

Statistics for Data Science: Week 2

Myrto Limnios and Rajita Chandak

Institute of Mathematics – EPFL

rajita.chandak@epfl.ch, myrto.limnios@epfl.ch

We can calculate the **conditional expectation** of a random variable X given that another random variable Y took the value y as

$$\mathbb{E}[X|Y = y] = \begin{cases} \sum_{x \in \mathcal{X}} x \underbrace{\mathbb{P}[X = x|Y = y]}, & \text{if } X, Y \text{ are discrete,} \\ \int_{-\infty}^{+\infty} x \underbrace{f_{X|Y}(x|y)dx}, & \text{if } X, Y \text{ are continuous.} \end{cases}$$

¹measurable

We can calculate the **conditional expectation** of a random variable X given that another random variable Y took the value y as

$$\mathbb{E}[X|Y = y] = \begin{cases} \sum_{x \in \mathcal{X}} x \mathbb{P}[X = x | Y = y], & \text{if } X, Y \text{ are discrete,} \\ \int_{-\infty}^{+\infty} x f_{X|Y}(x|y) dx, & \text{if } X, Y \text{ are continuous.} \end{cases}$$

- Precisely the expectation of the conditional distribution.

¹measurable

We can calculate the **conditional expectation** of a random variable X given that another random variable Y took the value y as

$$\mathbb{E}[X|Y = y] = \begin{cases} \sum_{x \in \mathcal{X}} x \mathbb{P}[X = x|Y = y], & \text{if } X, Y \text{ are discrete,} \\ \int_{-\infty}^{+\infty} x f_{X|Y}(x|y) dx, & \text{if } X, Y \text{ are continuous.} \end{cases}$$

- Precisely the expectation of the conditional distribution.
- Note that $\mathbb{E}[X|Y = y] = \underbrace{q(y)}$ results in a function of only y .

¹measurable

We can calculate the **conditional expectation** of a random variable X given that another random variable Y took the value y as

$$\mathbb{E}[X|Y = y] = \begin{cases} \sum_{x \in \mathcal{X}} x \mathbb{P}[X = x | Y = y], & \text{if } X, Y \text{ are discrete,} \\ \int_{-\infty}^{+\infty} x f_{X|Y}(x|y) dx, & \text{if } X, Y \text{ are continuous.} \end{cases}$$

- Precisely the expectation of the conditional distribution.
- Note that $\mathbb{E}[X|Y = y] = q(y)$ results in a function of only y .
- One can plug Y into $q(\cdot)$ and consider $Z = \underline{q(Y)}$ as a random variable itself.

¹measurable

We can calculate the **conditional expectation** of a random variable X given that another random variable Y took the value y as

$$\mathbb{E}[X|Y = y] = \begin{cases} \sum_{x \in \mathcal{X}} x \mathbb{P}[X = x | Y = y], & \text{if } X, Y \text{ are discrete,} \\ \int_{-\infty}^{+\infty} x f_{X|Y}(x|y) dx, & \text{if } X, Y \text{ are continuous.} \end{cases}$$

- Precisely the expectation of the conditional distribution.
- Note that $\mathbb{E}[X|Y = y] = q(y)$ results in a function of only y .
- One can plug Y into $q(\cdot)$ and consider $Z = q(Y)$ as a random variable itself.
- Important property/interpretation:

MSE

$$\mathbb{E}[X|Y] = \arg \min_g \mathbb{E} \|X - \underline{g(Y)}\|^2$$

Among all functions¹ of Y , $\mathbb{E}[X|Y]$ best approximates X in mean square.

¹measurable

$$\begin{aligned}
 \arg \min_{g \in \mathcal{G}} \mathbb{E} [\|x - g(x)\|^2] & \quad (a+b)^2 = a^2 + b^2 + 2ab \\
 &= \mathbb{E} [\underbrace{\|x - \mathbb{E}[y|x]\|_2^2}_a + \underbrace{\mathbb{E}[y|x] - g(x)}_b \|_2^2] \\
 &= \mathbb{E} [\|x - \mathbb{E}[y|x]\|^2] + \mathbb{E} [\| \mathbb{E}[y|x] - g(x) \|_2^2] \\
 &\quad + 2 \mathbb{E} [(x - \mathbb{E}[y|x]) (\mathbb{E}[y|x] - g(x))] \xrightarrow{=} 0
 \end{aligned}$$

≥ 0

$$\min \mathbb{E} [\underbrace{\|\mathbb{E}[y|x] - g(x)\|_2^2}_\geq 0]$$

$$g(x) = \mathbb{E}[y|x]$$

Important properties of $\mathbb{E}[X|Y]$:

Important properties of $\mathbb{E}[X|Y]$:

- ① 'Tower property': $\mathbb{E}\left[\mathbb{E}[X|Y]\right] = \mathbb{E}[X]$

$$\mathbb{E}\left[\frac{\mathbb{E}[X|Y]}{g(Y)}\right]$$

Important properties of $\mathbb{E}[X|Y]$:

- ① 'Tower property': $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$
- ② If X independent of Y , then $\mathbb{E}[X|Y] = \underline{\mathbb{E}[X]}$.

$$\mathbb{P}(X|Y) = \mathbb{P}(X)$$

$$\int x f_{X|Y} = \int x f_X = \mathbb{E}[X]$$

Important properties of $\mathbb{E}[X|Y]$:

- ① 'Tower property': $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$
- ② If X independent of Y , then $\mathbb{E}[X|Y] = \mathbb{E}[X]$.
- ③ $\mathbb{E}[\underbrace{g(Y)X|Y}] = g(Y)\mathbb{E}[X|Y]$ (taking out known factors)

$$\mathbb{E}[aX] = a\mathbb{E}[X]$$

$$Y=y \rightarrow g(Y) = g(y)$$

Important properties of $\mathbb{E}[X|Y]$:

- ① 'Tower property': $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$
- ② If X independent of Y , then $\mathbb{E}[X|Y] = \mathbb{E}[X]$.
- ③ $\mathbb{E}[g(Y)X|Y] = g(Y)\mathbb{E}[X|Y]$ (taking out known factors)
- ④ Linearity: $\mathbb{E}[\underline{aX_1 + X_2}|Y] = a\mathbb{E}[X_1|Y] + \mathbb{E}[X_2|Y]$.

Important properties of $\mathbb{E}[X|Y]$:

- ① 'Tower property': $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$
- ② If X independent of Y , then $\mathbb{E}[X|Y] = \mathbb{E}[X]$.
- ③ $\mathbb{E}[g(Y)X|Y] = g(Y)\mathbb{E}[X|Y]$ (taking out known factors)
- ④ Linearity: $\mathbb{E}[aX_1 + X_2|Y] = a\mathbb{E}[X_1|Y] + \mathbb{E}[X_2|Y]$.
- ⑤ Monotonicity: $X_1 \leq X_2 \implies \mathbb{E}[X_1|Y] \leq \mathbb{E}[X_2|Y]$, $\mathbb{E}[X_1] \leq \mathbb{E}[X_2]$

The **conditional variance** of X given Y is defined as

$$\text{var}[X|Y] = \mathbb{E}\left[(X - \mathbb{E}[X|Y])^2 \mid Y \right] = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$

The **conditional variance** of X given Y is defined as

$$\text{var}[X|Y] = \mathbb{E}\left[(X - \mathbb{E}[X|Y])^2 \mid Y \right] = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$

The **law of total variance** states that

$$\text{var}(X) = \mathbb{E}[\text{var}[X|Y]] + \text{var}(\mathbb{E}[X|Y])$$

The **conditional variance** of X given Y is defined as

$$\underline{\text{var}[X|Y]} = \mathbb{E} \left[(X - \mathbb{E}[X|Y])^2 \mid Y \right] = \mathbb{E}[X^2|Y] - \underline{(\mathbb{E}[X|Y])^2}$$

