,6,) are
given by

to

2 _ atbs
E[X] = (01 +02)/2,  var[X] = (2 — 01)2/12, M(t) == t£0
SR (tlo2 = 61) " ——
M(0) = 1.
07 o il
AT R
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Exponential Distribution

A random variable X is said to follow the exponential distribution with parameter
A > 0, denoted X ~ Exp@, if ? o }\

e~ if x>0

————

Ax(xiA) = {o X =0

The mean, variance and moment generating function of X ~ Exp(\) are given by

E[X] =Xt  var[X] :52, M(t) = % @

If X, Y are independent exponential random variables with rates A; and A3, then

Z = min{X, Y} is also exponential with rat - <!

4?2 = (ard)e
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Exponential Distribution

A random variable X is said to follow the exponential distribution with parameter
A > 0, denoted X ~ Exp()), if

e M if x>0
fx(x; A) = 7 -
x(xA) {o i x < 0.

The mean, variance and moment generating function of X ~ Exp(\) are given by

E[X] = )\—1, V&I'[X] = )\_2, M(t) = m, t < )\

If X,Y are independent exponential random variables with rates A1 and Ay, then
Z = min{X, Y} is also exponential with rate \; + A;.

Memorylessness property:

Q Let X ~ Exp(A). Then P[X > x + ¢|X >® m

@ Conversely: if X is a random Viriable such that P(X >0) >0 and
———

P(X >t+s|X>t)=P(X >s), Vt,s > 0,
. :
then there exits a A > 0 such thaté( ~ Exp()\/)./
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Gamma Distribution

A random variable X is said to follow the gamma distribution with parameters
r >0 and X > 0 (the shape and rate parameters, respectively), denoted

— —
X ~ Gamma(r, A), if
“F

A r—1e—>\x7 if x>0
fX(X;rj)\){rr) if x <0

The mean, variance and moment generating function of X ~ Gamma(r, \) are

given by
E[X] :(r/i, var[X] = r/\?, M(t) = ()\itg t < A

_—

0o If Yy,....Y, X8 Exp()), then Y =>""_ Y; ~ Gamma(r, \) (special case is
called Erlang distribution).

@ The special case of Gamma(k/2,1/2) is called the chi-square distribution
with k degrees of freedom and denoted by x2. We will soon see its

—

Importance.
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Normal (Gaussian) Distribution

——

A random variable X is said to follow the normal distribution with parameters
nd 0? > 0 (the mean and variance parameters, respectively), denoted

X ~ N(p,0?), if 0

1 1 %

X — [
fx(x; b, 0°) = exp{ —= , L xeR.
x(x; p,07) /o P{ 2(0)}

4

The mean, variance and moment generating function of X ~ N(u, 0?) are given by

E[X]=p,  var[X]=o? M(t) = exp{tu + t*c?/2}.

=

r/__‘ —
In the special case Z ~|N(0, 1), jwe use the notatio = fz(z) and

.— Fz(z), and call these the standard normal density and standard normal
CDF, respectively.
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Closure Under Addition for Gaussian Variables

Lemma |
Let X ~ N(u,0°), a# 0. Then aX + b ~ N(ap + b, a*c®). Condequently, if
X ~ N(u,c°), then —

where ® is the standard normal CDF, ®(u) = ["_(2m)~/?exp{—2z%/2}dz.

Corollary ’

Let Xi,...,X, be independent random variables, such that X; ~ N(u;,c?), and
let S, =>""_, Xi. Then,

T X
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Entropy
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Can one probability model be “more disordered” than another?




Entropy

Can one probability model be “more disordered” than another?

The entropy of a random variable X is defined as

@CZQ) (— Z fx(x) log (fx(x)), if X is discrete,

~ xex —
H(X) = —E| log fx(X)| = ¢

+00
—/ fx(x) log (fx(x)) dx, if X is continuous.
\

—00 =

@ A measure of the intrinsic disorder or unpredictability of a random system.

I

@ Related to but not equivalent to variance.
When X is discrete:

° H(X)

e H(g(X)) < H(X) for any deterministic function g.
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KL Divergence (Relative Entropy)

-\

Can we use entropy to compare distributions?

Let p(x) and g(x) be two probability density (frequency) functions on R. We
define the Kullback-Leibler divergence or relative entropy of g with respect to p as

= B0 [ (o)

7% By Jensen’s inequality, for X ~ p(-) we have

since g Integrates to 1. d r
le p=q <= KL(q|lp) :Tb- dﬁrz’)@i@' 9= TLU ?
o KL{qlp) # KL(plq). d

@ Not a metric (lacks symmetry and violates triangle inequality).

