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Answer sheet 9

Assignment 1. a) The assumptions imply that A is injective. If v ∈ Rp \ {0} then

vTBv = vTATΩAv = (Av)TΩ(Av) > 0

since Av ̸= 0 and Ω is positive definite. Thus B is positive definite and in particular
invertible. The special case Ω = In shows that ATA is strictly positive definite.

b) Choose A = (1, 1)T and

Ω =

(
1 0
0 −1

)
,

then ATΩA = 0.

Remark. If Ω has one positive and one negative eigenvalues, we can always find an
injective A such that ATΩA = 0.

Assignment 2. We shall use the following fact. If X1 and X2 are indepndent, and Y1 and
X2 are independent, and X1 and Y1 have the same distribution, the for any (measurable)
function g, g(X1, X2) and g(Y1, X2) have the same distribution.

(i) Take cT = (1, 0)

(ii) Take cT = (0, 1) and use (i). And take cT = (−1, 0), to get −X ∼ X, so that E[−X] =
E[X], and then EX = 0.

(iii) Take cT = (1, 1)/
√
2. Then

X ∼ (X + Y )/
√
2 ∼ (X1 +X2)/

√
2.

(iv) We know that this is true for n = 1, 2. Suppose that this is true for n and write

(X1 + · · ·+Xn+1)/
√
n+ 1 =

√
n/(n+ 1)[(X1 + · · ·+Xn)/

√
n] +

√
1/(n+ 1)Xn+1.

This has the same distribution as
√

n/(n+ 1)X+
√
1/(n+ 1)Y by the induction hypo-

thesis. Now choose cT = (
√
n, 1)/

√
n+ 1

(v) Since X has zero mean and finite variance σ2, by the central limit theorem

(X1 + · · ·+Xn)/
√
n

d→ N(0, σ2).

By (v) this gives X ∼ N(0, σ2), and by (ii) Y ∼ N(0, σ2).

(vi) Let U ∼ U [0, 1] and
(X,Y ) = (cos(2πU), sin(2πU)),

then by symmetry cT (X,Y ) has the same distribution for all c ∈ S1 but X and Y are
not Gaussian. This is the uniform distribution on the unit circle.

Assignment 3.
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a) The parameters α1 and β1 are only influenced by the rats in the first group, while α2 and
β2 are only influenced by the second group. Thusy11y21

y31

 =

1 x11
1 x21
1 x31

[
α1

β1

]
+

ε11ε21
ε31

 , for group 1,

y12y22
y32

 =

1 x12
1 x22
1 x32

[
α2

β2

]
+

ε12ε22
ε32

 , for group 2.

The model for the two groups toghether is obtained by combining the two previous models
into

y =



y11
y21
y31
y12
y22
y32

 , X =



1 0 x11 0
1 0 x21 0
1 0 x31 0
0 1 0 x12
0 1 0 x22
0 1 0 x32

 , β =


α1

α2

β1
β2

 , ε =



ε11
ε21
ε31
ε12
ε22
ε32

 .

b) The models assume that (i) β1 = β2, (ii) α1 = α2 et (iii) α1 = α2 et β1 = β2. In order
to fulfill these assumptions we need to fix some parameters to 0, hence we should re-write
the model using α2 − α1 and β2 − β1 as parameters. We can for example write the model
for group 2 in terms of the difference w.r.t. group 1 :y12y22

y32

 =

1 x12
1 x22
1 x32

[
α1

β1

]
+

1 x12
1 x22
1 x32

[
α2 − α1

β2 − β1

]
+

ε12ε22
ε32

 .

With this formulation, the parameters α1 and β1 are now common to the two groups, and
the new parameters α2 − α1 and β2 − β1 represent the difference between the groups.