The **law of total variance** states that

$$\text{var}(X) = \mathbb{E}[\text{var}[X|Y]] + \text{var}(\mathbb{E}[X|Y])$$

Proof:

$$\begin{aligned} \text{var}(X) &\stackrel{\text{def}}{=} \mathbb{E}[X^2] - \mathbb{E}^2[X] \\ &\stackrel{\text{tower property}}{=} \mathbb{E}[\mathbb{E}[X^2|Y]] - \mathbb{E}^2[\mathbb{E}[X|Y]] \\ &= \mathbb{E}[\text{var}[X|Y] + \mathbb{E}^2[X|Y]] - \mathbb{E}^2[\mathbb{E}[X|Y]] \\ &\stackrel{\text{linearity of E}}{=} \mathbb{E}[\text{var}[X|Y]] + \mathbb{E}[\mathbb{E}^2[X|Y]] - \mathbb{E}^2[\mathbb{E}[X|Y]] \\ &= \underline{\text{var}[X|Y]} + \text{var}(\mathbb{E}[X|Y]). \quad \text{"def of var."} \end{aligned}$$

Covariance Matrices

The **covariance matrix** of a random vector $\mathbf{Y} = (Y_1, \dots, Y_d)^\top$, say $\Omega = \{\Omega_{ij}\}$, is a $d \times d$ symmetric matrix with entries

$$\Omega_{ij} = \underbrace{\text{cov}(Y_i, Y_j)}_{\text{cov}(X_i, Y_j)} = \mathbb{E}[(Y_i - \mathbb{E}[Y_i])(Y_j - \mathbb{E}[Y_j])], \quad 1 \leq i \leq j \leq d.$$

$\text{cov}(X_i, Y_j)$

$$\text{cov}(Y_i, Y_j) = \text{cov}(Y_j, Y_i)$$

$$\begin{bmatrix} \text{Var}(Y_1) & \text{cov}(Y_1, Y_2) & \dots & \text{cov}(Y_1, Y_d) \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \text{Var}(Y_d) & \text{cov}(Y_d, Y_1) & \dots & \text{cov}(Y_d, Y_d) \end{bmatrix}$$

The **covariance matrix** of a random vector $\mathbf{Y} = (Y_1, \dots, Y_d)^\top$, say $\Omega = \{\Omega_{ij}\}$, is a $d \times d$ symmetric matrix with entries

$$\Omega_{ij} = \text{cov}(Y_i, Y_j) = \mathbb{E}[(Y_i - \mathbb{E}[Y_i])(Y_j - \mathbb{E}[Y_j])], \quad 1 \leq i \leq j \leq d.$$

That is, the covariance matrix encodes the variances of the coordinates of \mathbf{Y} (on the diagonal) and the pairwise covariances between any two coordinates of \mathbf{Y} (off the diagonal).

Covariance Matrices

The **covariance matrix** of a random vector $\mathbf{Y} = (Y_1, \dots, Y_d)^\top$, say $\Omega = \{\Omega_{ij}\}$, is a $d \times d$ symmetric matrix with entries

$$\Omega_{ij} = \text{cov}(Y_i, Y_j) = \mathbb{E}[(Y_i - \mathbb{E}[Y_i])(Y_j - \mathbb{E}[Y_j])], \quad 1 \leq i \leq j \leq d.$$

That is, the covariance matrix encodes the variances of the coordinates of \mathbf{Y} (on the diagonal) and the pairwise covariances between any two coordinates of \mathbf{Y} (off the diagonal).

If we write

$$\mu = \mathbb{E}[\mathbf{Y}] = (\mathbb{E}[Y_1], \dots, \mathbb{E}[Y_d])^\top$$

for the mean vector of \mathbf{Y} , then

$$\mathbb{E}[(\mathbf{Y} - \mu)(\mathbf{Y} - \mu)^\top] = \mathbb{E}[\mathbf{Y}\mathbf{Y}^\top] - \mu\mu^\top.$$

Similarly to the vector case, the expectation of a matrix with random entries is the matrix of expectations of the random entries.

Let \mathbf{Y} be a random $d \times 1$ with mean vector $\boldsymbol{\mu}$ be the mean vector and covariance matrix $\boldsymbol{\Omega}$. Σ

Let \mathbf{Y} be a random $d \times 1$ with mean vector μ be the mean vector and covariance matrix Ω .

- PSD: for any $\beta \in \mathbb{R}^d$, we have $\beta^\top \Omega \beta \geq 0$. *Positive semi-definite*

Let \mathbf{Y} be a random $d \times 1$ with mean vector $\boldsymbol{\mu}$ be the mean vector and covariance matrix $\boldsymbol{\Omega}$.

- PSD: for any $\boldsymbol{\beta} \in \mathbb{R}^d$, we have $\boldsymbol{\beta}^\top \boldsymbol{\Omega} \boldsymbol{\beta} \geq 0$.
- If \mathbf{A} is a $p \times d$ deterministic matrix, the mean vector and covariance matrix of \mathbf{AY} are $\mathbf{A}\boldsymbol{\mu}$ and $\mathbf{A}\boldsymbol{\Omega}\mathbf{A}^\top$, respectively.

$$\text{Cov}(\mathbf{AY}, \mathbf{AY})$$

$$\mathbb{E}[(x - \mathbb{E}[x])^2] \geq 0$$

Let \mathbf{Y} be a random $d \times 1$ with mean vector $\boldsymbol{\mu}$ be the mean vector and covariance matrix $\boldsymbol{\Omega}$.

- PSD: for any $\boldsymbol{\beta} \in \mathbb{R}^d$, we have $\boldsymbol{\beta}^\top \boldsymbol{\Omega} \boldsymbol{\beta} \geq 0$.
- If \mathbf{A} is a $p \times d$ deterministic matrix, the mean vector and covariance matrix of $\mathbf{A}\mathbf{Y}$ are $\mathbf{A}\boldsymbol{\mu}$ and $\mathbf{A}\boldsymbol{\Omega}\mathbf{A}^\top$, respectively.
- If $\boldsymbol{\beta} \in \mathbb{R}^d$ is a deterministic vector, the variance of $\underline{\boldsymbol{\beta}^\top \mathbf{Y}}$ is $\underline{\boldsymbol{\beta}^\top \boldsymbol{\Omega} \boldsymbol{\beta}} \geq 0$

Let \mathbf{Y} be a random $d \times 1$ with mean vector $\boldsymbol{\mu}$ be the mean vector and covariance matrix $\boldsymbol{\Omega}$.