——— D —

04 —
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Exponential Families
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Maximum Entropy Under Constraints

Consider the following variational problem:

Determine the probability distribution f supported on X with maximum entropy

,(:% - Q@%ﬁx L(Q: —/Xf(x) log f(x)dx/

subject to the linear constraints
A

—

2 4
@Uﬂ‘ IW}/X Ti(x)f(x)d@ozi, . i=1,..,k

Philosophy: How to choose a probability model for a given situation?

Maximum entropy approach:

@ In any given situation, choose the distribution that gives highest uncertainty
while satisfying situation—specific required constraints.
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Proposition.
When a solution to the constrained optimisation problem exists, it is unique and
has the form
‘ Q3
fx) = Q0 M) e { SATiX) b @)
i li:]' )

Proof.

Let g(x) be a density also satisfying the constraints. Then, o
A Mwikifly & divide by Fisy tide log) -

ﬂ(_g) (}:@F " /X g(x) |ogg(X)dxi— /X g(x) log [%@B

R
A= - KUel) - [ e(0logf(x)dx
;o mX//—‘—/s

?\Ummg o =

L k
< - IoiC—Q/X g(x)dx — /Xg(x) (Z A,-T,-(x)) dx

it Y

N

=
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fb?, 2 g=fyfl = 07)HCg)MC¢)

But g also satisfies the moment constraints, so the last term is

LA EF ﬁbﬂ)
= Iog@ /f(x ‘ x)!dx— /f(x ) log f(x)dx
d&’\ )

=

Unlqueness of the solution follows from the fact that strict equality can only
follow when KL(g|| f) = 0, which happens if and only if g = f.

[]

4
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Exponential Family of Distributions

A probability distribution is said to be a member of a k- _k-parameter exponential
family, if its density (or frequency) admits the representatlon

depondert ¢ KV
f(y exp{g¢l ?bla- 7¢k)—|_5( )}

l

where: (05 @C )

Q@ ¢ = (¢1,...,0x) is a k-dimensional parameter in ® C RX;
Q@T7,:Y—-R, i=1,.,k S:Y =R, and v: Rf = R, are real-valued;
© The support Y of f does not depend on ¢.

Very rich class of models (sometimes requiring fixing some parameters to satisfy
last condition): Binomial, Negative Binomial, Poisson, Gamma, Gaussian, Pareto,
Weibull, Laplace, logNormal, inverse Gaussian, inverse Gamma, Normal-Gamma,
Beta, Multinomial...

— Basis for Generalised Linear Models (GLM).

We will gradually see that such models have magnificent properties.
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050

S

@ ¢ = (¢1,...,0x)" is called the natural parameter
@ But transforming parameter, we can write exponential family in other ways.

@ “Natural” is from the mathematics point of view — usual parameter
0 = n~'(¢) often different.

Natural vs Usual Parametrization

exp {Zﬂﬂ(y) - () +_5_(_y)} = exp {Z_ni(H)T;(y) —d(8) + S(y)} -

where(n R — Kis a C2 map such that 4"\";,00 Continuously Aifferenti
¢ = n(0) L
b <
and so y(¢) = y(n(0)) = d(8), for d =y on.

@ Natural parametrization: great for mathematical manipulation.

@ Usual parametrization: more intuitive in context of applications.
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vli

—

29)

‘C\,@k (;) pP(1—p)" ‘ exp {

/

Define C@f fixed 9")

S(y) = log (;) v(¢) = nlog(1 + e®) = —nlog(1 — p).

Keeping n fixed and allowing only p to vary, the support of f does not depend on
¢ and we get a 1-parameter exponential family. Note that:

e? p
— = | — .
P =1 e & ¢ og( )

—s_z - ; :@p)

so the usual parameter is p € (0, 1), but the natural one is ¢ € R. ]
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Let Y ~ N(p,0?). We can write

2 1y —p i
flyipo%) = exp —5( - )
/(: (Y) \(/ N ' - S
1 1
Y = exp {—gzé—l— Uﬂzé— 5 log(270?) — 2%2} :
— o~ f_

1 o
Define ,Ij . | rot O(e(MeM’ 'd
[ZCT (/y)]: IZ[& ¢ = —, ¢2_—@7
- >
o7 s
)=y, Tl)=y% S =0, (é1,d2) =~ +7 Iog
492 YA
and observe that the support of f is always R. Thus N(,u, o) is a two parameter
exponentlal family. ]

y
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Sampling Theory and Stochastic
Convergence
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Sampling
P datet &fammq@r(/e)
¢
© Model phenomenon by distribution F(y1, ..., v, 0) on@ some n > 1.