The model for the two groups combined is written as :

yjg = µ+ µdδ2g + (γ + γdδ2g)xjg + εjg, j = 1, 2, 3 g = 1, 2,

with design matrix and parameters vector

X =



1 0 x11 0
1 0 x21 0
1 0 x31 0
1 1 x12 x12
1 1 x22 x22
1 1 x32 x32

 , β =


µ
µd

γ
γd


=


α1

α2 − α1

β1
β2 − β1


 .

We have used the indicator function δ2g that takes value 1 for the group 2 and 0 otherwise.
It is represented by the second column of X above.

The submodels assume (i) γd = 0, (ii) µd = 0, (iii) µd = γd = 0 and thus we suppress the
following columns X : (i) 4, (ii) 2, (iii) 2 et 4.

Assignment 4.
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a) If Y ∈ Rn follows a multivariate normalNn(Xβ, σ2I), then Z = QTY follows a multivariate
Normal distribution with expected value

E(Z) = QTXβ = QTQRβ = Rβ

and covariance
VarZ = σ2QTQ = σ2I.

b) By direct computation and using the fact that Q is orthogonal we find

u = QT ŷ = QTX(XTX)−1XT y

= QTQR((QR)TQR)−1(QR)T y

= QTQR(RTQTQR)−1RTQT y

= R(RTR)−1RTQT y

=

[
R1

0

]([
RT

1 0
] [R1

0

])−1 [
RT

1 0
] [QT

1

QT
2

]
y

=

[
R1

0

]
(RT

1 R1)
−1RT

1 Q
T
1 y

=

[
R1

0

]
R−1

1 R−T
1 RT

1 Q
T
1 y

=

[
R1R

−1
1 QT

1 y
0

]
=

[
QT

1 y
0

]
,

where R1 is invertible since it’s upper triangular with positive diagonal elements.

For v we write :

v = QT(y − ŷ) = QTy −QTŷ

=

[
QT

1

QT
2

]
y −

[
QT

1 y
0

]
=

[
QT

1 y
QT

2 y

]
−
[
QT

1 y
0

]
=

[
0

QT
2 y

]
,

c) Since VarZ = σ2I is diagonal, its diagonal entries are zero. Therefore Z1 = QT
1 Y ∈ Rp

and Z2 = QT
2 Y ∈ Rn−p are independent since they are marginals of Z :

z =

[
QT

1 y
QT

2 y

]
=

[
z1
z2

]
=

[
u1
v2

]
,

where u1 ∈ Rp and v2 ∈ Rn−p are the non zero components of u and v :

u =

[
QT

1 y
0

]
=

[
u1
0

]
, v =

[
0

QT
2 y

]
=

[
0
v2

]
.

So it follows that U and V are independent.

d) We are going to show that S2 is a function of z2 and β̂ is a function of z1. This will
conclude the proof.
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Since v = QT(y − ŷ), we have y − ŷ = Qv. Then

S2 =
1

n− p
(y − ŷ)T(y − ŷ) =

1

n− p
vTQTQv =

1

n− p
vTv

=
1

n− p

[
0 vT2

] [ 0
v2

]
=

1

n− p
vT2 v2 =

1

n− p
zT2 z2,

is a function of z2. A similar computation to the one in part (b) yields that

β̂ = (XTX)−1XTy = R−1
1 QT

1 y = R−1
1 u1 = R−1

1 z1,

is a function of z1. The proof is done since

z1 indep z2 =⇒ u1 indep v2 =⇒ β̂ indep S2.

Indeed, measurable functions of independent variables stay independent : here S2 = f(v2)
and β̂ = g(u1), hence for every B,C ⊆ R (mesurable),

P(S2 ∈ B, β̂ ∈ C)

=P(v2 ∈ f−1(B), u1 ∈ g−1(C))

=P(v2 ∈ f−1(B))P(u1 ∈ g−1(C))

=P(S2 ∈ B)P(β̂ ∈ C).

Assignment 5.

Xy∼a−1 =



1
1
1
2
2
2

 ; Xy∼a+b =



1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3

 .

4