- PSD: for any $\boldsymbol{\beta} \in \mathbb{R}^d$, we have $\boldsymbol{\beta}^\top \boldsymbol{\Omega} \boldsymbol{\beta} \geq 0$.
- If \mathbf{A} is a $p \times d$ deterministic matrix, the mean vector and covariance matrix of $\mathbf{A}\mathbf{Y}$ are $\mathbf{A}\boldsymbol{\mu}$ and $\mathbf{A}\boldsymbol{\Omega}\mathbf{A}^\top$, respectively.
- If $\boldsymbol{\beta} \in \mathbb{R}^d$ is a deterministic vector, the variance of $\boldsymbol{\beta}^\top \mathbf{Y}$ is $\boldsymbol{\beta}^\top \boldsymbol{\Omega} \boldsymbol{\beta}$.
- If $\boldsymbol{\beta}, \boldsymbol{\gamma} \in \mathbb{R}^d$ are deterministic vectors, the covariance of $\underline{\boldsymbol{\beta}^\top \mathbf{Y}}$ with $\underline{\boldsymbol{\gamma}^\top \mathbf{Y}}$ is $\underline{\boldsymbol{\gamma}^\top \boldsymbol{\Omega} \boldsymbol{\beta}}$.

$$\text{Cov}(\underline{\boldsymbol{\beta}^\top \mathbf{Y}}, \underline{\boldsymbol{\gamma}^\top \mathbf{Y}}) = \boldsymbol{\gamma}^\top \boldsymbol{\Omega} \boldsymbol{\beta}$$

Inequalities Involving Moments

Given X be a non-negative random variable. Then, given any $\epsilon > 0$,

$$\mathbb{P}[X \geq \epsilon] \leq \frac{\mathbb{E}[X]}{\epsilon} \quad [\text{Markov}] \quad X \geq 0$$

Proof:

$$\mathbb{E}[X] = \mathbb{E}[X \mathbb{1}_{\{X \geq \epsilon\}} + X \mathbb{1}_{\{X < \epsilon\}}]$$

$$\mathbb{1}_{\{X \geq \epsilon\}} = \begin{cases} 1 & \text{if } X \geq \epsilon \\ 0 & \text{otherwise} \end{cases}$$

$$= \mathbb{E}[X \mathbb{1}_{\{X \geq \epsilon\}}] + \mathbb{E}[X \mathbb{1}_{\{X < \epsilon\}}]$$

$$\mathbb{E}[\mathbb{1}_{\{X \geq \epsilon\}}] = \mathbb{P}(X \geq \epsilon) = \underbrace{\mathbb{E}[\mathbb{1}_{\{X \geq \epsilon\}}]}_{\mathbb{E}[\mathbb{1}_{\{X \geq \epsilon\}}]} \geq \epsilon \quad \mathbb{P}(X \geq \epsilon) \mathbb{E}[X | X \geq \epsilon]$$

$$\int_{\epsilon}^{\infty} 1 \, dF_x = \mathbb{P}(X \geq \epsilon) \\ = f(x) dx$$

$$\geq \epsilon \mathbb{P}(X \geq \epsilon)$$

²Recall that a function φ is convex if $\varphi(\lambda x + (1 - \lambda)y) \leq \lambda\varphi(x) + (1 - \lambda)\varphi(y)$ for all x, y , and $\lambda \in [0, 1]$.

$$\mathbb{E}[X] \geq \varepsilon \mathbb{P}(X \geq \varepsilon)$$

$$\mathbb{P}(X \geq \varepsilon) \leq \frac{\mathbb{E}[X]}{\varepsilon}$$

Inequalities Involving Moments

Given \underline{X} be a non-negative random variable. Then, given any $\epsilon > 0$,

$$\mathbb{P}[X \geq \epsilon] \leq \frac{\mathbb{E}[X]}{\epsilon} \quad [\text{Markov}]$$

Let \underline{X} be a random variable with finite mean $\underline{\mathbb{E}[X]} < \infty$. Then, given any $\epsilon > 0$,

$$\mathbb{P}[|X - \mathbb{E}[X]| \geq \epsilon] \leq \frac{\text{var}[X]}{\epsilon^2} \quad [\text{Chebyshev}]$$

Proof

$$\begin{aligned} y &= |X - \mathbb{E}[X]| \geq 0 \\ \mathbb{P}(|X - \mathbb{E}[X]| \geq \epsilon) &= \mathbb{P}(|X - \mathbb{E}[X]|^2 \geq \epsilon^2) \\ &\leq \frac{\mathbb{E}[|X - \mathbb{E}[X]|^2]}{\epsilon^2} \\ &= \frac{\text{var}(X)}{\epsilon^2} \end{aligned}$$

²Recall that a function φ is convex if $\varphi(\lambda x + (1 - \lambda)y) \leq \lambda\varphi(x) + (1 - \lambda)\varphi(y)$ for all x, y , and $\lambda \in [0, 1]$.

Inequalities Involving Moments

Given X be a non-negative random variable. Then, given any $\epsilon > 0$,

$$\mathbb{P}[X \geq \epsilon] \leq \frac{\mathbb{E}[X]}{\epsilon} \quad [\text{Markov}]$$

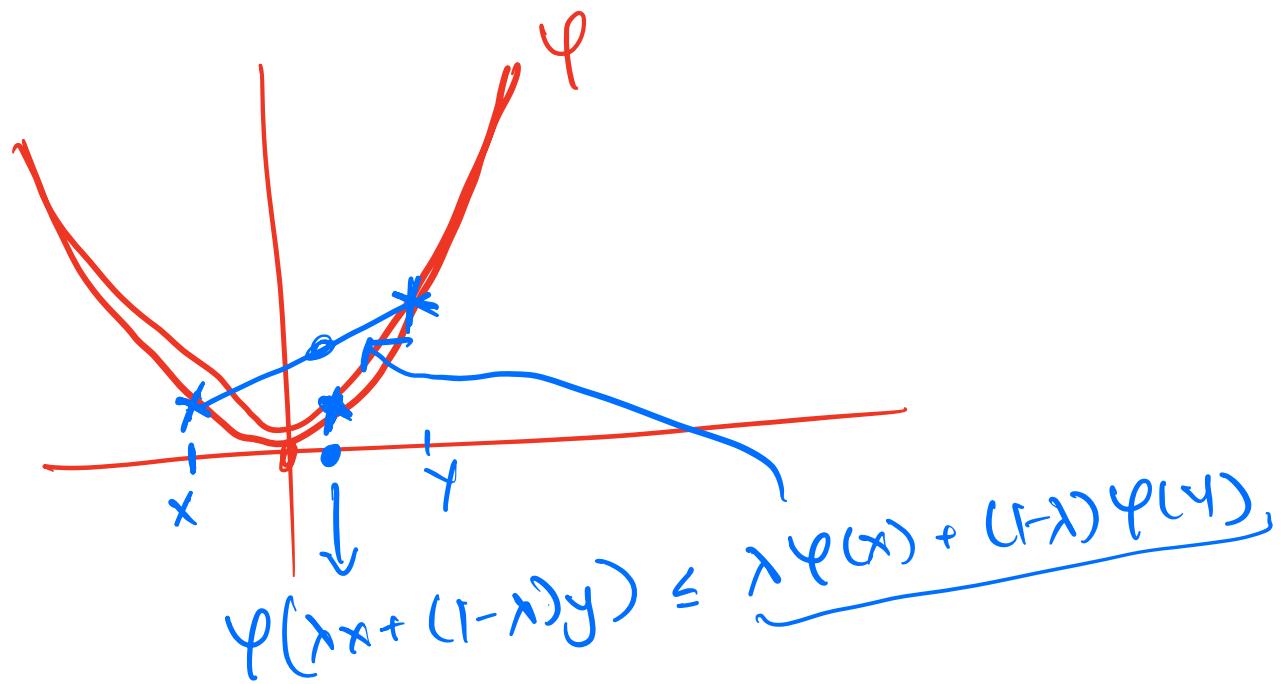
Let X be a random variable with finite mean $\mathbb{E}[X] < \infty$. Then, given any $\epsilon > 0$,

$$\mathbb{P}[|X - \mathbb{E}[X]| \geq \epsilon] \leq \frac{\text{var}[X]}{\epsilon^2} \quad [\text{Chebyschev}]$$

For any convex² function $\varphi : \mathbb{R} \rightarrow \mathbb{R}$, if $\mathbb{E}|\varphi(X)| + \mathbb{E}|X| < \infty$, then one has

$$\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)] \quad [\text{Jensen}]$$

²Recall that a function φ is convex if $\varphi(\lambda x + (1 - \lambda)y) \leq \lambda\varphi(x) + (1 - \lambda)\varphi(y)$ for all x, y , and $\lambda \in [0, 1]$.