_ 2
© Distributional form is known but \HNE © is unknown. Y QA/ o )

© Observe realisation of (Yi,..., Y,)' € V" from this distribution. Call this a

sample.
e

© Use sample {Yy,..., Y,} in order to make assertions concerning the true
value of ¢, and quantify the uncertainty associated with these assertions.
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Sampling

© Model phenomenon by distribution F(y1, ..., y,;0) on )", some n > 1.
© Distributional form is known but 6 € © is unknown.

© Observe realisation of (Yi,..., Y,)' € V" from this distribution. Call this a
sample.

© Use sample {Yy,..., Y,} in order to make assertions concerning the true
value of #, and quantify the uncertainty associated with these assertions.

Anything we do will be a function \7"'( Yi,...,Y,) of the sample

Sampling theory aims to understand:

© What information do different forms of functions T : V" — carry on the
parameter 67

@ What is the probability distribution of T(Y71,..., Y,) and how does it relate to
F(y1,..ey Yn; 0)7?
These two questions are closely related.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 33/48



Statistics X7 9 CY) 14 LZ| \{J

Definition (Statistic)

A statistic is any function T whose domain is the sample space )" but does not
depend on unknown parameters.

y

— Intuitively, any function that can be evaluated on the basis of the sample alone

IS a statistic.
— Any statistic is clearly itself a random variable with its own distribution.

T(Y)=n"1>"_Y,is a statistic (since n, the sample size, is known).

T(Y)=(Ya, -, Y(n) where Y1) < Yoy < ..., Y(, are the order statistics of
Y. Since T depends only on the values of Y, T is a statistic.

Let T(Y) = ¢, where ¢ is a known constant. Then T is a statistic
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Definition (Sampling Distribution)
Let (Yi,...,Y,) ~F(y1,..., yn; 0) and T:)Y"— I'\’a a statistic,

T(Yis s Yo) = (To(Yaso ooy Vo) To(Ya, o, Yo)).

The sampling distribution of T under F(yx, ..., y,; 0) is the distribution

Ff\T(t].)y@:]P)[Tl(Y]J?Yn) S t]-""?Tq(Yl"”’Yn) S tq]

Comments:
o We will typically simply write T instead of the cumbersome T(Y1, ..., Yn).
@ Very often T : V" — R (i.e. ¢ =1), in which case the notation simplifies

considerably: -
Fr(t) =P[T(Y1,....Ys) <t], teR
S

Key observation:

The sampling distribution of T depends on the unknown 6

The extent and form of this dependence is essential for inference.
e
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@ Evident from previous examples: some statistics are more informative and
others are less informative regarding the true value of 6

@ Any T(Y1,..., Ys) that is not “1-1" carries less information about 8 than the

(-

original sample (Y1, ..., Y,) itself.
@ Which are “good” and which are “bad” statistics?

Definition (Ancillary Statistic)

A statistic T is an ancillary statistic (for 6) if its distribution does not functionally

depend 6 )

— So an ancillary statistic has the same distribution V 6 € ©.
P ————

Suppose that Yy, ..., Y, QEN(JJJ, 02) (where p unknown but o2 known). Let

T(Y1,...,Yn) = Y1 — Y5, then T has a Normal distribution with mean 0 and

variance 202. Thus T is ancillary for the unknown parameter p. If both 1 and o2

were unknown, T would not be ancillary for 8 = (u, 0?).
v

T X©,27)
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e If T is ancillary for 6 then T carries no information about 6

@ In order to carry any useful information about 6, the sampling distribution Ft
must depend explicitly on 6.

@ Intuitively, the amount of information T carries on 6 increases as the
dependence of its sampling distribution F+ on 6 increases
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e If T is ancillary for 6 then T carries no information about 6

@ In order to carry any useful information about 6, the sampling distribution Fr
must depend explicitly on 6.

@ Intuitively, the amount of information T carries on 6 increases as the
dependence of its sampling distribution F+ on 6 increases

Let Y1, ..., "dZ/l[O 0], W) and T:max(Yl,...,Y,,).
v
o fs(yi0)=5(1-§)"", 0<y<o (2 ) (L)t e
- e, Y

<~ Neither S nor T are ancillary for 6

— As n? oo,comes concentrated around 0

PR\
— As n 1 oo, fr becomes concentrated around 6 while

]

— Indicates that T provides more information about 6 than does S.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 37/48



Co min $41, - “(.«5
- ‘P[Wn%‘lttc \( £7 é'b)
1 (Ml . a7 E)

S B l?v\(\(7b(' \(75)
- 1«%?(4\7{73

L \

UIM <€ LOr@]