Inequalities Involving Moments

Given X be a non-negative random variable. Then, given any $\epsilon > 0$,

$$\mathbb{P}[X \geq \epsilon] \leq \frac{\mathbb{E}[X]}{\epsilon} \quad [\text{Markov}]$$

Let X be a random variable with finite mean $\mathbb{E}[X] < \infty$. Then, given any $\epsilon > 0$,

$$\mathbb{P}[|X - \mathbb{E}[X]| \geq \epsilon] \leq \frac{\text{var}[X]}{\epsilon^2} \quad [\text{Chebyschev}]$$

For any convex² function $\varphi : \mathbb{R} \rightarrow \mathbb{R}$, if $\mathbb{E}|\varphi(X)| + \mathbb{E}|X| < \infty$, then one has

$$\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)] \quad [\text{Jensen}]$$

Let X be a real random variable with $\mathbb{E}[X^2] < \infty$. Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be a non-decreasing function such that $\mathbb{E}[g^2(X)] < \infty$. Then, $X \uparrow \Rightarrow g(X) \downarrow$

$$\text{cov}[X, g(X)] \geq 0 \quad [\text{Monotonicity and Covariance}]$$

²Recall that a function φ is convex if $\varphi(\lambda x + (1 - \lambda)y) \leq \lambda\varphi(x) + (1 - \lambda)\varphi(y)$ for all x, y , and $\lambda \in [0, 1]$.

Moment Generating Functions

Let X be a random variable taking values in \mathbb{R} . The **moment generating function (MGF)** of X is defined as

$$\begin{array}{c} M_X(t) : \mathbb{R} \rightarrow \mathbb{R} \cup \{\infty\} \\ \hline M_X(t) = \mathbb{E}[e^{tX}], \quad t \in \mathbb{R}. \end{array}$$

When $M_X(t), M_Y(t)$ exist (are finite) for $t \in I \ni 0$, then:

- $\mathbb{E}[|X|^k] < \infty$ and $\mathbb{E}[X^k] = \frac{d^k M_X}{dt^k}(0)$, for all $k \in \mathbb{N}$.
- $M_X = M_Y$ on I if and only if $F_X = F_Y$
- $M_{X+Y} = M_X M_Y$ when X and Y are independent

Similarly, for a random vector \mathbf{X} in \mathbb{R}^d , the MGF is

$$\begin{array}{c} M_{\mathbf{X}}(\mathbf{u}) : \mathbb{R}^d \rightarrow \mathbb{R} \cup \{\infty\} \\ \hline M_{\mathbf{X}}(\mathbf{u}) = \mathbb{E}[e^{\mathbf{u}^\top \mathbf{X}}], \quad \mathbf{u} \in \mathbb{R}^d. \end{array}$$

and has analogous properties.

$$e^{tx} = 1 + \cancel{tx} + \cancel{\frac{t^2 x^2}{2!}} + \frac{t^3 x^3}{3!} + \dots$$

$$\mathbb{E}[e^{tx}] = \mathbb{E}[1] + \mathbb{E}[tx] + \frac{\mathbb{E}[t^2 x^2]}{2!} + \dots$$

$$\mathbb{E}[x^m] \Rightarrow \left. \frac{\partial^m \mathbb{E}[e^{tx}]}{\partial t^m} \right|_{t=0}$$

$$\left. \frac{\partial \mathbb{E}[e^{tx}]}{\partial t} \right|_{t=0} = \mathbb{E}[x] + \mathbb{E}\left[\cancel{\frac{t^2 x^2}{2!}}\right] + \dots$$

$$= \mathbb{E}[x]$$

Elementary Distributions Factsheet

A random variable X is said to follow the Bernoulli distribution with parameter $p \in (0, 1)$, denoted $X \sim \text{Bern}(p)$, if

$$\textcircled{1} \quad \mathcal{X} = \{0, 1\}, \quad \underline{\Delta}$$

$$\rightarrow \textcircled{2} \quad f(x; p) = p \mathbf{1}\{x = 1\} + (1 - p) \mathbf{1}\{x = 0\}.$$

$$\underline{P(X=1)}$$

The mean, variance and moment generating function of $\underline{X \sim \text{Bern}(p)}$ are given by

$$\underline{\mathbb{E}[X] = p}, \quad \text{var}[X] = \underline{p(1 - p)}, \quad \boxed{M(t) = 1 - p + pe^t.}$$

$$\begin{aligned} \mathbb{E}[X] &= \mathbb{E}[p \mathbf{1}\{X=1\} + (1-p) \mathbf{1}\{X=0\}] \\ &= 1 \cdot p + 0 \cdot (1-p) = p \end{aligned}$$

Binomial Distribution

A random variable X is said to follow the Binomial distribution with parameters $p \in (0, 1)$ and $n \in \mathbb{N}$, denoted $X \sim \text{Binom}(n, p)$, if

$$\textcircled{1} \quad \mathcal{X} = \{0, 1, 2, \dots, n\},$$

$$\textcircled{2} \quad f(x; n, p) = \binom{n}{x} p^x (1 - p)^{n-x}.$$

$$\binom{n}{x} = \frac{n!}{(n-x)! x!}$$

The mean, variance and moment generating function of $X \sim \text{Binom}(n, p)$ are given by

$$\mathbb{E}[X] = np, \quad \text{var}[X] = np(1 - p), \quad M(t) = (1 - p + pe^t)^n.$$

A random variable X is said to follow the Binomial distribution with parameters $p \in (0, 1)$ and $n \in \mathbb{N}$, denoted $X \sim \text{Binom}(n, p)$, if

- ① $\mathcal{X} = \{0, 1, 2, \dots, n\}$,
- ② $f(x; n, p) = \binom{n}{x} p^x (1 - p)^{n-x}$.

The mean, variance and moment generating function of $X \sim \text{Binom}(n, p)$ are given by

$$\mathbb{E}[X] = np, \quad \text{var}[X] = np(1 - p), \quad M(t) = (1 - p + pe^t)^n.$$

- If $X = \sum_{i=1}^n \underbrace{Y_i}_{\text{iid}} \sim \text{Binom}(n, p)$, then $X \sim \text{Binom}(n, p)$.

A random variable X is said to follow the Geometric distribution with parameter $p \in (0, 1)$, denoted $X \sim \text{Geom}(p)$, if

- ① $\mathcal{X} = \{0\} \cup \mathbb{N}$,
- ② $f(x; p) = (1 - p)^x p$.

The mean, variance and moment generating function of $X \sim \text{Geom}(p)$ are given by

$$\mathbb{E}[X] = \frac{1 - p}{p}, \quad \text{var}[X] = \frac{(1 - p)}{p^2}, \quad M(t) = \frac{p}{1 - (1 - p)e^t} < 0$$

the latter for $t < -\log(1 - p)$.

- Let $\{Y_i\}_{i \geq 1}$ be an infinite collection of random variables, where $Y_i \stackrel{iid}{\sim} \text{Bern}(p)$. Let $T = \min\{k \in \mathbb{N} : Y_k = 1\} - 1$. Then $T \sim \text{Geom}(p)$.

Negative Binomial Distribution

A random variable X is said to follow the Negative Binomial distribution with parameters $p \in (0, 1)$ and $r > 0$, denoted $X \sim \text{NegBin}(r, p)$, if

① $\mathcal{X} = \{0\} \cup \mathbb{N}$,

② $f(x; p, r) = \binom{x+r-1}{x} (1-p)^x p^r$.

$\text{Bin}(n, p)$

The mean, variance and moment generating function of $X \sim \text{NegBin}(r, p)$ are given by

$$\mathbb{E}[X] = r \frac{1-p}{p}, \quad \text{var}[X] = r \frac{(1-p)}{p^2}, \quad M(t) = \frac{p^r}{[1 - (1-p)e^t]^r},$$

the latter for $t < -\log(1-p)$.

Negative Binomial Distribution

A random variable X is said to follow the Negative Binomial distribution with parameters $p \in (0, 1)$ and $r > 0$, denoted $X \sim \text{NegBin}(r, p)$, if

- ① $\mathcal{X} = \{0\} \cup \mathbb{N}$,
- ② $f(x; p, r) = \binom{x+r-1}{x} (1-p)^x p^r$.

The mean, variance and moment generating function of $X \sim \text{NegBin}(r, p)$ are given by

$$\mathbb{E}[X] = r \frac{1-p}{p}, \quad \text{var}[X] = r \frac{(1-p)}{p^2}, \quad M(t) = \frac{p^r}{[1 - (1-p)e^t]^r},$$

the latter for $t < -\log(1-p)$.

- If $X = \sum_{i=1}^r \underline{Y_i}$ where $Y_i \stackrel{iid}{\sim} \text{Geom}(p)$, then $X \sim \text{NegBin}(r, p)$.

Poisson Distribution

A random variable X is said to follow the Poisson distribution with parameters $\lambda > 0$, denoted $X \sim \text{Poisson}(\lambda)$, if

1 $\mathcal{X} = \{0\} \cup \mathbb{N}$,

2 $f(x; \lambda) = e^{-\lambda} \frac{\lambda^x}{x!}$.

The mean, variance and moment generating function of $X \sim \text{Poisson}(\lambda)$ are given by

$$\underline{\mathbb{E}[X] = \lambda}, \quad \underline{\text{var}[X] = \lambda}, \quad M(t) = \underline{\exp\{\lambda(e^t - 1)\}}.$$

- Let $\{X_n\}_{n \geq 1}$ be a sequence of $\underline{\text{Binom}(n, p_n)}$ random variables, such that $p_n = \underline{\lambda/n}$, for some constant $\lambda > 0$. Then $\underline{f_{X_n}} \xrightarrow{n \rightarrow \infty} \underline{f_Y}$, where $Y \sim \text{Poisson}(\lambda)$.
- Let $\underline{X \sim \text{Poisson}(\lambda)}$ and $\underline{Y \sim \text{Poisson}(\mu)}$ be independent. The conditional distribution of X given $X + Y = k$ is $\underline{\text{Binom}(k, \lambda/(\lambda + \mu))}$ (useful in contingency tables).

$$\underline{F_{X|X+Y=k}}$$

		↓	
		L	R
Sex	Left / right handed		
	F	$P(F, L)$	$P(F, R)$
M		$P(M, L)$	$P(M, R)$

Multinomial Distribution

A random vector \mathbf{X} in \mathbb{R}^k said to follow the Multinomial distribution with parameters $n \in \mathbb{N}$ and $p = (p_1, \dots, p_k) \in (0, 1)^k$, such that $\sum_{i=1}^k p_i = 1$, denoted $\mathbf{X} \sim \text{Multi}(n; p_1, \dots, p_k)$, if

- ① the sample space is $\{0, 1, \dots, n\}^k$, and

- ② $f(x_1, \dots, x_k; n, \{p_i\}_{i=1}^k) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k} \mathbf{1} \left\{ \sum_{i=1}^k x_i = n \right\}.$

The mean, variance covariance and moment generating function are

$$\mathbb{E}[X_i] = np_i, \quad \text{Var}[X_i] = np_i(1 - p_i), \quad \text{cov}(X_i, X_j) = -np_i p_j$$

$$M(u_1, \dots, u_k) = \left(\sum_{i=1}^k p_i e^{u_i} \right)^n.$$

Generalises binomial: n independent trials, with k possible outcomes.

Multinomial Distribution

A random vector \mathbf{X} in \mathbb{R}^k said to follow the Multinomial distribution with parameters $n \in \mathbb{N}$ and $p = (p_1, \dots, p_k) \in (0, 1)^k$, such that $\sum_{i=1}^k p_i = 1$, denoted $\mathbf{X} \sim \text{Multi}(n; p_1, \dots, p_k)$, if

① the sample space is $\{0, 1, \dots, n\}^k$, and

② $f(x_1, \dots, x_k; n, \{p_i\}_{i=1}^k) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k} \mathbf{1} \left\{ \sum_{i=1}^k x_i = n \right\}.$

The mean, variance covariance and moment generating function are

$$\mathbb{E}[X_i] = np_i, \quad \text{Var}[X_i] = np_i(1 - p_i), \quad \text{cov}(X_i, X_j) = -np_i p_j$$

$$M(u_1, \dots, u_k) = \left(\sum_{i=1}^k p_i e^{u_i} \right)^n.$$

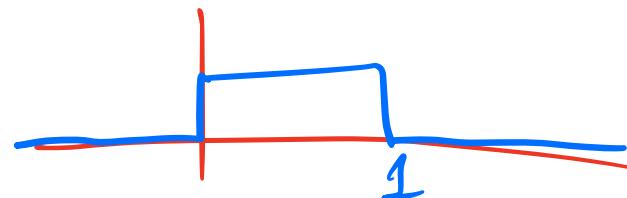
Generalises binomial: n independent trials, with k possible outcomes.

Lemma (Poisson and Multinomial)

If $X_i \sim \text{Poiss}(\lambda_i)$, $i = 1, \dots, k$ are independent, then the conditional distribution of $\underline{\mathbf{X}} = (X_1, \dots, X_k)^\top$ given $\sum_{i=1}^k X_i = n$ is $\text{Multi}(n; p_1, \dots, p_k)$, with

$$p_i = \frac{\lambda_i}{\lambda_1 + \dots + \lambda_k}.$$

Uniform Distribution



A random variable X is said to follow the uniform distribution with parameters $-\infty < \theta_1 < \theta_2 < \infty$, denoted $X \sim \text{Unif}(\theta_1, \theta_2)$, if

$$f_X(x; \theta) = \begin{cases} (\theta_2 - \theta_1)^{-1} & \text{if } x \in (\theta_1, \theta_2), \\ 0 & \text{otherwise.} \end{cases} \quad \frac{1}{\theta_2 - \theta_1}$$

The mean, variance and moment generating function of $X \sim \text{Unif}(\theta_1, \theta_2)$ are given by

$$\mathbb{E}[X] = \underline{(\theta_1 + \theta_2)/2}, \quad \text{var}[X] = \underline{(\theta_2 - \theta_1)^2/12}, \quad M(t) = \frac{e^{t\theta_2} - e^{t\theta_1}}{\underline{t(\theta_2 - \theta_1)}}, \quad t \neq 0$$

$$\mathbb{E}[e^{tX}] = 1 + \dots - \underline{M(0)} = 1.$$

Exponential Distribution

A random variable X is said to follow the exponential distribution with parameter $\lambda > 0$, denoted $X \sim \text{Exp}(\lambda)$, if ρ or λ

$$f_X(x; \lambda) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0 & \text{if } x < 0. \end{cases}$$

The mean, variance and moment generating function of $X \sim \text{Exp}(\lambda)$ are given by

$$\mathbb{E}[X] = \lambda^{-1}, \quad \text{var}[X] = \lambda^{-2}, \quad M(t) = \frac{\lambda}{\lambda - t}, \quad t < \lambda.$$

If X, Y are independent exponential random variables with rates λ_1 and λ_2 , then $Z = \min\{X, Y\}$ is also exponential with rate $\lambda_1 + \lambda_2$.

$$f_Z = (\lambda_1 + \lambda_2) e^{-(\lambda_1 + \lambda_2)Z}$$

Exponential Distribution

A random variable X is said to follow the exponential distribution with parameter $\lambda > 0$, denoted $X \sim \text{Exp}(\lambda)$, if

$$f_X(x; \lambda) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \geq 0 \\ 0 & \text{if } x < 0. \end{cases}$$

The mean, variance and moment generating function of $X \sim \text{Exp}(\lambda)$ are given by

$$\mathbb{E}[X] = \lambda^{-1}, \quad \text{var}[X] = \lambda^{-2}, \quad M(t) = \frac{\lambda}{\lambda - t}, \quad t < \lambda.$$

If X, Y are independent exponential random variables with rates λ_1 and λ_2 , then $Z = \min\{X, Y\}$ is also exponential with rate $\lambda_1 + \lambda_2$.

Memorylessness property:

- ① Let $X \sim \text{Exp}(\lambda)$. Then $\mathbb{P}[X \geq x + t | X \geq t] = \mathbb{P}[X \geq x]$.
- ② Conversely: if X is a random variable such that $\mathbb{P}(X > 0) > 0$ and

$$\mathbb{P}(X > t + s | X > t) = \mathbb{P}(X > s), \quad \forall t, s \geq 0,$$

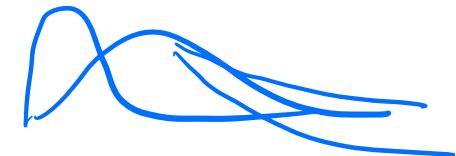
then there exists a $\lambda > 0$ such that $X \sim \text{Exp}(\lambda)$.

Gamma Distribution

A random variable X is said to follow the gamma distribution with parameters $r \geq 0$ and $\lambda > 0$ (the *shape* and *rate* parameters, respectively), denoted $X \sim \text{Gamma}(r, \lambda)$, if

α, β

$$f_X(x; r, \lambda) = \begin{cases} \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}, & \text{if } x \geq 0 \\ 0 & \text{if } x < 0. \end{cases}$$



The mean, variance and moment generating function of $X \sim \text{Gamma}(r, \lambda)$ are given by

$$\mathbb{E}[X] = \underline{r/\lambda},$$

$$\text{var}[X] = \underline{r/\lambda^2},$$

$$M(t) = \left(\frac{\lambda}{\lambda - t} \right)^r, \quad t < \lambda.$$

- If $\underline{Y_1, \dots, Y_r} \stackrel{iid}{\sim} \text{Exp}(\lambda)$, then $\underline{Y = \sum_{i=1}^r Y_i} \sim \text{Gamma}(r, \lambda)$ (special case is called Erlang distribution).
- The special case of $\underline{\text{Gamma}(k/2, 1/2)}$ is called the **chi-square distribution with k degrees of freedom** and denoted by $\underline{\chi_k^2}$. We will soon see its importance.

Normal (Gaussian) Distribution

A random variable X is said to follow the normal distribution with parameters $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ (the *mean* and *variance* parameters, respectively), denoted $X \sim N(\mu, \sigma^2)$, if

$$f_X(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right\}, \quad x \in \mathbb{R}.$$

The mean, variance and moment generating function of $X \sim N(\mu, \sigma^2)$ are given by

$$\mathbb{E}[X] = \underline{\mu}, \quad \text{var}[X] = \underline{\sigma^2}, \quad M(t) = \exp \{t\mu + t^2\sigma^2/2\}.$$

In the special case $Z \sim N(0, 1)$, we use the notation $\varphi(z) = f_Z(z)$ and $\Phi(z) = F_Z(z)$, and call these the standard normal density and standard normal CDF, respectively.

Lemma

Let $X \sim N(\mu, \sigma^2)$, $a \neq 0$. Then $aX + b \sim N(a\mu + b, a^2\sigma^2)$. Consequently, if $X \sim N(\mu, \sigma^2)$, then

$$F_X(x) = \Phi\left(\frac{x - \mu}{\sigma}\right),$$

where Φ is the standard normal CDF, $\Phi(u) = \int_{-\infty}^u (2\pi)^{-1/2} \exp\{-z^2/2\} dz$.

Corollary

Let X_1, \dots, X_n be independent random variables, such that $X_i \sim N(\mu_i, \sigma_i^2)$, and let $S_n = \sum_{i=1}^n X_i$. Then,

$$S_n \sim N\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right).$$

Entropy

Can one probability model be “more disordered” than another?

Can one probability model be “more disordered” than another?

The **entropy** of a random variable X is defined as

$$H(X) = -\mathbb{E} \left[\underbrace{\log f_X(X)}_{g(X)} \right] = \begin{cases} - \sum_{x \in \mathcal{X}} f_X(x) \log (f_X(x)), & \text{if } X \text{ is discrete,} \\ - \int_{-\infty}^{+\infty} \underbrace{f_X(x) \log (f_X(x)) dx}_{g(x)}, & \text{if } X \text{ is continuous.} \end{cases}$$

- A measure of the intrinsic disorder or unpredictability of a random system.
- Related to but not equivalent to variance.

When X is discrete:

- $H(X) \geq 0$
- $H(g(X)) \leq H(X)$ for any deterministic function g .

Can we use entropy to compare distributions?

KL Divergence (Relative Entropy)

Can we use entropy to compare distributions?

$$\|\cdot\|_2^2$$

Let $p(x)$ and $q(x)$ be two probability density (frequency) functions on \mathbb{R} . We define the **Kullback-Leibler divergence** or **relative entropy** of q with respect to p as

$$KL(q\|p) := \int_{-\infty}^{+\infty} p(x) \log \left(\frac{p(x)}{q(x)} \right) dx = \mathbb{E}_p \left[\log \left(\frac{p(x)}{q(x)} \right) \right]$$

By Jensen's inequality, for $X \sim p(\cdot)$ we have

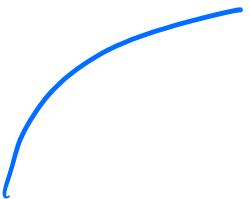
$$KL(q\|p) = \mathbb{E}[\log[q(X)/p(X)]] \geq -\log \left(\mathbb{E} \left[\frac{q(X)}{p(X)} \right] \right) = 0$$

since q integrates to 1.

- $p = q \iff KL(q\|p) = 0$.
- $KL(q\|p) \neq KL(p\|q)$.
- Not a metric (lacks symmetry and violates triangle inequality).

$$d(x, z) \leq d(x, y) + d(y, z)$$

$$KL(q \parallel p) = \mathbb{E}_p \left[\log \left(\frac{p}{q} \right) \right] \quad \log(a^x) = x \cdot \log(a)$$
$$= \mathbb{E}_p \left[-\log \left(\frac{q}{p} \right) \right] \quad (\mathbb{E}_p \left[\log \left(\frac{p}{q} \right)^{-1} \right])$$
$$=$$



Exponential Families

Maximum Entropy Under Constraints

Consider the following variational problem:

Determine the probability distribution f supported on \mathcal{X} with maximum entropy

$$f^* = \arg \max_f H(f) = - \int_{\mathcal{X}} f(x) \log f(x) dx$$

subject to the linear constraints

$$\mathbb{E}_f[T_i] = \int_{\mathcal{X}} T_i(x) f(x) dx = \alpha_i, \quad i = 1, \dots, k$$

Philosophy: How to choose a probability model for a given situation?

Maximum entropy approach:

- In any given situation, choose the distribution that gives *highest uncertainty* while satisfying situation-specific required constraints.

Proposition.

When a solution to the constrained optimisation problem exists, it is unique and has the form

$$\underline{f(x)} = Q(\lambda_1, \dots, \lambda_k) \exp \left\{ \sum_{i=1}^k \lambda_i T_i(x) \right\}$$

e^{log Q}

Proof.

Let $\underline{g(x)}$ be a density also satisfying the constraints. Then,

Multiply & divide by $f(x)$ inside log.

$$\begin{aligned} H(g) &= - \int_{\mathcal{X}} \underline{g(x) \log g(x)} dx = - \int_{\mathcal{X}} g(x) \log \left[\frac{g(x)}{f(x)} f(x) \right] dx \\ &\rightarrow = - \underbrace{KL(g \parallel f)}_{\geq 0} - \int_{\mathcal{X}} g(x) \log f(x) dx \\ &\stackrel{\text{plugging in}}{\leq} - \underbrace{\log Q}_{=1} \int_{\mathcal{X}} g(x) dx - \int_{\mathcal{X}} g(x) \left(\sum_{i=1}^k \lambda_i T_i(x) \right) dx \end{aligned}$$

$$\bigcirc \int_x^N g(x) \log \left(\underbrace{\frac{g(x)}{f(x)}}_a \underbrace{f(x)}_b \right) dx$$

$$* \log(a \cdot b) = \log(a) + \log(b)$$

$$* \int_x^N g(x) \left[\log \left(\frac{g(x)}{f(x)} \right) + \log f(x) \right] dx$$

$$= \int_x^N g(x) \log \left(\frac{g(x)}{f(x)} \right) + \int_x^N g(x) \log f(x) dx$$

$\underbrace{\qquad\qquad\qquad}_{KL(f||g)}$ $\underbrace{\qquad\qquad\qquad}_{N}$

$$= \int g(x) \log \left(\underbrace{Q(\alpha_1, \dots, \alpha_k)}_{\text{Q}} \underbrace{\exp(\sum \alpha_i T_i)}_{\text{exp}} \right) dx$$

$$= \int g(x) \log \underline{Q} dx + \int g(x) \log \underline{\exp(\sum \alpha_i T_i)} dx$$

$$\begin{aligned} \downarrow \text{KL} \geq 0 \Rightarrow g=f, \text{KL}=0 \Rightarrow H(g)=H(f) \\ H(g) \leq H(f) \end{aligned}$$

But g also satisfies the moment constraints, so the last term is

$$\begin{aligned} &= -\log Q - \int_{\mathcal{X}} f(\mathbf{x}) \left(\sum_{i=1}^k \lambda_i T_i(\mathbf{x}) \right) d\mathbf{x} = - \int_{\mathcal{X}} f(\mathbf{x}) \log f(\mathbf{x}) d\mathbf{x} \\ &\stackrel{\text{defn } f^*}{=} H(f) \end{aligned}$$

Uniqueness of the solution follows from the fact that strict equality can only follow when $KL(g \parallel f) = 0$, which happens if and only if $g = f$. □

Exponential Family of Distributions

A probability distribution is said to be a member of a k -parameter exponential family, if its density (or frequency) admits the representation

$$f(y) = \exp \left\{ \sum_{i=1}^k \phi_i T_i(y) - \gamma(\phi_1, \dots, \phi_k) + S(y) \right\}$$

independent of R-V.

log Q(- - -)

where:

- ① $\phi = (\phi_1, \dots, \phi_k)$ is a k -dimensional parameter in $\Phi \subseteq \mathbb{R}^k$;
- ② $T_i : \mathcal{Y} \rightarrow \mathbb{R}$, $i = 1, \dots, k$, $S : \mathcal{Y} \rightarrow \mathbb{R}$, and $\gamma : \mathbb{R}^k \rightarrow \mathbb{R}$, are real-valued;
- ③ The support \mathcal{Y} of f does not depend on ϕ .

Very rich class of models (sometimes requiring fixing some parameters to satisfy last condition): Binomial, Negative Binomial, Poisson, Gamma, Gaussian, Pareto, Weibull, Laplace, logNormal, inverse Gaussian, inverse Gamma, Normal-Gamma, Beta, Multinomial...

→ Basis for *Generalised Linear Models (GLM)*.

We will gradually see that such models have magnificent properties.

- $\phi = (\phi_1, \dots, \phi_k)^\top$ is called the natural parameter $\sigma^2 > 0$
- But transforming parameter, we can write exponential family in other ways.
- “Natural” is from the mathematics point of view – usual parameter
 $\theta = \eta^{-1}(\phi)$ often different.

Natural vs Usual Parametrization

$$\exp \left\{ \sum_{i=1}^k \underline{\phi_i T_i(y)} - \underline{\gamma(\phi)} + \underline{S(y)} \right\} = \exp \left\{ \sum_{i=1}^k \underline{\eta_i(\theta) T_i(y)} - \underline{d(\theta)} + \underline{S(y)} \right\}.$$

where $\eta : \mathbb{R}^k \rightarrow \mathbb{R}^k$ is a C^2 map such that

twice continuously differentiable
 η''

$$\phi = \eta(\theta)$$

and so $\gamma(\phi) = \gamma(\eta(\theta)) = d(\theta)$, for $d = \gamma \circ \eta$.

- Natural parametrization: great for mathematical manipulation.
- Usual parametrization: more intuitive in context of applications.

Example (Binomial Exponential Family)

Let $Y \sim \text{Binom}(n, p)$. Observe that:

$$f_Y(y) = \binom{n}{y} p^y (1-p)^{n-y} = \exp \left\{ \log \left(\frac{p}{1-p} \right) y + n \log(1-p) + \log \binom{n}{y} \right\}.$$

Define (for fixed n) $S(y) = \log \binom{n}{y}$

$$\phi = \log \left(\frac{p}{1-p} \right), \quad T(y) = y,$$

$$S(y) = \log \binom{n}{y}, \quad \gamma(\phi) = n \log(1 + e^\phi) = -n \log(1 - p).$$

Keeping n fixed and allowing only p to vary, the support of f does not depend on ϕ and we get a 1-parameter exponential family. Note that:

$$p = \frac{e^\phi}{1 + e^\phi} \quad \& \quad \phi = \underbrace{\log \left(\frac{p}{1-p} \right)}_{=\eta(p)}.$$

so the usual parameter is $p \in (0, 1)$, but the natural one is $\phi \in \mathbb{R}$. \square

$$\begin{aligned}
 \log \left[\binom{n}{y} p^y (1-p)^{n-y} \right] &= \log \binom{n}{y} + y \log p + (n-y) \log (1-p) \\
 &= \log \binom{n}{y} + \cancel{y} \log p + n \log (1-p) + \cancel{y} \log (1-p) \\
 \log \left(\frac{a}{b} \right) &= \log a - \log b \\
 &= \log \binom{n}{y} + y \log \left(\frac{p}{1-p} \right) + n \log (1-p)
 \end{aligned}$$

$$\log \left(\frac{p}{1-p} \right) = \phi$$

$$\frac{p}{1-p} = e^\phi$$

$$p = e^\phi - p e^\phi$$

$$p = \frac{e^\phi}{1 + e^\phi}$$

Example (Gaussian Exponential Family)

Let $Y \sim N(\mu, \sigma^2)$. We can write

$$\begin{aligned}
 f(y; \mu, \sigma^2) &= \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \left(\frac{y - \mu}{\sigma} \right)^2 \right\} \\
 f_\theta(\bar{y}) &= \exp \left\{ -\frac{1}{2\sigma^2} y^2 + \frac{\mu}{\sigma^2} y - \frac{1}{2} \log(2\pi\sigma^2) - \frac{\mu^2}{2\sigma^2} \right\}.
 \end{aligned}$$

Define

$$\mathbb{E}[T_i(y)] = \mathbb{E}[y^i] \quad \phi_1 = \frac{\mu}{\sigma^2}, \quad \phi_2 = -\frac{1}{2\sigma^2}, \quad \text{not dependent on } y$$

$$T_1(y) = y, \quad T_2(y) = y^2, \quad \underline{S(y) = 0}, \quad \gamma(\phi_1, \phi_2) = -\frac{\phi_1^2}{4\phi_2} + \frac{1}{2} \log \left(-\frac{\pi}{\phi_2} \right),$$

and observe that the support of f is always \mathbb{R} . Thus $N(\mu, \sigma^2)$ is a two-parameter exponential family. \square

Sampling Theory and Stochastic Convergence

Sampling

① Model phenomenon by distribution $F(y_1, \dots, y_n; \theta)$ on \mathcal{Y}^n , some $n \geq 1$.
data parameter(s)
 $\theta = (\mu, \sigma^2)$

② Distributional form is known but $\theta \in \Theta$ is unknown.

③ Observe realisation of $(Y_1, \dots, Y_n)^\top \in \mathcal{Y}^n$ from this distribution. Call this a sample.

④ Use sample $\{Y_1, \dots, Y_n\}$ in order to make assertions concerning the true value of θ , and quantify the uncertainty associated with these assertions.

$$\int y g(y) dy = E[y]$$

- ① Model phenomenon by distribution $F(y_1, \dots, y_n; \theta)$ on \mathcal{Y}^n , some $n \geq 1$.
- ② Distributional form is known but $\theta \in \Theta$ is unknown.
- ③ Observe realisation of $(Y_1, \dots, Y_n)^\top \in \mathcal{Y}^n$ from this distribution. Call this a sample.
- ④ Use sample $\{Y_1, \dots, Y_n\}$ in order to make assertions concerning the true value of θ , and quantify the uncertainty associated with these assertions.

Anything we do will be a function $\underline{T}(Y_1, \dots, Y_n)$ of the sample

Sampling theory aims to understand:

- ① What information do different forms of functions $\underline{T} : \mathcal{Y}^n \rightarrow \mathbb{R}^p$ carry on the parameter θ ?
- ② What is the probability distribution of $\underline{T}(Y_1, \dots, Y_n)$ and how does it relate to $F(y_1, \dots, y_n; \theta)$?

These two questions are closely related.

Definition (Statistic)

A statistic is any function T whose domain is the sample space \mathcal{Y}^n but does not depend on unknown parameters.

- Intuitively, any function that can be evaluated on the basis of the sample alone is a statistic.
- Any statistic is clearly itself a random variable with its own distribution.

Example

$$T: \mathcal{Y}^n \rightarrow \mathbb{R}$$

$T(Y) = n^{-1} \sum_{i=1}^n Y_i$ is a statistic (since n , the sample size, is known).

Example

$$T: \mathcal{Y}^n \rightarrow \mathbb{R}^n (\mathcal{Y}^n)$$

$T(Y) = (Y_{(1)}, \dots, Y_{(n)})$ where $Y_{(1)} \leq Y_{(2)} \leq \dots, Y_{(n)}$ are the order statistics of Y . Since T depends only on the values of Y , T is a statistic.

Example

Let $T(Y) = c$, where c is a known constant. Then T is a statistic

Definition (Sampling Distribution)

Let $(Y_1, \dots, Y_n)^\top \sim F(y_1, \dots, y_n; \theta)$ and $\underline{T} : \mathcal{Y}^n \rightarrow \mathbb{R}^q$ be a statistic,

$$\underline{T}(Y_1, \dots, Y_n) = (T_1(Y_1, \dots, Y_n), \dots, T_q(Y_1, \dots, Y_n)).$$

The sampling distribution of T under $F(y_1, \dots, y_n; \theta)$ is the distribution

$$\underline{F_T}(t_1, \dots, t_q) = \mathbb{P}[T_1(Y_1, \dots, Y_n) \leq t_1, \dots, T_q(Y_1, \dots, Y_n) \leq t_q].$$

Comments:

- We will typically simply write \underline{T} instead of the cumbersome $T(Y_1, \dots, Y_n)$.
- Very often $T : \mathcal{Y}^n \rightarrow \mathbb{R}$ (i.e. $q = 1$), in which case the notation simplifies considerably:

$$\underline{F_T}(t) = \mathbb{P}[T(Y_1, \dots, Y_n) \leq t], \quad t \in \mathbb{R}.$$

Key observation:

The sampling distribution of T depends on the unknown θ

The extent and form of this dependence is essential for inference.

- Evident from previous examples: some statistics are more informative and others are less informative regarding the true value of θ
- Any $T(Y_1, \dots, Y_n)$ that is not “1-1” carries less information about θ than the original sample (Y_1, \dots, Y_n) itself.
- Which are “good” and which are “bad” statistics?

Definition (Ancillary Statistic)

A statistic T is an ancillary statistic (for θ) if its distribution does not functionally depend θ

→ So an ancillary statistic has the same distribution $\forall \theta \in \Theta$.

Example

Suppose that $Y_1, \dots, Y_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ (where μ unknown but σ^2 known). Let $T(Y_1, \dots, Y_n) = Y_1 - Y_2$; then T has a Normal distribution with mean 0 and variance $2\sigma^2$. Thus T is ancillary for the unknown parameter μ . If both μ and σ^2 were unknown, T would not be ancillary for $\theta = (\mu, \sigma^2)$.

$$T \sim \mathcal{N}(0, 2\sigma^2)$$

- If T is ancillary for θ then T carries no information about θ
- In order to carry any useful information about θ , the sampling distribution F_T must depend explicitly on θ .
- Intuitively, the amount of information T carries on θ increases as the dependence of its sampling distribution F_T on θ increases

- If T is ancillary for θ then T carries no information about θ
- In order to carry any useful information about θ , the sampling distribution F_T must depend explicitly on θ .
- Intuitively, the amount of information T carries on θ increases as the dependence of its sampling distribution F_T on θ increases

Example

Let $Y_1, \dots, Y_n \stackrel{iid}{\sim} \mathcal{U}[0, \theta]$, $S = \min(Y_1, \dots, Y_n)$ and $T = \max(Y_1, \dots, Y_n)$.

- $f_S(y; \theta) = \frac{n}{\theta} \left(1 - \frac{y}{\theta}\right)^{n-1}, \quad 0 \leq y \leq \theta$

- $f_T(y; \theta) = \frac{n}{\theta} \left(\frac{y}{\theta}\right)^{n-1}, \quad 0 \leq y \leq \theta$

$$\left(\frac{a}{b}\right)^n \approx \left(\frac{b}{b}\right)^n + \epsilon$$

- ↪ Neither S nor T are ancillary for θ
- ↪ As $n \uparrow \infty$, f_S becomes concentrated around 0
- ↪ As $n \uparrow \infty$, f_T becomes concentrated around θ while
- ↪ Indicates that T provides more information about θ than does S .

$$S = \min \{Y_1, \dots, Y_n\}$$

$$\begin{aligned}F_S(t) &= P(S \leq t) = 1 - P(S > t) \\&= P(\min \{Y_1, \dots, Y_n\} \leq t) \\&= 1 - P(\min \{Y_1, \dots, Y_n\} > t) \\&= 1 - P(Y_1 > t, \dots, Y_n > t) \\&= 1 - \prod_{i=1}^n P(Y_i > t) \\&\quad \downarrow \\&\quad \text{Unif}[0, \theta]\end{aligned}$$